
Aerial View Localization with Reinforcement Learning:
Towards Emulating Search-and-Rescue

Aleksis Pirinen1, Anton Samuelsson2, John Backsund2 and Kalle Åström2

1RISE Research Institutes of Sweden
2Centre for Mathematical Sciences, Lund University, Sweden
{aleksis.pirinen@ri.se, anton.b.samuelsson@gmail.com,

j.backsund@gmail.com, karl.astrom@math.lth.se}

Abstract— Climate-induced disasters are and will continue to
be on the rise, and thus search-and-rescue (SAR) operations,
where the task is to localize and assist one or several people
who are missing, become increasingly relevant. In many cases
the rough location may be known and a UAV can be deployed to
explore a given, confined area to precisely localize the missing
people. Due to time and battery constraints it is often critical
that localization is performed as efficiently as possible. In this
work we approach this type of problem by abstracting it as an
aerial view goal localization task in a framework that emulates
a SAR-like setup without requiring access to actual UAVs. In
this framework, an agent operates on top of an aerial image
(proxy for a search area) and is tasked with localizing a goal
that is described in terms of visual cues. To further mimic the
situation on an actual UAV, the agent is not able to observe
the search area in its entirety, not even at low resolution,
and thus it has to operate solely based on partial glimpses
when navigating towards the goal. To tackle this task, we
propose AiRLoc, a reinforcement learning (RL)-based model
that decouples exploration (searching for distant goals) and ex-
ploitation (localizing nearby goals). Extensive evaluations show
that AiRLoc outperforms heuristic search methods as well as
alternative learnable approaches, and that it generalizes across
datasets, e.g. to disaster-hit areas without seeing a single disaster
scenario during training. We also conduct a proof-of-concept
study which indicates that the learnable methods outperform
humans on average. Code and models have been made publicly
available at https://github.com/aleksispi/airloc.

I. INTRODUCTION

Recent technological developments of unmanned aerial
vehicles (UAVs) and satellites have resulted in an enormous
increase in the amount of aerial view landscape and urban
data that is available to the public [4], [15], [28], [12], [38],
[26], [36]. An important application area of UAVs is within
search-and-rescue (SAR) operations, where the task is to
localize and assist one or several people who are missing,
for example after a natural disaster. It may often be the case
that the people in need are known to be within a confined
area, such as within a specific neighborhood or city block. In
such a scenario, a UAV can be used to explore the area from
an aerial perspective to precisely localize and subsequently
assist the missing people. Obviously, controlling the UAV in
an informed and intelligent manner, rather than exhaustively
scanning the whole area, could significantly improve the
likelihood of succeeding with the operation.

In this paper, we propose a novel setup and task formu-
lation that allows for controllable and reproducible develop-

ment of and experimentation with systems for UAV-based
SAR operations.1 More specifically, we abstract the problem
within a framework that emulates a SAR-like setup without
requiring access to actual UAVs. In this framework, an agent
operates on top of an aerial image (proxy for a specific
search area) and is tasked with localizing a goal for which
coordinates are not available, but where some visual cues of
the goal are provided. For our task, which we denote aerial
view goal localization, we assume that the visual cues are
given in terms of a top-view observation of the goal within
the search area (see Fig. 1). This provides a streamlined
proxy setup, but note that in a real SAR operation such
cues could instead be provided e.g. by the missing people,
assuming they have been able to send information about their
surroundings (e.g. ground-level images). The active localiza-
tion methodologies we propose can easily be extended to
allow for more flexible goal specifications, for example by
integrating an off-the-shelf geo-localization module.

There are many cases where GPS coordinates of the goal
location are not available, or where such information is not
reliable (e.g. because global satellite navigation systems are
susceptible to radio frequency interruptions and fake signals).
Hence there is a need for robust aerial localization systems
that do not rely on global positional information, but that can
operate reliably based on visual information alone. Moreover,
to further mimic the situation on an actual UAV, it is assumed
in our task that only a partial glimpse of the search area can
be observed at the same time. In many cases, a UAV could
elevate to a higher altitude to get a generic (lower-resolution)
sense of the whole search area, but there are also conditions
which makes this impractical, e.g. if the battery of the UAV
is running low. Adverse weather conditions could also make
it risky or impossible to operate at a high altitude.

To tackle our suggested aerial view goal localization
task, we propose AiRLoc, a reinforcement learning (RL)-
based model that decouples exploration (searching for distant
goals) and exploitation (localizing nearby goals) – see Fig. 1.
Extensive experimental results show that AiRLoc outper-
forms heuristic search methods and alternative learnable
approaches. The results also show that AiRLoc generalizes
across datasets, e.g. to disaster-hit areas without seeing a

1Also relevant for many types of environmental monitoring applications,
e.g. in forestry management.

https://github.com/aleksispi/airloc

single disaster scenario during its training phase. We also
conduct a proof-of-concept study which indicates that this
task is difficult even for humans.

II. RELATED WORK

Several prior works have proposed methods for au-
tonomous control a UAVs [27], [13], [6], [3], [24], [41],
[19]. Many of these works (e.g. [27], [24], [41]) revolve
around methodologies for efficient scanning of large areas
(e.g. agricultural landscapes) such that certain types of
global-level downstream inferences – such as determining
the health status of a field of crops – can be accurately
performed based on a limited number of high-resolution
observations. Aside from differing in task formulation (ours
requiring precise localization of a particular goal, while
the aforementioned works often revolve around global-level
inference), these prior works assume access to a global
lower-resolution observation of the whole area of interest,
while we do not. There are also works that are closer to
us in terms of task setup [3], [13], [6]. For example, [3]
propose a hierarchical planning approach for a goal reaching
task, where a rough plan is first proposed using A*. This
rough plan is subsequently used as an initial guess by a finer-
grained planner which parametrizes the initial trajectory as
continuous B-splines and performs trajectory optimization.
Different from us, their system assumes access to ground
truth detections of moving objects and ground classifications.

