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Abstract—We compare a supervised and unsupervised ap-
proach to automated defect detection in high-performance man-
ufacturing. We employ a U-Net convolutional neural network
for the supervised approach and a normalizing flow model for
the unsupervised approach. The experiments are conducted on
two production datasets: bearing rings and coupling links. Our
results demonstrate the initial effectiveness of both approaches in
detecting defects, with the unsupervised methodology achieving
competitive results compared to the state-of-the-art performance
of a supervised segmentation model.

I. INTRODUCTION

Automated defect detection is crucial for high-performance
manufacturing as it reduces waste and labor costs while
improving efficiency and ergonomics. Traditional supervised
methods require large labeled datasets, which are challenging
and time-consuming to obtain. This study investigates and
compares supervised and unsupervised defect detection ap-
proaches in manufacturing components, aiming to offer a more
efficient solution for defect detection.

A. Problem Statement

In high-performance manufacturing, automated defect de-
tection faces challenges due to the low likelihood that good
processes generate defective outcomes, leading to limited
knowledge of error mode distributions. Furthermore, training
state-of-the-art segmentation models to address this issue re-
quires creating masks from large amounts of data for effective
learning. This study aims to address these challenges and
improve the efficiency of automated defect detection in the
manufacturing domain using an unsupervised learning method.

B. Related Work

In computer vision tasks, supervised learning approaches
often rely on convolutional neural networks (CNNs) such as
U-Net [1] for segmentation tasks in manufacturing domains,
including sheet steel surface inspection [2], semiconductor
wafer defect detection [3], and weld defect detection [4]. These
approaches typically require large amounts of labeled data.

Unsupervised learning approaches, such as clustering meth-
ods [5, 6], autoencoders [7], and variational autoencoders [8],
aim to detect defects without labeled data. Recently, normal-
izing flows (see e.g. [9] and references therein) have emerged
for defect detection in manufacturing data [10, 11].
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II. METHOD

To address the limitations of supervised models, we
explore the feasibility of using unsupervised methods for
visual inspection of manufacturing components, enabling
anomaly detection without the need for data labeling.
Our approach builds on the experiments of [11], utilizing
EfficientNet-B5 [12] as a feature extractor and defining
a multi-scale normalizing flows architecture.

A. Supervised and Unsupervised – Parallel approaches

For the supervised approach, we employ a U-Net archi-
tecture [1], a specialized CNN tailored for biomedical image
segmentation tasks. The U-Net’s design consists of an encoder
path and a decoder path, with skip connections linking the
corresponding layers from both paths. This structure enables
the network to efficiently capture both local and global context,
effectively integrating high-resolution features and contextual
information to generate accurate segmentation results.

To detect defects using unsupervised learning, we employ
the normalizing flow approach described in [11]. Normalizing
flow is a technique used to learn a transformation of a po-
tentially intricate (target) distribution into a (base) distribution
with a known density (e.g., standard Gaussian) using compo-
sitions of bijective transformations [9]. In our case, the target
distributions are high-dimensional data distributions of images.
The flow can be used for density evaluation in the target
distribution. Outliers in the target distribution can be detected
by computing likelihoods in the base distribution. The main
assumption is that defects in the target distribution are outliers
and will thus be detected as outliers in the base distribution.

B. Datasets

The experiment focuses on two production datasets col-
lected from the production environment at two manufacturing
sites.

1) Bearing Ring (BR): The dataset consists of high-
resolution images of bearing ring faces, captured by two
line-scan cameras as the ring rotates around its central axis,
representing the faces as rectangular regions. To simulate
authentic defects, damage was inflicted on the faces prior to
heat treatment and grinding. 90% of the dataset (5511 patches)
is used for training, and the remaining 10% is held out for
validation and testing purposes.

2) Coupling links (CL): The dataset consists of medium-
resolution images of blasted forged steel coupling links cap-
tured using an area-scan camera as the hook was translated and
rotated by an industrial robot. Damaged pieces were collected
using the regular manual inspection process in the production
environment over an extended time frame. In the training set,



there are 3424 images of non-defect hooks. The validation set
is comprised of 568 images of which 165 contains a defect.

C. EXPERIMENT

1) Training Procedure: Supervised: The supervised U-
Net model is trained using Binary Cross Entropy Loss in
conjunction with Dice Loss [13]. The model is trained on pairs
of 256-by-256 grayscale image and mask patches, derived
from their full-resolution counterparts with a 50% overlap.
Additionally, a set of transforms is used to augment the dataset,
including random vertical and horizontal flipping, random
rotation within 10 degrees, random scaling within 10%, and
random translations within 10%. The weights are optimized
with the Adam optimizer with a scheduled learning rate from
10−4 to 10−6 and decreasing for five non-improving epochs,
β = (0.9, 0.999), and weight decay of 10−8. A component
is deemed defective if its predicted mask values exceed the
predetermined 0.5 threshold.

2) Training Procedure: Unsupervised: We follow the ap-
proach in [11] for the unsupervised training procedure. The
trained model is used to evaluate the likelihood of new samples
in the target distribution. Low likelihood samples are con-
sidered outliers, potentially indicating defects. The likelihood
threshold value is determined through a process of validation,
analyzing the distribution of likelihood scores on the held-out
subset of data and selecting an appropriate threshold that bal-
ances the trade-off between false positives and true positives.

III. RESULTS

Our experimental results are presented in Table I. The flow
yields a negative log likelihood, and by setting a threshold, we
can compute the model’s precision and recall. The threshold
is set to maximize the accuracy and is computed on the final
model after training. The results are averaged over five training
sequences. We further restrict our results to be measured at
image level rather than pixel level for both model types.

In Figure 1, we illustrate the evaluation score trajectories of
the unsupervised models across five training sequence runs.
Each model is evaluated after 75 batches, and we register
the current AUC-ROC. The bolded line is the average over
all training sequences and individual training sequences are
presented as traces. On top in each plot is the supervised AUC-
ROC baseline based on our U-net model for the given dataset.

TABLE I: Precision and recall for supervised and
unsupervised models on Bearing Rings (BR) and Coupling

links (CL).

Precision Recall AUC-ROC
Supervised (BR) 0.939 0.914 0.928

Unsupervised (BR) 0.829 0.804 0.861
Supervised (CL) 0.981 0.833 0.912

Unsupervised (CL) 0.600 0.935 0.859

IV. CONCLUSIONS AND FUTURE WORK

We compared supervised (U-Net) and unsupervised
(normalizing flow) approaches for automated defect detection
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Fig. 1: Evaluation of five training sequences of the NF model.

in manufacturing. While the supervised approach outperforms
the unsupervised one in AUC-ROC, the latter offers the
significant advantage of not requiring labeled data, which is
valuable in settings where defects are rare and labeling costly.
Although not mature, unsupervised learning methods show
promising potential for defect detection in manufacturing,
providing a more data-efficient alternative in real-world
manufacturing environments. For further improvements,
we plan to explore alternative feature extraction methods
specifically tailored to industrial data. This approach could
potentially enhance performance and generalization, as
pretrained feature extractors are not optimized for the domain
of interest. Currently, the inference time for the normalizing
flow is much larger than for the supervised counterpart in our
work. This is also a subject for further study.
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