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Abstract— The one-pixel attack is an image attack method for
creating adversarial instances with minimal perturbations, i.e.,
pixel modification. The attack method makes the adversarial
instances difficult to detect as it only manipulates a single pixel
in the image. In this paper, we study four different defense
approaches against adversarial attacks, and more specifically
the one-pixel attack, over three different models. The defense
methods used are: data augmentation, spatial smoothing, and
Gaussian data augmentation used during both training and
testing. The empirical experiments involve the following three
models: all convolutional network (CNN), network in network
(NiN), and the convolutional neural network VGG16.

Experiments were executed and the results show that Gaus-
sian data augmentation performs quite poorly when applied
during the prediction phase. When used during the training
phase, we see a reduction in the number of instances that
could be perturbed by the NiN model. However, the CNN model
shows an overall significantly worse performance compared to
no defense technique. Spatial smoothing shows an ability to
reduce the effectiveness of the one-pixel attack, and it is on
average able to defend against half of the adversarial examples.
Data augmentation also shows promising results, reducing the
number of successfully perturbed images for both the CNN and
NiN models. However, data augmentation leads to slightly worse
overall model performance for the NiN and VGG16 models.
Interestingly, it significantly improves the performance for the
CNN model.

We conclude that the most suitable defense is dependent
on the model used. For the CNN model, our results indicate
that a combination of data augmentation and spatial smoothing
is a suitable defense setup. For the NiN and VGG16 models,
a combination of Gaussian data augmentation together with
spatial smoothing is more promising. Finally, the experiments
indicate that applying Gaussian noise during the prediction
phase is not a workable defense against the one-pixel attack.

I. INTRODUCTION

Machine learning (ML), which is an important subarea
of artificial intelligence (AI), has become both increasingly
important and relevant during the last decades due to, for
instance, its widespread use in critical applications. An
important field within ML is adversarial machine learning,
which is the study on how ML models can be attacked or
deceived by antagonistic actors, i.e., adversaries [1]. Adver-
sarial ML involves both the development of various attack
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methods against ML methods, as well as the development of
defense methods against such attacks. These defense methods
aim to improve the robustness of ML models [2].

Adversarial ML attacks are aimed either at the training
data (e.g., data-poisoning attacks), the ML model’s parame-
ters, or the inputs during inference while using the ML model
(e.g., adversarial input attacks) [3]. In general, such attacks
can result in ML models that make incorrect predictions,
which can result in serious consequences depending on the
application, e.g., healthcare or autonomous vehicles.

In essence, this paper presents experimental results that
evaluate defense methods against a particular adversarial ML
attack referred to as the one-pixel attack [4]. We use the
following three different models to evaluate the performance
of the defenses: an all convolutional network (CNN), a
Network in Network (NiN), and the convolutional neural
network VGG16. The motivation for the choice of these
three particular models is that those are the models used
in the original paper describing the one-pixel attack [4]. In
the experiments, two different defense methods are applied
during the training phase of the models, while two different
defense method are applied during the prediction phase.

The remainder of this paper is outlined as follows. Next,
in Section II, the background is described, which includes
the one-pixel attack and the applied defense methods. Then
follows the related work in Section III, and then the methods
description in Section IV. The results are presented in
Section V followed by the analysis and discussion in Sec-
tion VI. Finally, conclusions and future work are described
in Section VII.

II. BACKGROUND

In the background section, we describe the one-pixel attack
as well as the defense methods evaluated in this study.

A. One-Pixel Attack
The one-pixel attack is an iterative semi-black-box attack

that targets image recognition models. The main idea is to
only perturb, i.e., modify, the value of one single pixel in
an image to make the model miss-classify the whole image.
This makes the attack harder to detect for humans when
used on larger images. It also demonstrates that current
models are not robust enough to ignore small adversarial
perturbations [4].