Our work is also related but orthogonal to the increasingly
studied problem of geo-localization [35], [30], [42], [40],
[20], [33]. Such works aim to infer relationships between two
or more images from different perspectives, e.g. predicting
the satellite or drone view corresponding to a ground-level
image. Most such methods perform this task by an exhaustive
comparison within a large image set, and are thus very differ-
ent to our setup which instead revolves around minimizing
the amount of observations when performing localization.
However, our proposed methodologies could further benefit
from incorporating geo-localization methods. For example, if
the goal location is specified from a ground-level perspective,
which may be more realistic in practice, geo-localization
methods can be used to match the top-view images observed
by our proposed method during goal localization.

From a pure task formulation perspective, and setting
aside the application areas, our setup may be most closely
related to embodied image goal navigation [1], [43], [14].
In this framework, an agent is tasked to navigate in a
first-person perspective within a 3d environment towards
a goal location which is specified as an image within the
environment. On the one hand, the embodied setting may
sometimes be more challenging than our setup, since the
exploration trajectories are typically longer (as the agent
moves a significantly smaller extent per action) and because
exploration is performed among obstacles (e.g. walls and
furniture). On the other hand, embodied first person agents
may often observe the goal from far away (e.g. from the
other side of a newly entered room), while our formulation

is more challenging in that the goal can never be observed
in any way prior to reaching it.

To the best of our knowledge, in addition to us relatively
few prior works have considered inference based solely
on partial glimpses of an underlying image [21], [22]. In
contrast, most earlier RL-based methods that have been
proposed for computer vision tasks – e.g. for object detection
[5], [8], [18] and aerial view processing [29], [2] – assume
access to at least a low-resolution version of the entire scene
or image being processed. Even the seminal work by [16]
uses lower-resolution full image input in addition to high-
resolution partial glimpses during its sequential processing,
even though in principle it may be possible to re-design the
system to operate based on high-resolution glimpses alone.

III. AERIAL VIEW GOAL LOCALIZATION

In this section we first explain in detail our proposed aerial
view goal localization task and framework (§III-A). Then,
in §III-B, we explain AiRLoc, our reinforcement learning
(RL)-based approach for tackling this task. See Fig. 1 for
an overview. Finally, §III-C describes the baseline methods
we have developed and that we evaluate and compare with
AiRLoc in §IV.

A. Task Description

The task is executed by an agent within a search area,
which is discretized as an M × N grid that is layered on
top of a given aerial image (with a small distance between
each grid cell, to avoid overfitting models to edge artefacts).
Every grid cell within the search area corresponds to a valid
position pt of the agent, and the agent can only directly
observe the image content Ot of its current cell. In each
episode, one of the grid cells corresponds to the goal that
the agent should localize. The image content of the goal cell
is denoted Ogoal and its position is denoted pgoal. Note that
the goal position pgoal is never observed by the agent; it is
only used to determine if the agent is successful. The task
is considered successfully completed as soon as the agent’s
current position pt and the goal position pgoal coincide,2

i.e. when pt = pgoal.
In each episode, the agent’s start location p0 and the

goal location pgoal are sampled at uniform random within
the search area (p0 ̸= pgoal). The agent then moves around
until it either reaches the goal (pt = pgoal), or a maximum
number of steps T have been taken. This limit T is included
to represent time and resource constraints. In our task formu-
lation, an agent has eight possible actions, which correspond
to moving to any of its eight adjacent locations (grid cells).
An agent may in general move outside the search area, and
if so, the agent receives an entirely black observation. There
is never any advantage to moving outside the search area,
and thus it should be avoided (it is easy to avoid given pt).

2A reasonable next step would be to require that an agent has to declare
when it has reached its goal.

Fig. 1. Overview of AiRLoc, our RL-based agent for aerial view goal localization. The state st consists of the agent’s current position pt, its currently
observed patch Ot, and the goal patch Ogoal. First, segmentation masks for Ot and Ogoal are computed, and Ot, Ogoal and their segmentations are then
fed through a patch embedder to generate a common representation ct. The positional encoding pt is then added to ct, and the sum, together with an
exploitation prior ut (see §III-B), are subsequently processed by an LSTM, whose output is fed to a decision unit. The decision unit also receives ut and
outputs an action probability distribution π(·|st). A movement at is then sampled from π(·|st), which results in the next state st+1 and reward rt+1

(a reward is provided during training only). The process is repeated, either until the agent reaches the goal, or until a maximum number of steps T have
been taken. Note that AiRLoc never observes the full search area, not even at a low resolution.

B. AiRLoc Model

In this section we describe AiRLoc, the reinforcement
learning (RL)-based model we propose for tackling the
aerial view goal localization task; see an overview in Fig. 1.

States, actions and rewards. The state st contains
the currently observed patch Ot, the goal patch Ogoal,
and an encoding pt ∈ R256 of the agent’s position. As
described above, AiRLoc has eight possible actions at,
which correspond to moving to any of its adjacent locations.
During training, a negative reward is provided for each
action that does not move the agent into the goal location,
and a positive reward is provided when the goal is found.
Specifically, after taking action at−1 in state st−1 the reward
rt = 3 · 1

(
pt = pgoal

)
− 1 is provided, where 1 is the

indicator function.

Policy overview In each step, the state st is processed by
four modules to generate the current action distribution
πθ(∗|st), where θ denotes all learnable parameters. First, Ot

and Ogoal are passed through a pretrained segmentation unit
(a U-net [23]) which predicts building segmentation masks
for Ot and Ogoal, respectively. Second, Ot and Ogoal and
their segmentations are passed through a patch embedder
which yields a low-dimensional embedding ct ∈ R256 of
what the agent observes and what it aims to localize. The
patch embedder also outputs an exploitation prior ut ∈ R8

(described more below). Third, pt is added to ct and the
result and ut are passed to an LSTM-based temporal unit

[10] which integrates information over time. Finally, the
LSTM output and ut are passed to a decision unit which
yields the probability distribution πθ(∗|st). This decision
unit first projects the LSTM’s output into the action space
dimensionality, then adds the exploitation prior ut, and
finally generates an action distribution using softmax. Note
that we use an LSTM rather than a Transformer for the
temporal unit, since we want to keep the overall architecture
lightweight – the model weights occupy less than 4 MB of
memory, and inference can be efficiently performed even
without a GPU.

