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I. INTRODUCTION

Neural networks, in all their different forms, have shown
great performance in a variety of tasks in recent years.
Within the last few years, models have become larger and
more sophisticated and their capabilities have exceeded our
expectations [1], [2], [3]. Large neural network models,
or neural network models in general, come at a price for
their capabilities: They are hard to understand and interpret.
Normally, neural networks are opaque models and suffer
from the black-box problem [4]. In high-stakes domains such
as medicine, criminal justice, banking, or critical industrial
applications, there is an inherent need to being able to
explain the reasoning or the process that led to the final
recommendations. Thus, if we need to assess the limitations
and capabilities of neural network models, we need to find
a way to overcome their opaque nature.

To assess what a neural network has learnt and the limita-
tions of the network, one strategy is to be able to dissect the
network and look at the structures or data-paths that might
emerge inside of it. For each label that a neural network
learns, an inner structure emerges such that it can solve the
machine learning task. Common metrics such as accuracy,
mean absolute error or intersection over union do not reflect
these learnt inner structures. Approaches have been devel-
oped to fully understand what is happening inside a neural
network with varying degrees of success [4]. These works
have, e.g., looked at only one instance of an architecture [5],
layer wise comparison for different learnt representations [6],
or finding human-friendly concepts within already trained
models [7]. However, it would be good to have other methods
to view, detect and evaluate inner structures that we ourselves
can view and interpret well.

In this project, we will approach the black-box problem by
developing a way to uncover the inner workings of neural
networks. We explore the idea of subnetwork analysis on
multiple trained instances of the same network architecture
but initialized differently. We define a subnetwork as a
partial neural network inside a neural network for a specific
label. This subnetwork encapsulates all related concepts to
the label, e.g., a label for cats in the model should have
a subnetwork that includes the concept of a tail, fur or
paws, etc. We attempt to find and extract subnetworks from
these neural network instances and compare the convergence
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for a given label. Studying multiple instances of a neural
network architecture allows us to gain deeper insights into
how subnetworks capture concepts that relate to labels, and
how models learn when instantiated differently. This broader
understanding helps us to generalise our findings beyond
specific instances of neural networks. Thus, the overall
research question is

• How can we map parts of the network to a particular
label?

II. RELATED WORK

In this section, we briefly review several works related to
creating and finding subnetworks. We also summarize works
that aim to perform analysis multiple instances of the same
architecture.

The “Lottery ticket hypothesis” was recently coined as
an idea as to why we want to train large neural network
models [8]. When training large neural network models,
some weight configurations, called winning tickets, will learn
faster. These winning tickets (or subnetworks) are kept while
other small-magnitude weights are pruned. After pruning,
the remaining weights are reset to their previously untrained
values, and the network is retrained once again. This process
continues until performance drops significantly or some other
metrics are met. In the end, you will have a very pruned
network consisting mostly of winning tickets. The focus here
is on pruning neural networks by large amounts, but no more
investigations are made as to why these winning tickets are
learning better or if they represent learnt concepts better.

A common approach for analysing neural network is
temporary weight pruning, i.e., looking at what effect a set
of weights have when they are removed from the network.
Wang et al. [9] analyse the working process of the model
to understand how the model achieves its decision. They
propose a framework for interpreting neural networks by
analysing the CDRPs (Critical Data Routing Paths) iden-
tified by the proposed distillation guided routing method.
Their framework analyse already trained networks during
inference on testing and validation sets to detect weights
of higher significance. These weights are then set to zero,
and performance should drop significantly if a CDPR is
found. This work focuses on preventing adversarial attacks
on neural networks, but they state that future work should
explore the underlying principle of the emergence of these
CDRPs, such as subnetworks. Csordás et al. [10] also explore
the training of binary masks but on the neural network
to get the neurons that make up a specific subtask in



the dataset. They define and look at two different neuron-
types, “P_specialize” and “P_reuse,” that either specialize
themselves or are reused over multiple inner functions. This
approach performs well, and has the upside of also showing
to which degree neurons are shared between different groups
of neurons, which they also call circuits. They noticed a
problem that similar functions in the network are learned
multiple times and could potentially be merged.

Another common way to analyse neural networks is by
following the path the data takes. Fiacco et al. [11] iden-
tifies pathways within neural networks by looking at what
happens when they feed data into the neural network. They
construct an activation matrix where each column represents
an individual neuron, each row represents one data instance,
and the values in the cells are the activation for that specific
neuron and data point. They use “Linear probes” which
are a series of trained logistic regression models that are
trained to map a neural representation to a given linguistic
phenomenon. They use logistic regression because previous
neural network methods have had the problem of trying to
interpret a complex model with another complex model. The
strength of this method is that we are able to look at only
the interesting parts, and that we, to some extent, can draw
a line between neurons in the network and a learnt concept.

There have been few works analysing multiple neural net-
works with similar network architectures. Kornblith et al. [6]
test a new way of looking for similarities or substructures
in both single and between multiple deep neural networks.
They introduce a similarity index called Centered Kernel
Alignment (CKA) which compares activation similarities
between layers when data is fed into one or multiple trained
models. The drawback of this method is that it only compares
the same layer in multiple model instances, and it does not
compare larger subnetworks.

The detection of larger subnetworks is in itself a hard
problem that often comes with computational difficulties.
While methods exists to detect different aspects of subnet-
works, there is still room to systematically test combinations
of methods to achieve better results [4].

III. METHOD

In this project, we aim at finding subnetworks because they
encapsulate multiple concepts that make up the label; having
all concepts related to a label isolated from the remaining
parts of the neural network is a stepping stone to making
neural networks less opaque. To investigate if subnetworks
exist within a model, we primarily use quantitative research
in the form of experiments.

We first train multiple neural networks on known problems
with clear knowledge of the desired outcome. Each model
should solve the machine learning task satisfactorily before
we start to analyse and look for subnetworks. This could
mean that, e.g., for a classification problem, each neural
network should have a high accuracy before we analyse it.

We aim to detect subnetworks within all models, tying
learnt labels to detected subnetworks with currently available
methods such as those mentioned by Kornblith et al. [6]. We

take note of observable similarities between the networks;
this is to establish the possibility of overlapping convergence
of concepts between network instances. Exploration of new
methods will also be tested.

To evaluate the scope of a subnetwork inside a neural
network, we will isolate the subnetwork for a single label
to know how much performance we can expect from that
particular subnetwork and label and to what degree parts of
the network that are not identified as part of the subnetwork
affect performance. This by itself is a key insight, especially
when looking at multiple trained model instances of the same
architecture. Do, for example, some models crystallize their
learnt concepts into more distinguishable subnetworks, or do
most models always require the entire network?

Finally, we will evaluate the possibility of combining the
subnetworks by extracting a subnetwork from each model
instance for a single label. In theory, we should be able
to have the relations between neurons such that we find an
absolute representation of the learnt labels for the models’
architecture.

In this project, we carry out research in collaboration with
two companies with different challenges related to explain-
able AI, classification, and object detection. The companies
supply real-world scenarios, data, and expert knowledge.
Thus, we look at how well a subnetwork can be mapped
to a particular label in a real-world scenario with real data.
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