B. Differential Evolution
In order to execute the one-pixel attack, differential evo-

lution is used. Differential evolution is an evolutionary algo-
rithm that minimizes a function value by creating candidate



solution vectors and evaluating their fitness on a function.
The method has three different parameters: the population
size, NP ≥ 4, the crossover probability, CR ∈ [0, 1], and
the differential weight, F ∈ [0, 2]. For each generation,
each candidate solution, x, in that generation is mutated
using three other distinct candidates solutions, a, b, and c,
in combination with the F and CR parameters. A mutation
vector is calculated according to Equation 1:

a+ F · (b− c). (1)

For each dimension index, j in the mutation vector, a uniform
random number n ∈ [0, 1] is generated. A random integer
index R ∈ [1, NP ] is also generated. If n < CR or j = R,
the value from the mutation vector at index j is selected for
the new candidate, otherwise the value of x at index j is
selected. The new candidate solution is compared to the old
candidate x, and if it has a better performance it is added to
the population as a replacement for x in the new generation.
This continues for a specified number of generations, or until
a stop criteria is met [5].

C. Defenses

For this report, we will evaluate three different defense
methods. These are data augmentation, spatial smoothing,
and Gaussian data augmentation. Some of these can be
combined, which is discussed further in Section IV.

1) Data Augmentation: Data augmentation is used to in-
crease the size of a dataset by adding slightly altered versions
of the existing data points. This can increase the robustness of
the trained model, as well as reduce overfitting. For images,
this is usually done by applying an affine transformation,
i.e., a linear transformation with translation, to the images.
This may include rotating, translating, shearing, mirroring,
and zooming the images [6].

2) Spatial Smoothing: Spatial smoothing is a feature
squeezing method that reduces noise in the image by blurring
it. There are two types of spatial smoothing: local and non-
local. This report will focus on the local variant. Local spatial
smoothing works by using information from nearby pixels to
smooth each pixel. A sliding window passes over the image
and updates each pixel according to a weighted kernel. This
can perform different types of smoothing, such as Gaussian
or median smoothing [7].

3) Gaussian Data Augmentation: The idea behind Gaus-
sian data augmentation is to apply Gaussian noise to the
inputs to the model. Gaussian data augmentation can be
applied both during the training phase and the prediction
phase. If used during the training phase, the training data is
perturbed with Gaussian noise, similar to how regular data
augmentation works. The dataset can either be augmented
with the new samples, or replaced by them. If used during
the prediction phase, the Gaussian noise is added to the input
before it is passed into the model for prediction [8].

III. RELATED WORKS

In this section, the related work is summarized and the
identified research gap is stated.

First, Bracamonte et al. proposed a novel approach,
OPA2D, which is an extended one-pixel attack approach
that aims to deceive humans and DNNs [9]. Further, they
proposed to limit the attacked pixel RGB range in order to
make it harder to detect by human vision. They show that
an already attacked image, if attacked once again, tends to
return to its original label. The results they achieve were good
with detection rates up to 100% and defense rates between
93%-95%.

Husnoo et al. suggest an approach that utilizes robust
principle component analysis and accelerated proximal gra-
dient to detect the attacked pixel and recover it from the
image [10], thus creating a clean non-attacked image with
no deterioration in image quality.

Chen et al. proposed a Patch Selection Denoiser (PSD)
approach to remove potential attacking pixels from an image
without changing a large number of the pixels in the im-
age [11]. The proposed approach achieved a 98.6% defense
rate against one-pixel attacks. However, it relies on patching
images independent of whether an adversarial image was
detected or not, which degrades images due to the use of the
denoising model.

Bennamoun et al. proposed an adversarial detection net-
work (ADnet) that can detect adversarial pixels in images
for robotic systems [12]. The authors claimed that it works
as a defense method by rejecting adversarial examples. The
performance of their approach, in the context of detecting
adversarial scenarios, was evaluated using three different
datasets. In the evaluation they perturbed 50% of the images,
using 1, 3, and 5-pixel attacks, in order to create adversarial
examples for the attack scenarios. The results indicate that
ADNet’s efficacy in detecting adversarial N-pixel attacks
across the three datasets were shown by a detection accuracy
above 90% for all datasets and attack types.