Patch embedder. The patch embedder should extract
relevant information about the relationship between Ot

and Ogoal. To achieve this, we use an architecture similar
to that by [7], who consider a self-supervised visual
representation learning task where the spatial displacement
between a pair of adjacent random crops from an image
should be predicted. Note that when the start location
p0 is adjacent to the goal location pgoal, and when the
movement budget T = 1, our task becomes equivalent to
the representation learning task introduced by [7]. Our patch
embedder architecture consists of two parallel branches
with four convolutional layers (ReLUs and max pooling
are applied between layers). First, Ot and Ogoal, with their
segmentations channel-wise concatenated, are fed separately
into one branch each. To enable early information sharing
between the agent’s current patch and the goal patch, after
two convolutional layers, the outputs of the two branches

are concatenated and sent through the rest of their respective
branches. The two resulting 128-dimensional embeddings
are then concatenated and the result is passed through a
dense layer with output ct ∈ R256.

Pretraining backbone vision components is common in
RL setups, since it often yields a higher end performance
[25], [17], [32], [37], [39]. We therefore pretrain the
patch embedder in the same self-supervised fashion as [7].
During pretraining, another dense layer (with input ct) is
attached to produce an 8-dimensional output ut which is
fed to a softmax function. The eight outputs correspond
to the possible locations of Ogoal relative to Ot, assuming
these are adjacent. When using the patch embedder within
AiRLoc, we take advantage of both ct and ut, cf. Fig. 1.
Note that ut can be interpreted as an exploitation prior,
as it is specifically tuned towards localizing (’exploiting’)
adjacent goals. Thus, feeding ut to the temporal unit as
well as directly to the decision unit allows AiRLoc to learn
when to explore and when to exploit (without ut, the same
policy must be able to both localize adjacent goals and
explore far-away goals). The choice of using both ct and
ut is empirically justified in §IV-B.

Positional encoding. Positional information is represented
similarly to Transformers [31]. Note that AiRLoc never
receives global positional information, i.e. it is always
relative to a given search area. Such information may be
available during SAR within a confined area, where a UAV
can keep track of its location relative to the borders of
this area. Let (x, y) denote the agent’s coordinates within
the M × N -sized search area (thus x ∈ {0, . . . ,M − 1},
y ∈ {0, . . . , N − 1}). Then the i:th element pit of the
positional encoding vector pt ∈ Rd (with d even; for us
d = 256) is given by:

pit =

cos (x/1002(i−1)/(d/2)) if i ∈ {1, 3, . . . , d/2− 1}
sin (x/1002i/(d/2)) if i ∈ {2, 4, . . . , d/2}
cos (y/1002(i−1)/(d/2)) if i ∈ {d/2 + 1, . . . , d− 1}
sin (y/1002i/(d/2)) if i ∈ {d/2 + 2, . . . , d}

(1)
Policy training. To learn the parameters of AiRLoc, we
first pretrain the patch embedder in a self-supervised fashion
(without RL) as described above. We then freeze the patch
embedder weights and train the rest of AiRLoc using REIN-
FORCE [34]. We employ within-batch reward normalization
based on distance left to the goal, i.e. rewards associated
with states of equal distance to the goal are grouped and
normalized to zero mean and unit variance. We use a
pretrained segmentation unit (one can simply use an off-the-
shelf aerial view segmentation model) and it is not refined
during policy training.

C. Baselines

In §IV we compare AiRLoc with the following baselines:
• Priv random selects actions randomly, with two excep-

tions: i) it cannot move outside the search area; ii) it
avoids previous locations.

• Local selects actions by repeatedly calling the pre-
trained patch embedder (which assumes the goal is
adjacent to the current location).

• Priv local is the same as Local but with the privileged
movement restrictions of Priv random.

• Human represents the average human performance
from a proof-of-concept evaluation with 19 subjects (see
details in the appendix).

IV. EXPERIMENTS

In this section we extensively evaluate and compare
AiRLoc and the various baselines described in §III-B and
§III-C, respectively. First we however describe what datasets
and evaluation metrics we use, explain different variants
of AiRLoc, and provide some further implementation details.

Datasets. We mainly use Massachusetts Buildings (Masa)
by [15] for development and evaluation (70% for training;
15% each for validation and testing). The data contains
images of Boston and the surrounding suburban and
forested areas. It depicts houses, roads and other clearly
identifiable man-made structures, but also woods and less
developed regions. The data also includes segmentation
masks for buildings, which are used to separately train
the segmentation unit (cf. Fig. 1) that is used by most
of the learnable models in the results below. Models are
also evaluated on the Dubai dataset [28], which also
depicts urban regions, although the surrounding areas are
instead dry deserts. This dataset is hence used to assess
the generalization of the various methods. Finally, we
also train and evaluate on the xBD dataset by [9], which
contains satellite images from various regions both before
(xBD-pre) and after (xBD-disaster) various natural distastes,
e.g. wildfires and floods. In this case the models are trained
on non-disaster-hit data from xBD-pre and evaluated on
xBD-disaster, where we also ensure that the training data
depicts other geographical areas than those in xBD-disaster.

Evaluation metrics. We use the following evaluation
metrics. Success is the percentage of episodes where the
goal is reached. Steps is the average number of actions taken
per episode (for failure episodes this is set to the movement
budget T). Step ratio measures the average ratio between
the taken number of steps and the minimum number of
steps required (lower is better). It is only computed for
successful trajectories. Residual distance measures the
average distance between the final location relative to the
goal location in unsuccessful episodes (lower is better).
Finally, Runtime is the average runtime per episode.

