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Abstract— A popular solution for eXplainable Artificial In-
telligence (XAI) is using Shapley values (SVs). Although SVs
have a solid mathematical foundation derived from cooperative
game theory, they suffer from a large computational cost. SV
calculation is NP-hard, requiring approximations, especially
when features exceed twenty. However, users are usually in-
terested in the most important features, so it is not essential
to calculate SVs for all features. This paper introduces the
Economic Hierarchical Shapley Values (ecoShap) method for
calculating SVs for the most crucial features only.

As EcoShap iteratively expands disjoint groups of features,
it avoids expensive computations for most of the less important
features. The proposed method identifies top features efficiently
on eight datasets. Three to seven of the most important features
can be determined with half the computation cost.

I. INTRODUCTION

Due to their ever-growing practical applications in indus-
try, business, society, healthcare, and justice, researchers are
increasingly focused on explaining machine learning models.

The output of a prediction model must be interpreted
correctly, especially in safety-critical systems. As a result,
humans gain trust in the model, understand how it makes
decisions, and gain insight into its potential improvements.

In eXplainable Artificial Intelligence (XAI), explanations
based on feature importance are arguably the most popular
approach. Other approaches include prototype explanations,
rule-based systems, counterfactual analysis, and model dis-
tillation.

The reason is that feature importance provides a straight-
forward and intuitive approach to understanding the relation-
ship between input features and prediction targets. Especially
for users without technical backgrounds, this approach can
increase transparency and build trust. Using it, data scientists
can identify and revise biased, irrelevant, or redundant fea-
tures to improve model accuracy. Lastly, AI can only provide
knowledge discovery through actionable and robust insights
if humans understand how and why machine learning makes
its decisions.

Cooperative game theory (CGT) traces have gained recog-
nition recently as one approach to feature importance. The
CGT approach is axiomatically motivated. Shapley value
(SV) is an example of this type of solution, built on a very
strong theoretical foundation and characterized by fairness,
symmetry, and efficiency.

Although significant progress has been made in calculating
approximate Shapley values, the computational complexity
still limits potential applications.
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This paper proposes a method that calculates a limited
number of the highest Shapley values instead of all of
them. This solution builds on a recent idea, where SVs are
calculated for groups of features rather than individually.
We exploit the (typically assumed to hold) superadditivity
property and the lower computational cost associated with
calculating SVs for groups of features at once. By doing
so, we can calculate SVs at fractions of the cost (for eight
popular machine learning datasets, we always find the single
most important feature in 30% of calculations, and in half
the time, we can compute three to five of the top features).

In most applications, one only needs a few of the most
important features; the rest is unimportant.

II. ECOSHAP ALGORITHM

Our proposed approach follows the binary search tree idea.
In the first step, all features F are randomly split into two
disjoint subsets of equal sizes, G1 and G2. By recursively
identifying the subset containing the most important feature
and ignoring the rest, we could find f∗ in log2|F | steps.

Although this is not possible in most cases, it is easy to
identify which branch is more likely to contain the most
important feature(s) based on its SV.

Groups have an SV greater than or equal to their maximum
features’ SV. Suppose the first subgroup has value ϕSh

G1
and

the second has value ϕSh
G2

, and without loss of generality
ϕSh
G1

< ϕSh
G2

. So we split G2 because we assume that it
contains f∗. G1 is also stored in a priority queue called G.
In general, it is expected that f∗ belongs to the group with
the highest SV, G∗. Throughout each step, G∗ will split into
two disjoint groups until we find the single feature fi. fi
has the highest SV in the current tree leaves (note that the
fully-expanded tree is unneeded); we can be sure that it has a
higher SV than the features belonging to other leaves. Hence,
it is the most important feature, i.e., fi = f∗.

fi ≡ f∗, if ∀G∈G ϕSh
fi > ϕSh

G . (1)

To find the second important feature, we expand the next-
in-line G∗ on the remainder of the tree. And when we find a
feature with the second-highest value among all leaves, we
can be sure it is the second-important feature. At any point
in the search, whenever the SV of one feature exceeds that
of other groups within G, we can be sure that this feature is
more important than all “yet unexplored” features.