Tso et al. proposed a three-stage noise elimination and
reconstruction algorithm in which they remove N-attacked
pixels and then reconstruct the image, while at the same time
keeping its integrity [13]. Their approach is to construct a
difference map to evaluate the difference between pixels, as
well as an average map to correspond with it. If the difference
between a pixel and its neighboring pixel is deemed too
high, it is replaced by the value of its neighboring pixel. The
approach can be seen as a pre-processing step, so no model
re-training is needed. The experiment results they achieved
reveal that the proposed algorithm provides a protection rate
ranging between 90% to 92% against N-pixel attacks, for N
values of 1, 3, 5, 10, and 15.

A. Identified Research Gap

Adversarial ML attacks have been shown to be rather
effective in deceiving ML models, which has highlighted
aspects regarding security and reliability within ML systems.
Therefore, research in this area is essential to addressing the
problems raised by adversarial ML attacks, and to mitigate
the exploitation of such attacks by malicious actors. This
motivates this study in which we evaluate different defense
methods against the one-pixel attack, which is an attack that



Fig. 1. The result of applying the spatial smoothing and Gaussian noise
filters on a sample image.

is difficult to detect due to its low degree of perturbation.
Thus, the added value through this work is the evaluation of
defenses against the one-pixel attack on the same three deep
learning models on which the original attack was evaluated.

IV. METHOD

In this section we describe the method used, e.g., the
dataset, models and their configurations, as well as the
experimental setup. In essence, the experiments evaluate the
suitability of defense methods against the one-pixel attack,
during both the training and the prediction phase, using three
different deep neural network models.

A. Dataset Used

For evaluation of the defense methods against the one-
pixel attack, we use the CIFAR-10 dataset [14]. CIFAR-
10 contains 60,000 images across 10 different classes. The
dataset is provided as 50,000 training images and 10,000 test
images. Each image is 32x32 pixels and each pixel has three
color channels: red, green, and blue. Each channel has integer
values in the range [0, 255], normalized into the range [0, 1].
The motivation for choosing the CIFAR-10 dataset is two-
fold, first that it is a commonly used dataset in applied ML
vision research, and second that it was used in the original
study presenting the one-pixel attack [4].

B. Models

To evaluate the defenses we use three different models.
The first model is the all convolution network (CNN) [15].
This uses nine convolutional layers of different sizes. The
second model is a Network-in-Network model (NiN) [16].
This also uses nine convolutional layers, but introduces
pooling layers between every third layer. The third model
is the VGG16 [17]. It is a convolutional model that uses 13
convolutional layers, five max pooling layers, and two fully
connected layers. The structures of the networks can be seen
in Tables I, II, and III. The three network models are identical
to the models used in the original one-pixel attack paper [4].

C. Attack

The one-pixel attack uses differential evolution, and in
this study we choose a population size of 400, a crossover
probability of 1, and a differential weight that is uniformly
randomized between 0.5 and 1 for each generation. These
parameters where chosen based on the parameters in the

TABLE I
MODEL SUMMARY FOR ALL CONVOLUTIONAL NETWORK (CNN).

Conv2D(filters=96, kernel_size=3, stride=1, activation=ReLU)
Conv2D(filters=96, kernel_size=3, stride=1, activation=ReLU)
Conv2D(filters=96, kernel_size=3, stride=2, activation=ReLU)
Conv2D(filters=192, kernel_size=3, stride=1, activation=ReLU)
Conv2D(filters=192, kernel_size=3, stride=1, activation=ReLU)

Dropout(0.3)
Conv2D(filters=192, kernel_size=3, stride=2, activation=ReLU)
Conv2D(filters=192, kernel_size=3, stride=2, activation=ReLU)
Conv2D(filters=192, kernel_size=1, stride=1, activation=ReLU)
Conv2D(filters=10, kernel_size=1, stride=1, activation=ReLU)

GlobalAveragePooling2D
Flatten

Softmax

TABLE II
MODEL SUMMARY FOR NETWORK IN NETWORK (NiN).

