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I. PROBLEM STATEMENT
How should a computer understand written language? For

the last 10 or so years, the answer has been language models,
and in particular the word embeddings learned by them.
Embeddings are vectors representing word meaning and
they have seen vast successes in commercial and academic
applications. Though good for modelling word meaning it
is unclear how to form embeddings for larger parts of lan-
guage such as phrases, sentences or discourses (i.e. written
language consisting of two or more sentences). We ask:

How do we meaningfully represent discourse?
The goal of my thesis is to create a distributional composi-
tional model of written discourse. By distributional I mean
that the input is distributional1 data, such as language models,
which composes to form the meaning of the whole discourse.

II. BACKGROUND
Distributional Compositional Categorical (DisCoCat)

models arose from the lack of grammatical structure in
conventional language models. Consider how to represent
the meaning of the sentence “dogs eat snacks”. We have a
few choices:

1) Extract a sentence embedding from a hidden layer of a
large language model. This works but how the meaning
is computed is opaque.

2) Let the sentence embedding be the sum of the embed-
dings for the words in the sentence.

Using arrows to denote embeddings (i.e.
−−→
dogs is an

embedding for the word dogs), the second method means
that sentences are represented as:

−−−−−−−−−−→
dogs eat snacks =

−−→
dogs + −→eat +

−−−→
snacks (1)

but addition is commutative, so (1) is the same as both
−−−→
snacks + −→eat +

−−→
dogs (2)

−→eat +
−−→
dogs +

−−−→
snacks (3)

where in (2) we have the meaning of a different sentence
“snacks eat dogs” and in (3) we have no sentence at all “eat
dogs snacks”, yet mathematically (1), (2) and (3) are equal.

This lack of structure and composition is resolved in 2010
by Coecke, Sadrzadeh and Clark [1] by making grammar a

1This name comes from the distributional hypothesis of Firth [2] which
states that words with similar contexts have similar meanings.

necessary datum for learning word embeddings. They used
a symbolic model of grammar as its base, the Lambek
calculus, L. Given a set of atomic types {n, s} where n
represents nouns (or noun phrases) and s sentences, we can
generate L types for adjectives and verbs and so on using
the three connectives \, • and /. The slashes \ and / let us
form functional word types, and • represents concatenation
of words.

By functional word types we mean word types that modify
others. For example, we think of adjectives as functions
from nouns to noun phrases, and verbs as taking subjects
(and objects) and return sentences. Not only are there many
functional word types, but the position of their input is
necessary to understand them. For example, in English we
can parse “blue car”, but not “car blue”, so adjectives
take input nouns on the right, and verbs take subjects on
the left (and objects on the right) and return a sentence.
This order sensitivity is modelled via the two slashes, by
typing adjectives as n/n and verbs as n\s2. Note that this
is how L is interpreted for English, but a similar analysis
is possible for many languages of varied grammars (so
far Japanese, Arabic, most Indo-European languages and
Chinese languages).

Once we know the L-types of words, we can parse
strings of English using deductions of L. For example “Mary
sleeps.” is typed Mary : n and sleeps : n\s and then,
concatenation gives us Mary sleeps : n • n\s. The formula
n • n\s is proven equivalent to sentence type s as shown
in (4) below, where horizontal lines denote deduction and
horizontal juxtaposition represents •.

Mary
n

sleeps
n\s

s (4)

Although a popular model of grammar, the problem of
creating sentence embeddings was not answered with L
alone. One needed a way to see the grammatical structure
of L in the vector structure of embeddings. This was done
using category theory to translate the logical structure of L
into linear algebra, giving us the ‘cat’ in DisCoCat.

DisCoCat has outperformed standard neural models in a
variety of word disambiguation and sentence similarity tasks

2It helps to think of these slashes as directed fractions, where a/b has b
as a righthand denominator, and c\d has c as a lefthand denominator.



[5], [8], [9] albeit on limited academic datasets. Scaling
DisCoCat to industrial applications is actively studied using
quantum computers [6].

However, DisCoCat cannot model beyond sentence level
fundamentally because L cannot parse beyond sentence
level, i.e. discourse level. This is because at discourse level,
language contains referential words and phrases. For example
“Sam sleeps. He snores.” is a 2 sentence discourse where
He means Sam. In L there is no way to analyse this
meaningfully, which led Gerhard Jäger to develop a way to
symbolically parse reference [3]. Jäger, inspired by linguistic
theory, argued that reference is made up of copying and
movement: the word being referred to should be copied, then
one copy is moved to and identified with the referring word,
as demonstrated in figure 1. Once this copying and movement

(Starting point) Sam sleeps. He snores.

(Copying) Sam [Sam] sleeps. He snores.

(Movement) Sam sleeps. [Sam] He snores.

(Identification) Sam sleeps. Sam=He snores.

Fig. 1. Jäger parse of reference.

is done, one parses in L as before. However, copying and
moving in L is not possible since L formulas represent
words and their concatenation represents word order. Hence
we cannot copy and move formulas, since we cannot freely
repeat or move words when writing. The resulting question,
answered in my thesis, is

How do we extend DisCoCat to logics that can
parse discourse?

III. RESEARCH

We identified a logic that handles reference: SLLM, the
Lambek calculus with soft subexponentials [4]. SLLM has
two modalities, one for copying ! and one for moving ∇,
letting us type referential words as functional words that take
copies as input and return those copies (just like how He
returned Sam in figure 1). Hence we type referential words
like He as ∇n\n, to say that He looks for a copy of an ∇n-
type word on its left, and returns the copy. Whereas referable
words like Sam are typed !∇n, because Sam is copyable (!)
and movable (∇). This lets us parse Sam sleeps. He snores.
as a discourse where He means Sam, as seen in (5).

Sam
!∇n

∇n •∇n
∇n
n

sleeps
n\s

[Sam]
∇n

He
∇n\n

n
snores
n\s

s
s • s (5)

We defined a model of SLLM-formulas as finite dimen-
sional vector spaces, and words as vectors in those spaces [7].
The model has atomic spaces N and S for noun and sentence
types, containing vectors like

−−→
Sam ∈ N and

−−−−−−−→
Sam sleeps ∈ S.

Functional word types like adjectives n/n are interpreted as

the tensor space N ⊗N and intransitive verb type is N ⊗S
and so on. We interpret !-formulas as bounded Fock-spaces,

!V = R⊕ V ⊕ (V ⊗ V )⊕ · · ·⊕ V ⊗k (6)

for some constant k. This model gives the original DisCoCat
embeddings of [1] reference structure, allowing us to form
embeddings of whole discourses in a structured way.

Surprisingly, the category theory used in our model makes
it compatible with quantum software leading us to run it on
a quantum computer, testing it on a classification task [10].
Specifically, the task was to classify if the object or subject
pronoun as being referred to in discourses of the form

The girls ate the cookies. They looked hungry. (7)
The men enjoyed the pancakes. They were tasty. (8)

where in (7) “They” refers to the subject “The girls” but in
(8) refers to the object “the pancakes”. We saw that models
with grammatical and discourse structure were more accurate
than simply neural models.

IV. OUTLOOK

I have two main questions for future research:
1) How can we use the vector semantics of SLLM to

improve transparency in pronoun resolution?
2) How do we incorporate other forms of reference, like

event-anaphora?
More broadly, it remains to be understood how to leverage

the use of structure, like grammar and logic, in artificial intel-
ligence. How do we create architectures that allow structure
to be introduced in applications other than language?
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