III. RESULTS

In this section, by comparing ecoShap’s results with those
from MCshap, we demonstrate the computational efficiency



Algorithm 1 EcoShap Algorithm

Require:
F - list of all features
K - the number of most important features wants to find

Ensure:
Top features - The top K most important features

1: Top features← []
2: G∗ ← [F ]
3: G ← [G∗]
4: countk ← 0
5: while countk < K do
6: if len(G∗) == 1 then
7: Top features[countk]← G∗

8: countk+ = 1
9: else

10: G1, G2 ← Divide(G∗)
11: Calculate ϕSh

G1
, ϕSh

G2

12: G.add(G1)
13: G.add(G2)
14: end if
15: G.remove(G∗)
16: G∗ ← The member of G with the highest SV
17: end while
18: Return Top features

of the ecoShap algorithm and verify their precision.

A. EcoShap Performance on Budget

This section examines how ecoShap can calculate SVs
for many top-ranked features while still saving computations
compared to MCshap. Accordingly, we consider the MCshap
computational costs as the “full budget.” Table I shows how
many features ecoShap can identify using different budget
percentages (from 10% to 100%) for eight datasets.

TABLE I: The average number of features found based on
the budget percentage

Budget Percentage Dataset
HP WEC_A WEC_P WEC_S WEC_T ONP SC MSD

10% 0.18 0.0 0.0 0.0 0.0 0.12 1.18 0.42
20% 1.32 0.0 0.0 0.0 0.0 1.04 2.0 3.02
30% 2.18 0.22 0.38 0.18 0.22 2.16 2.6 4.32
40% 3.24 1.8 2.1 1.52 1.64 4.54 3.9 5.98
50% 4.44 3.44 4.3 3.08 3.74 7.1 5.64 6.02
60% 5.46 5.64 7.12 5.82 6.22 8.94 7.58 7.54
70% 6.68 8.14 10.24 9.14 8.96 11.86 11.98 11.4
80% 8.2 12.5 12.5 12.9 11.8 15.04 14.28 15.26
90% 10.7 15.76 15.4 15.22 14.76 18.88 17.06 18.52
100% 13.68 16.6 15.98 16.26 16.14 24.18 19.18 19.64

According to these experiments, Using up to half of
the budget, often much less, ecoShap can always identify
the top three most important features. In some cases, it is
possible to identify up to seven of the most important features
with half of the budget. These experiments demonstrate the
computational advantages of ecoShap in identifying essential
features on a limited budget.

B. The Accuracy of the ecoShap

The final step is to examine ecoShap’s accuracy. Accord-
ing to our assumptions, ecoShap should not introduce any

errors in calculations. Despite this, errors can accumulate
unfavorable in practice due to the stochastic nature of all the
algorithms involved. These effects are negligible, as shown
in this section.

Given that the SVs have no definitive ground truth, we
use MCshap to construct a close-to-ground-truth (CtGT). To
show that our proposed method accurately approximates SVs
without significant deviation from the baseline, we compare
ecoShap results with their CtGT MCshap counterparts.

We utilize the "features on the whole budget" (FoB) met-
ric, which denotes the most significant features identified by
ecoShap using the "full budget." As a measure of accuracy,
we use the sum of absolute errors (SAE) of the FoB features,
defined as:

SAE =
∑

f∈FoB

|ecoShap(f)− CtGT (f)| (2)

TABLE II: The mean and standard deviation of the SAE for
each dataset.

Dataset #feature #FoB SAE

HP 36 14 0.0011 ± 0.0002
WEC_A 48 17 0.0011 ± 0.0002
WEC_P 48 16 0.0010 ± 0.0002
WEC_S 48 16 0.0011 ± 0.0002
WEC_T 48 16 0.0010 ± 0.0002

ONP 59 24 0.0005 ± 0.0000
SC 81 19 0.0019 ± 0.0003

MSD 90 20 0.0934 ± 0.0171

The mean and standard deviation of the SAE values are
presented in Table II for each dataset, showing that ecoShap
does not cause approximation errors. For example, in the HP
dataset, the sum of errors for 14 features is 0.0011, which is
quite negligible.

IV. CONCLUSIONS

We propose the economic Shapley value (ecoShap)
method, which is capable of finding the most important
features with low computational costs. By calculating SVs
for groups of features at the beginning of the search, this
method acts as a filter and avoids wasting the budget on
unimportant features.

The proposed algorithm found the top three to seven
most important features in all experimented datasets by
spending less than half the budget. To verify the accuracy
of ecoShap, we compared it with ground-truth results from
a baseline, which demonstrated that there is no significant
approximation error.

It is worth noting that features are randomly split into
groups in ecoShap’s current version. Future work should
focus on developing more effective grouping approaches
to eliminate unnecessary divisions and improve search ef-
ficiency.