Conv2D(filters=192, kernel_size=5, stride=1, activation=ReLU)
Conv2D(filters=160, kernel_size=1, stride=1, activation=ReLU)
Conv2D(filters=96, kernel_size=1, stride=1, activation=ReLU)

MaxPooling2D(pool_size=3, stride=2)
Dropout(0.5)

Conv2D(filters=192, kernel_size=5, stride=1, activation=ReLU)
Conv2D(filters=192, kernel_size=5, stride=1, activation=ReLU)
Conv2D(filters=192, kernel_size=5, stride=1, activation=ReLU)

AveragePooling2D(pool_size=3, stride=2)
Dropout(0.5)

Conv2D(filters=192, kernel_size=3, stride=1, activation=ReLU)
Conv2D(filters=192, kernel_size=1, stride=1, activation=ReLU)
Conv2D(filters=10, kernel_size=1, stride=1, activation=ReLU)

GlobalAveragePooling2D
Flatten

Softmax

TABLE III
MODEL SUMMARY FOR VGG16.

Conv2D(filters=64, kernel_size=3, stride=1, activation=ReLU)
Conv2D(filters=64, kernel_size=3, stride=1, activation=ReLU)

MaxPooling2D(pool_size=2, stride=2)
MaxPooling2D(pool_size=2, stride=2)

Conv2D(filters=128, kernel_size=3, stride=1, activation=ReLU)
Conv2D(filters=128, kernel_size=3, stride=1, activation=ReLU)

MaxPooling2D(pool_size=2, stride=2)
Conv2D(filters=256, kernel_size=3, stride=1, activation=ReLU)
Conv2D(filters=256, kernel_size=3, stride=1, activation=ReLU)
Conv2D(filters=256, kernel_size=3, stride=1, activation=ReLU)

MaxPooling2D(pool_size=2, stride=2)
Conv2D(filters=512, kernel_size=3, stride=1, activation=ReLU)
Conv2D(filters=512, kernel_size=3, stride=1, activation=ReLU)
Conv2D(filters=512, kernel_size=3, stride=1, activation=ReLU)

MaxPooling2D(pool_size=2, stride=2)
Conv2D(filters=512, kernel_size=3, stride=1, activation=ReLU)
Conv2D(filters=512, kernel_size=3, stride=1, activation=ReLU)
Conv2D(filters=512, kernel_size=3, stride=1, activation=ReLU)

MaxPooling2D(pool_size=2, stride=2)
Flatten

Dense(2048, activation=ReLU)
Dense(2048, activation=ReLU)
Dense(10, activation=Softmax)

original paper. Using a randomized differential weight can
speed up convergence. Each candidate solution is an array
of the following five values:

1) X coordinate for the perturbed pixel (between 0-31).
2) Y coordinate for the perturbed pixel (between 0-31).
3) Value for the red color channel (between 0-1).



TABLE IV
THE NINE DIFFERENT MODELS, BASED ON DATASET AND NETWORK

ARCHITECTURES, THAT WERE EVALUATED.

Models

CNN NiN VGG16

D
at

as
et Original CNNorig NiNorig VGG16orig

Augmented CNNaug NiNaug VGG16aug

Gaussian CNNgau NiNgau VGG16gau

4) Value for the green color channel (between 0-1).
5) Value for the blue color channel (between 0-1).
To evaluate each candidate solution, the image is perturbed

with the candidate pixel, and the class is predicted by the
classifier. We only perform untargeted attacks, and the goal
is therefore to minimize the certainty of the model for the
true label. The differential evolution runs for a total of
100 generation for each image. We include an early stop
condition when the confidence for the true label is lower
than 5%.

D. Defenses
We implement the four different types of defenses dis-

cussed in Section II. Two defenses applied during the training
phase of the models, and two defenses applied during the
testing phase.