AiRLoc variants. We also train and evaluate several
ablated variants of AiRLoc. No sem seg omits the
segmentation unit and uses only RGB patches in the patch
embedder (which is instead pretrained with RGB-only
inputs). No residual omits ut in the decision unit, but not
in the temporal unit, cf. Fig. 1. Finally, no prior entirely
discards the prior ut in the architecture.

TABLE I
RESULTS ON THE TEST SET OF Massachusetts Buildings (MOVEMENT BUDGET T = 10 AND T = 14 FOR SETUPS OF SIZES 5× 5 AND 7× 7,

RESPECTIVELY). FOR BOTH SEARCH AREA SIZES, THE SUCCESS RATE OF AIRLOC IS HIGHER THAN FOR THE BASELINES. MID-LEVEL VISION

CAPABILITIES (SEMANTIC SEGMENTATION) ARE CRUCIAL FOR AIRLOC’S PERFORMANCE. THE STANDARD LOCAL APPROACH PERFORMS POORLY

AND IS SIGNIFICANTLY IMPROVED BY IMPOSING THE PRIVILEGED MOVEMENT CONSTRAINTS. THE TIME PER EPISODE IS LOW FOR ALL METHODS.

Agent type Success Step ratio Steps Residual distance Runtime
AiRLoc (5x5) 67.6 % 1.45 6.2 2.4 120 ms
Priv local (5x5) 64.2 % 1.59 6.5 2.4 117 ms

Local (5x5) 24.7 % 1.47 8.1 7.0 138 ms
Priv random (5x5) 41.0 % 2.56 8.0 1.6 48 ms

AiRLoc (7x7) 59.0 % 1.52 9.4 3.3 188 ms
Priv local (7x7) 56.3 % 1.72 9.9 3.4 178 ms

Local (7x7) 17.8 % 1.20 11.9 8.7 202 ms
Priv random (7x7) 25.2 % 1.82 12.3 3.5 74 ms

AiRLoc (no sem seg, 5x5) 61.7 % 1.54 6.7 2.4 94 ms
Priv local (no sem seg, 5x5) 61.6 % 1.67 6.8 2.4 88 ms

Local (no sem seg, 5x5) 20.5 % 1.28 8.4 6.2 92 ms
AiRLoc (no sem seg, 7x7) 52.5 % 1.61 10.1 3.5 141 ms
Priv local (no sem seg, 7x7) 51.1 % 1.89 10.2 3.3 133 ms

Local (no sem seg, 7x7) 14.1 % 1.37 12.4 8.0 136 ms

Fig. 2. Examples of AiRLoc (red) and Priv local (dashed green) on the test set of Masa (left, middle) and Dubai (right). Left: AiRLoc takes the same
first two actions as Priv local and then takes the shortest path to the goal (’G’). Priv local also reaches the goal. Middle: AiRLoc first deviates from Priv
local and then follows the same path. AiRLoc reaches the goal faster. Right: AiRLoc follows the same path as Priv local until it is adjacent to the goal
and then moves into the goal, while Priv local fails.

Implementation details. All methods are implemented in,
trained and evaluated using PyTorch. Training AiRLoctakes
30h on a Titan V100 GPU. To learn the parameters of the
policy networks, we use REINFORCE [34] with Adam
[11], batch size 64, search area size M × N = 5 × 5,
movement budget T = 10, learning rate 10−4, and discount
γ = 0.9. The grid cells of the search areas are of size
48 × 48 × 3, with 4 pixels between each other to avoid
overfitting models to edge artefacts (each cell corresponds
to roughly 100 × 100 meters). Each model is trained until
convergence on the validation set (typically happens within
50k batches). We apply left-right and top-down flipping of
images (search areas) as data augmentation. The AiRLoc
variants are trained with five random network initializations
each, and the results for the median-performing models on
the validation set are reported below. AiRLoc is not seed

sensitive, as shown in §IV-C. Unless otherwise specified,
all models are evaluated in deterministic mode, i.e. the
most probable action is selected in each step. All models
are evaluated on the exact same start configurations for fair
comparisons.

A. Main Results

In Table I we compare AiRLoc to the heuristic random
and learnable local baselines on the test set of Massachusetts
Buildings (Masa). AiRLoc obtains a higher success rate than
the baselines, both in search areas of size 5 × 5 and 7 × 7
(AiRLoc is only trained in the 5 × 5 setting). AiRLoc and
Priv local have roughly the same runtime per trajectory,
and note that all methods have runtimes that would be
negligible compared to the movement overhead of an actual
UAV. It is also clear that the segmentation model is crucial,
which is in line with prior works that find that mid-level
vision capabilities are important for high performance in

TABLE II
AIRLOC AND BASELINES EVALUATED ON PREVIOUSLY UNSEEN Dubai DATA (MOVEMENT BUDGET T = 10 AND T = 14 FOR SETUPS OF SIZES 5× 5

AND 7× 7, RESPECTIVELY). AIRLOC AND THE PRIVILEGED LOCAL APPROACH GENERALIZE VERY WELL TO THIS OUT-OF-DOMAIN DATA. NOTE THAT

AIRLOC IS THE MOST SUCCESSFUL METHOD IN ALL SETTINGS, OFTEN BY A LARGE MARGIN.

