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Abstract— In this paper an empirical analysis is performed
of the differentiable spectrogram as a trainable layer in linear
and convolutional neural networks. A Gaussian window, with
a window scaling parameter that can be jointly optimized with
the neural network through gradient backpropagation, is used
in the short-time Fourier transform. The analysis is performed
on a theoretically well motivated synthetic classification task
suitable for the study of trainable time-frequency transforms.
We also derive an expression for the change in concentration of
a Gaussian component in a spectrogram for different choices
of the window scaling parameter and evaluate the convergence
rate to the optimal spectrogram. Finally, a differentiable Mel
spectrogram for audio classification is introduced, which is
evaluated on the Free Spoken Digits dataset for a linear
and a convolutional neural network. The differentiable Mel
spectrogram with a trainable parameter achieves a higher test
accuracy on average than the standard Mel spectrogram with
a fixed parameter for nearly all presented initial values of the
parameter on this dataset.

I. INTRODUCTION

The common practice in audio classification using ma-
chine learning is to first derive a time-frequency image
computed through the short-time Fourier transform (STFT).
The squared magnitude of the STFT, the spectrogram, is
typically mapped onto the Mel scale using a set of Mel filter
banks and then used as input to the neural network model.

An interest for using various forms of trainable time-
frequency transforms is seen in classification of audio data,
typically bioacoustics [1], human speech, and music and
recordings.

Fundamental to these trainable time-frequency transforms
is the STFT, and a key hyper parameter for the STFT is
the window scaling parameter λ which controls the time-
frequency resolution, limited by the uncertainty principle, in
the image. Different trade-offs between time and frequency
resolution may be optimal for different tasks, and careful
consideration of λ has to be done for each task.

Recent work has proposed the differentiable STFT [2],
[3] where the parameter λ can be jointly optimized with
the neural network. Also, a more general differentiable time-
frequency transform called the K-transform[4]. While highly
expressive the K-transform is computationally demanding
due to the dependence on the Wigner-Ville transform.

In this paper we propose a theoretically well motivated
Gaussian-pulse dataset for evaluation of trainable time-
frequency transforms, and study the performance of the dif-
ferentiable spectrogram on this task. In addition, we propose
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the differentiable Mel spectrogram for audio classification
and evaluate it on the Free Spoken Digits (FSD) dataset.
The ability to optimize the time-frequency resolution and
the machine learning model jointly can improve performance
and reduce the needed training computation.

II. DIFFERENTIABLE FIXED-SIZE (MEL) SPECTROGRAM

The model layer studied in this paper is the differentiable
fixed-size spectrogram defined as

Sx(t, f) = |F (t, f)|2 =

= |
∫ ∞

−∞
x(s− t)h(s) exp(−i2πfs)ds|2 (1)

where F (t, f) is the short-time Fourier transform (STFT),
x(t) is the signal and

h(t) = exp(− t2

2λ2
) (2)

is a Gaussian window with scaling parameter λ.
The STFT is differentiable with respect to the window

parameter λ according to
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and a differentiable loss function L is differentiable w.r.t λ
through gradient backpropagation using

dL
dλ

=

N∑
n=1

K−1∑
k=0

dL
dF (n, k)

dF (n, k)

dλ
, (4)

where F (t, f) is discretized to F (n, k) with a fixed number
of N bins in time and K bins in frequency [3].

The differentiable fixed-size Mel spectrogram is an exten-
sion proposed in this paper where a set of triangular filter
banks are applied to the spectrogram to map it to the Mel
scale. This is just a multiplication with a fixed matrix which
preserves the gradients during backpropagation.

III. GAUSSIAN-PULSE DATASET

The Gaussian-pulse dataset defines a classification task
consisting of three different classes. Let

g(t0, f0, σ) = Ar exp(−
(t− t0)

2

2σ2
) sin(2πf0t+ ϕr), (5)

define a Gaussian-pulse with random amplitude Ar ∼
U{0.5, 1.0} and random phase ϕr ∼ U{0, 2π}, where
U{a, b} denotes the uniform distribution between a and b.
Three classes are simulated. Class 0 consists of a single
Gaussian-pulse x0(t) = g(tc, fc, srσ) + n(t), with time-
frequency center (tc, fc) and sr ∼ U{smin, smax} as a



random scaling factor for the pulse length. The distur-
bance n(t) is white Gaussian noise with standard deviation
σn = 0.5. Class 1 consists of two Gaussian-pulses x1(t) =
g(tc − tr, fc, σ) + g(tc + tr, fc, σ) + n(t), with the same
frequency center fc and pulse length σ, but with a random
displacement tr ∼ U{tmin, tmax} around the time center.
Similarly, class 2 consists of two Gaussian-pulses, x2(t) =
g(tc, fc−fr, σ)+g(tc, fc+fr, σ)+n(t), with the same time
center tc and pulse length σ, but with a random displacement
fr ∼ U{fmin, fmax} around the frequency center. The time-
frequency center is (tc, fc) = (N/2,K/4) and σ = 6.38
which results in a Gaussian component which is spread
across equally many time and frequency bins in the image.

IV. MODELS

For the Gaussian-pulse dataset we study two models: “Lin-
earNet” and “ConvNet”. The “LinearNet” takes a signal as
input (vector), applies the differentiable spectrogram, flattens
the derived time-frequency image and applies a linear layer
followed by a softmax to the resulting vector. The “ConvNet”
the same except for a convolutional layer and a linear layer
and ReLU applied after the differentiable spectrogram.

For the FSD dataset we use the same models except for
mapping the differentiable spectrogram to the Mel scale
(differentiable Mel spectrogram) and log normalization, as
is typical for audio classification.

V. RESULTS AND DISCUSSION

For the “LinearNet” model the non-trainable λinit which
on average give the highest test accuracy is 6.38 (the
designed optimum for the task), for the “ConvNet” in the
range [5.10, 8.93] (see figure 1). We note that both the
“LinearNet” and “ConvNet” model with a trainable λinit

achieves a higher or similar test accuracy when compared to
the non-trainable versions. A model which is robust to the
choice of λinit would maximize the area under the curve.
Similar results are observed for the “MelLinearNet” and
“MelConvNet” models on the FSD dataset when comparing
a trainable and non-trainable λinit (see figure 2).

Looking at the converged values of λest (see figure 1
and 2), we note that for large λinit, with the exception of the
“LinearNet” model, the converged λest is close to the initial
value, indicating a weaker learning signal. We perform a
theoretical analysis of this phenomenon for Gaussian pulses
by deriving the gradient of the area of the pulse (a measure
of concentration) in the time-frequency with respect to λ

dA

dλ
=

K

4σ
− Kσ

4λ2
. (6)

where K is the FFT-length, and A = πσtσf . We note
that for λ ≪ σ a small deviation in λ corresponds to a
relatively large change in A compared to if λ ≫ σ, where
a deviation in λ will cause a smaller change in A. This
indicates that for a deviation in λ (coupled to learning rate),
the change in concentration and the corresponding resolution
of the resulting spectrogram is different for a large initial λ
compared to small initial λ.
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Fig. 1. The average test accuracy and standard deviation of the “LinearNet”
model and the “ConvNet” model on the Gaussian-pulse dataset for different
initial values of λ (top), and the average estimated window size parameter
values λest for the different initial values (bottom).
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Fig. 2. The average test accuracy and standard deviation of the “MelLinear-
Net” model and the “MelConvNet” model on the FSD dataset for different
initial values of λ (top), and the average estimated window size parameter
values λest for the different initial values (bottom).
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