1) Training-Phase Defenses: The first type of defenses
are the ones that are applied during model training phase.
These are the data augmentation and Gaussian data aug-
mentation defenses, which are denoted CNNaug and CNNgau
respectively for the CNN model. Both of these generate a
new dataset with the augmented images, and for each of
these a separate instance of each network type is trained.
This results in a total of nine different models, as can
be seen in Table IV. The applied augmentations for the
data augmentation defense are: rotation up to 20◦ in each
direction, width and height shift up to 20% of the image’s
width and height respectively, shearing with a maximum
shear angle of 20◦, zooming with a maximum range of 20%
for both zoom-in and zoom-out, and finally mirroring along
the vertical axis. For the Gaussian data augmentation, the
noise is generated with a standard deviation of 0.05, and the
samples were augmented at a ratio of 0.5, which means that
the size of the dataset increases by 50%.

2) Testing-Phase Defenses: The testing-phase defenses
are applied to each adversarial instance before the model
performs the classification. Each of these defenses were
applied separately to each instance. The spatial smoothing
defense uses the median strategy for smoothing with a
window size of 3. The Gaussian data augmentation applies
Gaussian noise to the instance with a standard deviation of
0.05. Each testing-phase defense is tested separately and in
combination with each training defense for each model.

E. Evaluation Metrics
To evaluate the performance of the models, we use both

accuracy and Area Under the ROC Curve (AUC) score.

For evaluation of the defense methods, we use normalized
defense ratio, which is calculated according to Equation 2:

DR =
Cd

Cp
(2)

where Cd is the number of correctly classified instances after
both the attack and defense methods were employed, while
Cp is the number of correctly classified instances before
the attack when only the defense was applied. To get the
normalized defense ratio, we scale DR by the accuracy of the
model on the total attacked instances. Thus, the normalized
defense ratio metric is calculated according to Equation 3:

DR = DR
Cp

N
=

Cd

N
(3)

where N is the total number of instances, in our case 1,000.

F. Experimental Setup

In the experimental evaluation of the models performance,
the independent variable was the candidate models, i.e.,
CNN, NiN, and VGG16. The dependent variables were
the accuracy and the AUC scores. For the experimental
evaluation of the defense methods, the independent variables
were the model candidates, the training-phase defense meth-
ods, and the testing-phase defense methods. The dependent
variable was the defense ratio metric.

The three models that used the Gaussian augmentation
defense (CNNgau, NiNgau, and VGG16gau) and the three
original models (CNNorig, NiNorig, and VGG16orig) were
trained during 100 epochs. Due to the computationally
demanding proces to the generate and predict the image
data, the models that used the augmented defense (CNNaug,
NiNaug, and VGG16aug) were trained for 70 epochs.

In total, 1,000 different images were randomly sampled
from the test images in the CIFAR-10 dataset. The attack
was performed individually on these 1,000 images for each
of the three different network models included in the study
and for each of the three different training datasets described
in Section IV-D. This resulted in a total of 9,000 adversarial
images that were included in the experiment.

The experiments were executed on a system with an Intel
i7-6700K processor, Nvidia GTX 980 Ti graphics card and
16GB RAM.

V. RESULTS

The results are presented for the investigated models as
well as the the one-pixel attack, including time measure-
ments.

A. Model Performance

All models except the CNNgau showed an AUC score
above 0.9, with CNNaug scoring best on both metrics with
an AUC and accuracy of 0.982 and 0.85 respectively, see
Fig. 2. Worst performance was associated with the Gaussian-
augmented CNN model (CNNgau) with an AUC and accuracy
of 0.83 and 0.49 respectively. The remaining models show
performance with AUC scores significantly above 0.9 and
accuracy above 0.8 on average.



Fig. 2. Performance of the trained models on the entire CIFAR-10 test
data set.

Fig. 3. Example of perturbed images, left image is from an attack on the
CNNorig model and the right one is from an attack on the VGG16aug model.