Agent type Success Step ratio Steps Residual distance Runtime
AiRLoc (5x5) 68.8 % 1.52 6.3 2.4 126 ms

Priv local (5x5) 65.6 % 1.59 6.5 2.4 113 ms
Local (5x5) 23.5 % 1.23 8.2 6.6 136 ms

Priv random (5x5) 41.0 % 1.96 8.0 2.5 48 ms
AiRLoc (7x7) 57.2 % 1.54 9.7 3.4 194 ms

Priv local (7x7) 53.7 % 1.85 10.2 3.6 184 ms
Local (7x7) 15.5 % 1.25 12.2 7.9 207 ms

Priv random (7x7) 26.9 % 1.64 12.0 3.5 72 ms
AiRLoc (no sem seg, 5x5) 67.1 % 1.59 6.5 2.4 91 ms

Priv local (no sem seg, 5x5) 65.1 % 1.67 6.6 2.5 86 ms
Local (no sem seg, 5x5) 23.3 % 1.25 8.2 6.6 90 ms

AiRLoc (no sem seg, 7x7) 48.6 % 1.56 10.3 3.3 144 ms
Priv local (no sem seg, 7x7) 41.9 % 1.69 10.8 3.4 140 ms

Local (no sem seg, 7x7) 15.0 % 1.28 12.3 7.6 135 ms

TABLE III
RESULTS ON SCENARIOS DEPICTING VARIOUS NATURAL DISASTERS (xBD-disaster) FOR MODELS TRAINED IN TWO DIFFERENT WAYS. COLUMNS 1 - 3:

AIRLOC GENERALIZES QUITE WELL FROM HAVING BEEN TRAINED ON AN ENTIRELY DIFFERENT DATASET (Masa), WHICH CONTAINS SATELLITE

IMAGES OF NON-DISASTER-HIT URBAN AREAS, TO DISASTER-HIT AREAS AT VARIOUS OTHER SPATIAL LOCATIONS. COLUMNS 4 - 6: RESULTS ARE

IMPROVED FURTHER IF MODELS ARE FIRST TRAINED ON NON-DISASTER-HIT IMAGES FROM THE SAME DATASET (xBD-pre) AND THEN EVALUATED AT

DIFFERENT LOCATIONS DEPICTING DISASTER-HIT SCENARIOS.

Agent type Success Steps Runtime Success Steps Runtime
AiRLoc (5x5) 66.1 % 6.5 130 ms 72.8 % 6.1 122 ms

Priv local (5x5) 63.8 % 6.7 121 ms 67.3 % 6.4 115 ms
Priv random (5x5) 40.8 % 7.9 48 ms 40.8 % 7.9 48 ms

AiRLoc (7x7) 50.7 % 10.2 204 ms 55.7 % 9.9 198 ms
Priv local (7x7) 50.5 % 10.2 184 ms 53.6 % 10.0 180 ms

Priv random (7x7) 25.5 % 12.2 74 ms 25.5 % 12.2 74 ms

RL-vision setups [25]. As seen in Table II, AiRLoc and
the best alternative learnable approach Priv local generalize
excellently to an entirely new dataset.

Table III contains results on xBD-disaster; these results are
particularly relevant from a perspective of SAR-operations
in disaster-hit areas. Columns 1-3 show that AiRLoc gen-
eralizes quite well from having been trained on an entirely
different dataset (Masa), which depicts non-disaster-hit urban
areas, to disaster-hit areas at various other spatial locations.
Results are however improved further (columns 4-6) if mod-
els are first trained on non-disaster-hit images from the same
dataset (xBD-pre) and then evaluated at different locations
that depict disaster-hit scenarios.

In summary, AiRLoc outperforms the baselines across all
datasets and search area sizes, and localizes goals in fewer
steps on average. See Fig. 2 and Fig. 5 - 6 (the latter two are
on the last page) for visualizations of AiRLoc and Priv local.

Human performance evaluation. The results of the
proof-of-concept human performance evaluation in Fig. 3
(left) indicate that our proposed task is in general difficult,
since only slightly above half of all human controlled

trajectories are successful. We also see that AiRLoc
and Priv local achieve significantly higher success rates
compared to human operators. Details about the human
performance evaluation are found in the appendix.

B. Ablation Study: Motivating the Exploitation Prior

In Fig. 3 we evaluate the various AiRLoc variants de-
scribed earlier, together with the best non-RL-based model
Priv local and the human baseline. AiRLoc is better than
its ablated variants on average in both settings (5 × 5 and
7× 7), as well as for most start-to-goal distances (exception
at distance 4 in the 7× 7 setting). This motivates the design
choice of fully utilizing the exploitation prior within the
policy architecture – see also Table IV.

Recall that Priv local is trained solely in the setting where
the start and goal are adjacent, so it can be interpreted as
an ’exploitation only’ model, where the action distribution
is obtained by feeding the exploitation prior ut through
a softmax, cf. Fig. 1. Conversely, the no prior variant of
AiRLoc is trained without any exploitation prior, so the
policy must simultaneously learn to explore (search for the
goal when it is further away) and exploit (move to the goal
when it is adjacent), which may be ambiguous. As seen in

1 2 3 4
Intial #steps to goal

40

50

60

70

80
Su

cc
es

s r
at

e
(%

)

AiRLoc
AiRLoc (no residual)
AiRLoc (no prior)
Priv local
Human

1 2 3 4 5 6
Intial #steps to goal

30

40

50

60

70

80

Su
cc

es
s r

at
e

(%
)

AiRLoc
AiRLoc (no residual)
AiRLoc (no prior)
Priv local

1 2 3 4
#steps to goal

25
30
35
40
45
50
55

Ex
pl
oi
ta
tio

n
(%

)

AiRLoc
AiRLoc (no residual)
AiRLoc (no prior)

Fig. 3. Left and mid: Success rate versus start-to-goal distance on the validation set of Masa (averages are dashed). Search areas are of size M×N = 5×5
and T = 10 (left) or 7× 7 and 14 (middle). Left: The methods are generally more successful when the start is closer to the goal. AiRLoc and Priv local
achieve higher success rates than human operators. AiRLoc performs roughly on par with Priv local when the goal and start are adjacent (Priv local is
trained only in this setting) and outperforms it at larger distances. AiRLoc is also more successful than its ablated variants in all settings. Middle: AiRLoc
is best on average, despite having only been trained in the 5× 5 setting. Priv local is better when the start and goal are close to each other, while AiRLoc
is better when they are three or more steps apart. Right: How frequently AiRLoc selects the same action as the exploitation prior (argmax of ut) versus
goal distance. The full AiRLoc agent has the largest variability in exploitation versus exploitation depending on distance to goal.

