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Abstract— This extended abstract presents a project that
aims to study expert knowledge incorporation using Inverse
Reinforcement learning (IRL). The purpose of this integration
is for the IRL agent to find optimal solutions for problems
where there is human expertise not embedded in the data and
extract insights from the IRL solution that can improve the
expert’s knowledge.

I. INTRODUCTION

For Reinforcement Learning (RL) problems, it is com-
mon to represent the environment as a Markov Decision
Process (MDP), with a state space S, action space A, a
transition function P(s′|s, a), a reward function R, and a
discount factor γ. The MDP is commonly represented as
a tuple M := (S,A,R, γ, P ). More specifically, when the
decision maker is in state s ∈ S, they choose an action a ∈ A
based on the current state. The MDP then probabilistically
determines the next state s′ ∈ S and the reward r ∈ R
based on the current state s, action taken a, and the transition
probabilities given by P. Typically, an RL agent will search
through states and perform actions that maximize the reward.
A collection of actions to perform for each state is typically
referred to as a policy π, and the policy that yields the highest
expected cumulative reward is considered the optimal policy
π∗ [1].

Normally, an RL agent will try to find π∗ for a reward
function that is explicitly defined by its creator, and whether
or not the agent will learn desired behaviors is highly
dependent on how the reward function is defined. One base
assumption for RL is that the reward function is static and
known. This is not always the case. There are problem
domains, for example, computational models for humans and
animals, where the reward function is unknown and thus not
able to be defined manually. In addition, a reward function
for a particular environment may not be the same for the
agent in a different environment [2]. This need to manually
specify reward functions limits the applicability of RL in
real-life problems. In these problems however, you often
have demonstrated desired behaviors you could learn from,
even if the reward function is unknown or too complex to
design [3].

To address this, inverse Reinforcement Learning (IRL) was
introduced. IRL is a collection methods that aims to identify
a reward function given an observed behavior. Instead of
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using a manually defined reward function to search through
the model of the MDP to find π∗, in IRL, a policy is demon-
strated to the agent, and the agent searches for an optimal
reward function R∗ to explain the demonstration. Essentially
the inverse of regular RL. IRL has some advantages; instead
of searching through a very large or infinite policy space, the
policy space is restricted to at least a good enough policy.
Another advantage is that reward functions have been shown
to be more generalizable than policies for transferring to
new agents and environments [3]. The problem that IRL
tries to solve is, however, an ill-posed problem. One of
the base assumptions about the demonstrated policy is that
it is optimal; still, there may be multiple different reward
functions that may describe a demonstration [2], meaning it
can be hard to guarantee that a reward function is optimal.

The demonstrations for an IRL agent can be concep-
tualized as providing the agent with prior knowledge of
the problem. Von Rueden et al. [4] present a taxonomy
that categorizes different knowledge types and how they
have been integrated into machine learning models. The
review describes three main sources of knowledge: Scientific
Knowledge, which largely relates to mathematical represen-
tations of the world, World Knowledge, which encapsulates
formally described knowledge like linguistics and semantics,
and lastly Expert Knowledge which is described as a less
formal application of world knowledge which just a small
subset of the population knows. Most expert knowledge has
been incorporated through probabilistic relations and human
feedback. Meaning that an expert may be able to describe
the results of their intuition, i.e., how one event might be
more likely than another event (which may come from some
type of intuition), and this could then inform how a learning
model should weight its predictions. One unique aspect of
expert knowledge is intuition that experts have gained from
their experience within the domain. Human intuition is a
concept that does not have a concise scientific definition, and
thus is hard to quantify [5], but it may not need to be directly
measured in order to be incorporated into a machine learning
model. Instead, the expert could demonstrate how they would
solve a problem, circumventing the need to formalize an
expert’s knowledge and intuition.

Explainable Artificial Intelligence (XAI) is a field of
study focused on developing machine learning and artificial
intelligence systems that are transparent and interpretable
to humans. The goal of XAI is to make AI systems more
accountable, understandable, and trustworthy by providing
explanations for their decisions and actions. The need for



XAI arises because modern AI systems, particularly, deep
learning models, often work as a “black box,” meaning
that their decision-making processes are opaque to humans.
As AI is increasingly integrated into various applications,
including those with significant societal impact, it becomes
essential to understand how AI systems arrive at their predic-
tions. IRL has been used in conjunction with XAI to produce
insights and strategies for human consumption. For example,
for navigational instruction generation [6], allowing robots
to communicate their objectives [7], and modeling optimal
eye-gaze behavior for electric wheelchair drivers [8].

II. PROBLEM STATEMENT

The concept of prior knowledge has been leveraged for
machine learning in the form of IRL by demonstrating to
an agent a policy to follow and then letting the agent try to
find a generalized reward function. This central concept of
demonstrations carries an important but flawed assumption;
that the demonstration shown to the agent is optimal. But
if there is expert knowledge within the problem domain,
and this expert knowledge can be formalized into a good
demonstration for an IRL agent, it may prove useful to
reinforce the assumption that the demonstration is optimal
or at least make sure the model converges to a useful policy.

Using expert knowledge to provide demonstrations for an
IRL model is an interesting potential solution to somewhat
guarantee optimality of a demonstrated policy. This can lead
to another interesting idea of using these machine learning
models trained on expert knowledge to help train human
novices, and generate insights to change training. If an IRL
model can be somewhat guaranteed to have found an optimal
solution for the learning task with expert knowledge, the
insights that this model provides could be used to train
humans for the same task. One way of extracting insights
from models is using techniques from XAI to make the IRL
model explain itself and its predictions.

Using machine learning to automate human training may
be beneficial in areas where there is a shortage of human
instructors, and in areas where the training may have to adapt
based on a changing problem domain. An automated system
for training may also provide some consistency based on
empirical facts compared to a human expert that relies on
their own experiences. A machine learning model, in the
form of an RL agent, may also be able to find strategies
and insights previously not discovered by humans that could
improve the training of new experts. This is especially true
for problem domains where most of the training doctrine
is built upon previous experiences rather than empirical
analysis.

III. RESEARCH QUESTIONS

From the problem description, the following research
questions are formalized. The research questions are sequen-
tial and will be studied in the order presented.

1) How can expert knowledge be formalized into a
demonstration for an IRL agent to provide a useful
solution?

2) How can the solution from the IRL agent provide
insights for training humans?

IV. METHODS

In this project, we will leverage experts from two com-
panies to build IRL agents for specific machine learning
tasks related to human training and navigation generation.
The companies will present industrial cases with data and
experts, and these cases will be used as a basis for building
machine learning tasks to study the research questions.

A literature review will be conducted to map out the
techniques that have been used in related works. The first
step will be for the IRL agent to find optimal solutions
to the machine learning tasks and evaluate them with the
experts. If the IRL agents have found optimal solutions with
the help of expert knowledge, XAI techniques will be applied
to find what insights the IRL agent has found. To evaluate
the effectiveness of these insights, pseudo-experiments and
surveys will be conducted using human participants. By
analyzing the results of the experiments, we can gain a
better understanding of how the insights discovered by the
IRL agents can be used to improve training outcomes.
The insights from the IRL agents may then provide some
empirical basis for training improvements in a mostly human
experience-driven training doctrine for these industrial cases.

Overall, this project has the potential to find new ways of
solving problems related to human training and navigation
generation, and provide valuable insights into how experts
and novices in these domains can be trained more effectively.
In addition, it will enhance the understanding of integrating
prior knowledge into machine learning and broaden the
problem areas where IRL has been applied.
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