B. Results of the One-Pixel Attack

Two examples of attacked images and their associated
classes are shown in Fig. 3. The prediction performance,
one-pixel attack performance, and defense performance for
three versions of the three models are shown in Fig. 4, 5,
and 6. As an example, in Fig. 4, we can see that CNNorig
predicted the correct label for 801 images out of 1,000. The
one-pixel attack was able to perturb 358 of these images
so they were predicted with an erroneous class label. The
spatial smoothing and Gaussian noise were able to defend
against 203 and 160 out of the total 358 perturbed images
respectively.

A complete overview of the results can be seen in the
appendix.

It is worth noting that there were cases where the defense
method caused the models to change their predictions from
a correct label to an incorrect label, despite the attack not
being successful. These cases are not presented since they
are out of scope of this paper.

C. Execution Times

The process of running differential evolution for a single
model takes approximately 14 seconds on average, for each
unique image. With a total of nine models to evaluate the
attack on results in a total execution time of 126 seconds,
i.e., roughly two minutes, per unique image. For the 1,000

Fig. 4. Performance of the CNN models.

Fig. 5. Performance of the NiN models.

images the one-pixel attack process took around 35 hours to
execute.

VI. DISCUSSION

In this section, we will discuss the results for the original
base models, for the different defenses, and for the one-
pixel attack. The section is finished with a subsection that
addresses validity threats connected to the experiments.

A. Base Models (NiNorig, CNNorig, and VGG16orig)

The performance of the original models, CNNorig, NiNorig,
and VGG16orig, differed slightly according to the accuracy
metric with 80%, 85% and 81% respectively, see Table V



Fig. 6. Performance of the VGG16 models.

Fig. 7. defense ratio of the CNN models in relation to all 1,000 images.

in Appendix A. The AUC metric indicates similar results
with measures of 0.93, 0.98, and 0.98 respectively. Overall,
the NiN models achieved on average the highest prediction
performance out of the three investigated model families. All
investigated NiN models reached an accuracy of at least 83%,
i.e., at least 830 correct predictions on the non-perturbed
images, see Fig. 5. This is in line with what the authors of the
model architecture have indicated as achieved state-of-the-art
performance on the CIFAR-10 dataset [16]. The NiN model
family was also the most difficult type of model to attack,
since the defense ratios on average were higher than the other
model families. The NiNorig model achieved a defense ratio
of 47.2% without applying any defense method, compared to
the CNNorig and VGG16orig models that achieved 44.3% and
28.8% respectively. This indicates that the NiNorig model has

Fig. 8. defense ratio of the NiN models in relation to all 1,000 images.

Fig. 9. defense ratio of the VGG16 models in relation to all 1,000 images.

a relatively higher inherent robustness compared to CNNorig
and VGG16orig.

B. Defenses

1) Augmentation Defenses: Looking at Fig. 7, Fig. 8,
Fig. 9, it is clear that in the majority of cases the defense
ratio of the normal augmented and Gaussian augmented
models is higher than the non-augmented models. The best
augmentation method differs for the different model families.
In the case of NiN and VGG16, Gaussian augmentation
seems to be the better augmentation method, as the defense
ratios in those cases are overall higher compared to their orig-
inal counterparts. However, Gaussian augmentation performs
significantly worse on the CNN models, as there is a clear
performance deterioration compared to the other models.
The normal augmentation method is associated with higher
defense ratios on the CNN models, but slightly worse for



NiN and VGG16 models when compared to their Gaussian
augmented counterparts. They do, however, perform better
compared to their original non-augmented versions.

The experimental results indicate that the NiN models
can use either of the two augmentation methods to improve
the defense capabilities compared to having no defense at
all. whilst the CNN and VGG16 models have increased
defense capabilities for one of the augmentation methods
and, depending on the model, worse for the other.

2) Spatial Smoothing: In all cases, the spatial smoothing
defense was able to remove the visual representation of the
attacked pixel through the blurring of the image. The problem
arises when the model tries to predict on the smoothed
image. It seems as if the models sometimes have difficulty in
discerning the contents of the image, resulting in an incorrect
prediction after the application of spatial smoothing. This
seems to be specially true if the model’s decision boundary
for the particular class label is already uncertain from the
start. There are, however, many cases where smoothing
worked and the model was able to predict the correct label
for the smoothed image. As seen in Fig. 4, Fig. 5 and
Fig. 6 in most cases, spatial smoothing was able to correctly
defend at least 50% of the attacked images, with certain
models achieving up to 72% defended images. An interesting
observation is that for the CNNorig and CNNgau models,
spatial smoothing performed somewhat worse compared to
the other models with spatial smoothing applied.