Fig. 3, the no residual variant, which allows ut to guide the
agent’s decision making by feeding ut to the temporal unit, is
only marginally better. Our full AiRLoc agent, which clearly
outperforms the other variants, takes this a step further by
decoupling exploration and exploitation and only has to learn
a residual between the two (since ut is added within the
softmax of the decision unit). Hence, during RL training
AiRLoc essentially learns when to explore and when to
exploit.

C. Random Seed Sensitivity Analysis

Table IV shows the results of a seed sensitivity analy-
sis (regarding policy network initilization) for AiRLoc and
its ablated variants on the validation set of Massachusetts
Buildings. The AiRLoc variants are trained with five random
network initializations each until convergence on the valida-
tion set, and the results for the median-performing models
on the validation set are the ones reported within the rest of
the paper. The seed sensitivity is low overall. Furthermore,
our full AiRLoc agent outperforms Priv local even for the
worst-performing seed.

V. CONCLUSIONS

In this work we have introduced the novel aerial view
goal localization task and framework, which allows for
controllable and reproducible development of methodologies
that can eventually be useful for automated search-and-
rescue operations, e.g. in regions that are heavily affected
by climate-induced disasters. Naturally, as with most tech-
nologies, there are also possible applications that may be
unethical. We strongly discourage extending our research
in such directions, and instead call for extensions towards
benign use-cases.

The difficulty for humans to perform well on our proposed
task shows that it is a reasonable first step for model
development and evaluation, even though the setup avoids
some challenges of real use-cases. Relevant next steps to-
ward making the proposed methodologies more practically
useful include making the goal specification more flexible
(e.g. allowing for a ground-level image description of the

goal); requiring the agent to explicitly declare when it has
reached its goal; and considering even larger search areas.

An RL-based approach, AiRLoc, was developed to tackle
the proposed task, in addition to several other learnable and
heuristic methods. Key components of the policy architecture
include a mid-level vision module and an explicit decoupling
between exploration and exploitation, both of which were
shown to be crucial for AiRLoc’s performance. Extensive
experimental evaluations clearly showed the benefits of our
AiRLoc agent over the learnable and heuristic baselines. In
particular, our methodology can be used to localize goals in
aerial images depicting disaster zones, despite being trained
only on scenarios without disasters. Code and models have
been made publicly available3 so that others can further
explore and extend our proposed task towards real use-cases,
for example within disaster relief and management.

APPENDIX

In this appendix we provide further details about the human
performance evaluation. To compare the performance of
AiRLoc with a human operator in a similar setting, a game
version of the task was developed. For fair comparisons, this
game was designed to resemble how AiRLoc perceives the
search area. Therefore, in addition to receiving the current
and goal patches, the human operator is also aware of the
borders of the search area, and knows the current position
as well as the history of all previously visited positions
within the confined area – see Fig. 4. In fact, the human
operator can even see all the previously visited patches, while
this information is not provided to AiRLoc. We decided to
provide humans with this additional information as they have
not been trained for the task at hand. Based on this input,
the human operator can move to any of the eight adjacent
patches. The movement is selected by clicking with a mouse
cursor on one of the eight dark squares surrounding the
current location in the Player Area, shown on the left in
Fig. 4. The game uses search areas of size 5 × 5 and ends
either when the movement budget T = 10 is exhausted or

3https://github.com/aleksispi/airloc

https://github.com/aleksispi/airloc

TABLE IV
SEED SENSITIVITY ANALYSIS OF THE VARIOUS AIRLOC VARIANTS ON THE VALIDATION SET OF Massachusetts Buildings (SEARCH AREA SIZE 5× 5,
MOVEMENT BUDGET T = 10). THE RESULTS ON THE FIRST LINES OF EACH BLOCK ARE THE MEDIAN-PERFORMING AIRLOC MODELS AND ARE THE

ONES WE HAVE EVALUATED IN THE REST OF THE PAPER. NONE OF THE AIRLOC VARIANTS ARE SENSITIVE TO THE RANDOM SEED USED FOR POLICY

NETWORK INITIALIZATION. THE WORST PERFORMING SEED OF THE no residual VARIANT OF AIRLOC PERFORMS BETTER THAN THE BEST

PERFORMING SEED OF THE no prior VARIANT, AND IT IS ALSO SOMEWHAT BETTER THAN THE ALTERNATIVE LEARNABLE APPROACH Priv local.
SIMILARLY, THE WORST PERFORMING SEED OF OUR FULL AIRLOC OUTPERFORMS THE BEST PERFORMING SEED OF BOTH THE ABLATED VARIANTS

AND Priv local, WHICH AGAIN MOTIVATES OUR DESIGN CHOICES.

Agent type Success Step ratio Steps Residual distance
AiRLoc 72.6 % 1.49 6.0 2.4

AiRLoc (other seed #1) 72.2 % 1.45 6.1 2.4
AiRLoc (other seed #2) 72.2 % 1.51 6.2 2.5
AiRLoc (other seed #3) 74.3 % 1.56 6.2 2.4
AiRLoc (other seed #4) 75.9 % 1.53 6.1 2.5

AiRLoc (average) 73.4 % 1.51 6.1 2.5
AiRLoc (no residual) 68.5 % 1.49 6.3 2.2

AiRLoc (no residual, other seed #1) 68.6 % 1.52 6.3 2.2
AiRLoc (no residual, other seed #2) 69.5 % 1.52 6.3 2.2
AiRLoc (no residual, other seed #3) 68.2 % 1.60 6.4 2.2
AiRLoc (no residual, other seed #4) 67.2 % 1.57 6.4 2.2

AiRLoc (no residual, average) 68.4 % 1.54 6.3 2.2
AiRLoc (no prior) 65.9 % 1.56 6.5 2.4

AiRLoc (no prior, other seed #1) 64.8 % 1.56 6.7 2.4
AiRLoc (no prior, other seed #2) 66.6 % 1.56 6.5 2.5
AiRLoc (no prior, other seed #3) 66.6 % 1.50 6.4 2.3
AiRLoc (no prior, other seed #4) 64.9 % 1.50 6.6 2.4

AiRLoc (no prior, average) 65.8 % 1.54 6.5 2.4
Priv local 67.0 % 1.54 6.3 2.3

when the player moves into the goal location (just as for
AiRLoc and the other baselines). Moreover, different to the
other approaches, the human participants have a limited time
to complete each game (60 seconds). Such a time limit was
used for the convenience of the participants – we wanted
to avoid that the participants felt like they had to spend
several minutes per action to squeeze out the maximum
possible performance. The 60 second time limit was assessed
to be more than sufficient for completing each game, and the
participants agreed with this.