3) Gaussian Noise: Out of the two investigated defense
methods that are applied during the prediction phase, the
results indicate that Gaussian noise is the less effective
defense. The results show a clear difference between the
amount of perturbed images that each defense method suc-
cessfully defended against, with spatial smoothing being the
most suitable defense candidate. Even the Gaussian models
that were trained on Gaussian noised data showed subpar
performence when predicting the label on the noisy data.
There are several possible reasons for this. First, the noising
process could have had a too strong effect on the images, and
in turn result in that the model could not properly recognize
images due to the noise. Second, it could be due to the
possibility that the Gaussian models were trained on too
few Gaussian noised images and could therefore not capture
enough variance in order to generalize properly.

Intuitively, the noised images that the Gaussian models
trained on should increase the models robustness against
attacks, and the ability to correctly predict correct labels
on Gaussian noised images. However, it seems as there was
an opposite effect as indicated by CNNgau in Fig. 4. The
Gaussian noise defense method performed better on models
that were trained on Gaussian noised data compared to those
that were not. Finally, it can be noted that adding Gaussian
noise does not remove, or necessarily change, the perturbed
pixel. Since the one-pixel attack relies on the model being
heavily dependent on the value of the perturbed pixel, adding
noise to the other pixels may not necessarily change the
model’s prediction.

C. One-Pixel Attack

The differential evolution algorithm was able to perturb
47% of the images that were correctly labeled for all of the
models. This increases to 51% when considering only the
original models. This is slightly worse than the results from
the original paper, where they show a 68% success-rate for
the attacks. One explanation for this difference could be that
the original paper used the Kaggle version of the CIFAR-
10 dataset, while we use the original CIFAR-10 dataset [4].
In the original paper the authors argued that the reason for
this difference could be due to the fact that there is less
noise in the original CIFAR-10 dataset, compared to the
Kaggle version. This means that the models can achieve
better training results, thus making the one-pixel attack less
effective on the original dataset.

The combination of model and defense methods that
resulted in the least number of attacked images is the same
model that also showed the best prediction performance, i.e.,
the CNNaug model using spatial smoothing. That particular
model correctly predict the class label for 841 out of the
1,000 images. At the same time the one-pixel attack was
successfully applied to 304 images, but the combination
of normal augmentation and spatial smoothing managed to
protect 221 out of these, i.e., leaving 83 images (or 8.3%)
that were successfully attacked.

D. Experimental Validity Threats

As for any research method, the one chosen for this
study is associated with a number of validity threats [18].
First there is an external validity threat as this study only
investigates three different neural network model architec-
tures. However, we attempt to address this by choosing
the same models, including their network configuration, as
the original paper describing the one-pixel attack. Another
validity threat is due to the fact that the study only includes
one dataset, and further, a sub-sample of images from that
dataset. The reason for this is that the one-pixel attack
and defense scenarios are quite computationally demanding,
which limits the number of images that could be included
in the study. Also, the chosen dataset is widely used in
related research studies. Finally, regarding the sub-sampling
a uniform random sampling was implemented.

VII. CONCLUSIONS AND FUTURE WORK

The defense methods presented show potential for being
effective against one-pixel attacks. The normal and Gaussian
augmentation defense methods are more robust than their
original counterparts, especially for the NiN and VGG16
models. Without applying any prediction defenses, Gaussian
data augmentation provides the best defense for both VGG16
and NiN. Spatial smoothing seems to be the most effective
defense method from a model-agnostic perspective, while
Gaussian noise added during prediction shows slightly worse
defense capability for all models. The ability to combine
different defense methods shows an increased robustness,
however, the most optimal combinations of the defenses vary



between the different network types. For the NiN, com-
bining Gaussian data augmentation with spatial smoothing
yielded the best results, while the CNN and VGG16 models
worked best when combining normal augmentation and
spatial smoothing. We can also conclude that the Gaussian
noise defense worked best when combined with Gaussian
augmentation, except for the CNN model. The combination
of model and defense methods that showed best performance
was CNN using a combination of normal augmentation and
spatial smoothing, for which only 8.3% of the images were
successfully attacked.

A. Future Work

An interesting idea for future research is to experiment
with combining both augmentation methods with NiN and
see if there is a big improvement in robustness over using
one or the other. This can be further extended by training on
smoothed images as well to see if there is an improvement
when predicting on smoothed images.

Further research is also needed on the optimal parameters
for the different defense methods and models. There is likely
not one set of parameters that works for every situation, and a
study of the optimal parameters for different situation might
work as a basis when implementing these algorithms in new
environments.

As mentioned in the results, we do not evaluate the effects
of the defenses for non-adversarial images, and further
research into any potential model degradation when using
these defense methods is needed.
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TABLE V
THE COMPLETE DEFENSE RESULTS FROM THE EXPERIMENTS.

N Cp CA CS CG DRO
DRS

DRG
DRO

DRS
DRG

t

M
od

el
CNNOrig 1,000 801 358 203 160 55.3% 80.6% 75.3% 44.3% 64.6% 60.3% 5.7
CNNAug 1,000 841 304 221 85 63.9% 90.1% 74.0% 53.7% 75.8% 62.2% 12.3
CNNGau 1,000 498 219 123 76 56.0% 80.7% 71.3% 27.9% 40.2% 35.5% 7.9
NiNOrig 1,000 854 382 242 133 55.3% 83.6% 70.8% 47.2% 71.4% 60.5% 10.7
NinAug 1,000 830 346 255 66 58.3% 89.0% 66.3% 48.4% 73.9% 55.0% 14.4
NiNGau 1,000 850 270 161 55 68.2% 87.2% 74.7% 58.0% 74.1% 63.5% 12.5

VGG16Orig 1,000 815 527 364 182 35.3% 80.0% 57.7% 28.8% 65.2% 47.0% 8.5
VGG16Aug 1,000 825 484 353 116 41.3% 84.1% 55.4% 34.1% 69.4% 45.7% 16.4
VGG16Gau 1,000 841 446 279 121 47.0% 80.1% 61.4% 39.5% 67.4% 51.6% 11.0

APPENDIX

A. Result Table
In Table V we present the complete results from our

experiments.
1) Variable explanation:
• N : The total number of instances tested.
• Cp: The total number of correctly predicted instances.
• CA: The total number of correctly attacked instances

from the correctly predicted instances.
• CS : The total number of correctly defended instances

with spatial smoothing from the correctly attacked in-
stances.

• CG: The total number of correctly defended instances
with Gaussian noise from the correctly attacked in-
stances.

• DRO
: The defense ratio without applying any defense.

Calculated as:
Cp − CA

Cp
= 1− CA

Cp
.

• DRS
: The defense ratio after applying spatial smooth-

ing. Calculated as:
Cp − (CA − CS)

Cp
= 1− CA − CS

Cp
.

• DRG
: The defense ratio with after applying Gaussian

noise. Calculated as:
Cp − (CA − CG)

Cp
= 1− CA − CG

Cp
.

• DRO
: The normalized defense ratio without applying

any defense. Calculated as:

DRO
· Cp

N
=

Cp − CA

N
.

• DRS
: The normalized defense ratio after applying spa-

tial smoothing. Calculated as:

DRS
· Cp

N
=

Cp − CA + CS

N
.

• DRG
: The normalized defense ratio after applying spa-

tial smoothing. Calculated as

DRG
· Cp

N
=

Cp − CA + CG

N
.

• t: The average time taken to perform the attack for the
successfully attacked instances, measured in seconds.
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