The age span of the 19 people who participated is between
14 and 42 years, with an average of 26.4 years and a
median of 25 years. There were 13 men and 6 women
(68% and 32%, respectively). For each human operator, 12
unique search areas from the validation set of Massachusetts
Buildings were used, as well as a few sample search areas
for the player to get acquainted with the controls of the
game – the participants were able to practice as long as they
desired, and no statistics were tracked during this warm up
phase. The exact games provided span a subset of the games
that AiRLoc and the other baselines are evaluated on, to
ensure that the comparison is as fair as possible. However,
each human is not tested on the entire dataset since it is
impractically large, and hence there is a higher uncertainty
in the human performance evaluation. The difficulty settings
were split equally over these twelve games, with three games
per difficulty (here difficulty is the distance between the start
and goal patches, ranging from 1 to 4 steps away).

Fig. 4. An example of the human performance evaluation setup. Each
participant was given a set of 12 different such games (a game is a search
area and an associated start and goal location), and there was no overlap
in the games played by different participants. Each search area was of size
5× 5 and the movement budget was T = 10.

Even though the human setup is very similar to that of
AiRLoc, there are some concepts that do not translate well
to a human controlled setup. First, the positional encoding of
AiRLoc is difficult to translate to human visual processing,
and instead a map of the positions was implemented (thus the
participants receive explicit information from past locations,

different from AiRLoc). Second, the human participants
have not trained on the task like AiRLoc, and their vi-
sual systems are likely not tailored towards handling the
quite low resolution patches. On the other hand, humans
have implicitly conducted a lifetime worth of generic visual
pretraining, which AiRLoc has not. These discrepancies, in
conjunction with the limited number of human controlled
trajectories, somewhat limit the reliability of the human
baseline. Nonetheless, it is still a useful indication of the
human performance on our proposed task.

REFERENCES

[1] Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey
Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana Kosecka, Jitendra
Malik, Roozbeh Mottaghi, Manolis Savva, et al. On evaluation of
embodied navigation agents. arXiv preprint arXiv:1807.06757, 2018.

[2] Kumar Ayush, Burak Uzkent, Kumar Tanmay, Marshall Burke, David
Lobell, and Stefano Ermon. Efficient poverty mapping using deep
reinforcement learning. arXiv preprint arXiv:2006.04224, 2020.

[3] Luca Bartolomei, Lucas Teixeira, and Margarita Chli. Perception-
aware path planning for uavs using semantic segmentation. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020.

[4] Adrian Boguszewski, Dominik Batorski, Natalia Ziemba-Jankowska,
Tomasz Dziedzic, and Anna Zambrzycka. Landcover.ai: Dataset for
automatic mapping of buildings, woodlands, water and roads from
aerial imagery, 2020.

[5] Juan C Caicedo and Svetlana Lazebnik. Active object localization with
deep reinforcement learning. In Proceedings of the IEEE international
conference on computer vision, pages 2488–2496, 2015.

[6] Tung Dang, Christos Papachristos, and Kostas Alexis. Autonomous
exploration and simultaneous object search using aerial robots. In
2018 IEEE Aerospace Conference, pages 1–7. IEEE, 2018.

[7] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised
visual representation learning by context prediction, 2015.

[8] Mingfei Gao, Ruichi Yu, Ang Li, Vlad I Morariu, and Larry S Davis.
Dynamic zoom-in network for fast object detection in large images. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 6926–6935, 2018.

[9] Ritwik Gupta, Bryce Goodman, Nirav Patel, Ricky Hosfelt, Sandra
Sajeev, Eric Heim, Jigar Doshi, Keane Lucas, Howie Choset, and
Matthew Gaston. Creating xbd: A dataset for assessing building
damage from satellite imagery. In CVPR workshops, 2019.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9:1735–80, 12 1997.

[11] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In ICLR, 2015.

[12] Danil Kuzin, Olga Isupova, Brooke D Simmons, and Steven Reece.
Disaster mapping from satellites: damage detection with crowdsourced
point labels. arXiv preprint arXiv:2111.03693, 2021.

[13] Ajith Anil Meera, Marija Popović, Alexander Millane, and Roland
Siegwart. Obstacle-aware adaptive informative path planning for uav-
based target search. In ICRA, 2019.

[14] Lina Mezghani, Sainbayar Sukhbaatar, Thibaut Lavril, Oleksandr
Maksymets, Dhruv Batra, Piotr Bojanowski, and Karteek Alahari.
Memory-Augmented Reinforcement Learning for Image-Goal Navi-
gation. working paper or preprint, March 2022.

[15] Volodymyr Mnih. Machine Learning for Aerial Image Labeling. PhD
thesis, University of Toronto, 2013.

[16] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models
of visual attention. NeurIPS, 2014.

[17] Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhi-
nav Gupta. The unsurprising effectiveness of pre-trained vision models
for control. arXiv preprint arXiv:2203.03580, 2022.

[18] Aleksis Pirinen and Cristian Sminchisescu. Deep reinforcement
learning of region proposal networks for object detection. In CVPR,
2018.

[19] Marija Popović, Teresa Vidal-Calleja, Gregory Hitz, Jen Jen Chung,
Inkyu Sa, Roland Siegwart, and Juan Nieto. An informative path
planning framework for uav-based terrain monitoring. Autonomous
Robots, 44(6):889–911, 2020.

[20] Shraman Pramanick, Ewa M Nowara, Joshua Gleason, Carlos D
Castillo, and Rama Chellappa. Where in the world is this im-
age? transformer-based geo-localization in the wild. arXiv preprint
arXiv:2204.13861, 2022.

[21] Samrudhdhi B Rangrej and James J Clark. A probabilistic hard
attention model for sequentially observed scenes. arXiv preprint
arXiv:2111.07534, 2021.

[22] Samrudhdhi B Rangrej, Chetan L Srinidhi, and James J Clark. Con-
sistency driven sequential transformers attention model for partially
observable scenes. arXiv preprint arXiv:2204.00656, 2022.

[23] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convo-
lutional networks for biomedical image segmentation, 2015.

[24] Seyed Abbas Sadat, Jens Wawerla, and Richard Vaughan. Fractal
trajectories for online non-uniform aerial coverage. In ICRA, 2015.

[25] Alexander Sax, Bradley Emi, Amir R Zamir, Leonidas Guibas, Silvio
Savarese, and Jitendra Malik. Mid-level visual representations improve
generalization and sample efficiency for learning visuomotor policies.
arXiv preprint arXiv:1812.11971, 2018.

[26] Michael Schmitt, Pedram Ghamisi, Naoto Yokoya, and Ronny Hänsch.
Eod: The ieee grss earth observation database. In IGARSS 2022-2022
IEEE International Geoscience and Remote Sensing Symposium, pages
5365–5368. IEEE, 2022.

[27] Felix Stache, Jonas Westheider, Federico Magistri, Cyrill Stachniss,
and Marija Popović. Adaptive path planning for uavs for multi-
resolution semantic segmentation. arXiv preprint arXiv:2203.01642,
2022.

[28] Humans In the Loop. Semantic segmentation of aerial imagery.
[29] Burak Uzkent and Stefano Ermon. Learning when and where to zoom

with deep reinforcement learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 12345–
12354, 2020.

[30] Andrea Vallone, Frederik Warburg, Hans Hansen, Søren Hauberg, and
Javier Civera. Danish airs and grounds: A dataset for aerial-to-street-
level place recognition and localization. CoRR, abs/2202.01821, 2022.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Atten-
tion is all you need, 2017.

[32] Che Wang, Xufang Luo, Keith Ross, and Dongsheng Li. Vrl3: A
data-driven framework for visual deep reinforcement learning. arXiv
preprint arXiv:2202.10324, 2022.

[33] Tingyu Wang, Zhedong Zheng, Yaoqi Sun, Tat-Seng Chua, Yi Yang,
and Chenggang Yan. Multiple-environment self-adaptive network for
aerial-view geo-localization. arXiv preprint arXiv:2204.08381, 2022.

[34] R. J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8:229–256,
1992.

[35] Daniel Wilson, Xiaohan Zhang, Waqas Sultani, and Safwan Wshah.
Visual and object geo-localization: A comprehensive survey. arXiv
preprint arXiv:2112.15202, 2021.

[36] Junshi Xia, Naoto Yokoya, Bruno Adriano, and Clifford Broni-
Bediako. Openearthmap: A benchmark dataset for global high-
resolution land cover mapping. arXiv preprint arXiv:2210.10732,
2022.

[37] Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Ma-
lik. Masked visual pre-training for motor control. arXiv preprint
arXiv:2203.06173, 2022.

[38] Zhitong Xiong, Fahong Zhang, Yi Wang, Yilei Shi, and Xiao Xiang
Zhu. Earthnets: Empowering ai in earth observation. arXiv preprint
arXiv:2210.04936, 2022.

[39] Karmesh Yadav, Ram Ramrakhya, Arjun Majumdar, Vincent-Pierre
Berges, Sachit Kuhar, Dhruv Batra, Alexei Baevski, and Oleksandr
Maksymets. Offline visual representation learning for embodied
navigation. arXiv preprint arXiv:2204.13226, 2022.

[40] Zelong Zeng, Zheng Wang, Fan Yang, and Shin’ichi Satoh. Geo-
localization via ground-to-satellite cross-view image retrieval. IEEE
Transactions on Multimedia, pages 1–1, 2022.

[41] Leyang Zhao, Li Yan, Xiao Hu, Jinbiao Yuan, and Zhenbao Liu.
Efficient and high path quality autonomous exploration and trajectory
planning of uav in an unknown environment. ISPRS International
Journal of Geo-Information, 10(10):631, 2021.

[42] Runzhe Zhu. Sues-200: A multi-height multi-scene cross-view image
benchmark across drone and satellite, 2022.

[43] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav
Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven visual navigation in
indoor scenes using deep reinforcement learning. In ICRA, 2017.

Fig. 5. Successful examples of AiRLoc (left) and Priv local (right) on a flooding scenario in xBD-disaster (7× 7 setup, movement budget T = 14). The
start and goal locations are denoted ’S’ and ’G’, respectively. The numbered circles show which locations are visited and in what order. Recall that the
full underlying search area is never observed in its entirety, i.e. the agents must operate based on partial glimpses alone. Also note that AiRLoc was only
trained on search areas of size 5 × 5 and movement budget T = 10. AiRLoc takes the same first two steps as Priv local, then deviates and reaches the
goal in fewer steps than Priv local.

Fig. 6. Successful examples of AiRLoc (left) and Priv local (right) on a post-wildfire scenario in xBD-disaster (7× 7 setup, movement budget T = 14).
AiRLoc takes the same first step as Priv local, then deviates, and reaches the goal twice as fast. Priv local precisely manages to reach the goal within its
movement budget.

	INTRODUCTION
	RELATED WORK
	AERIAL VIEW GOAL LOCALIZATION
	Task Description
	AiRLoc Model
	Baselines

	Experiments
	Main Results
	Ablation Study: Motivating the Exploitation Prior
	Random Seed Sensitivity Analysis

	Conclusions
	References

