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Abstract— In order to create more robust and capable AI
systems, we need to narrow the gap between the real world and
AI datasets. More diverse and complex datasets would increase
the need for more autonomy in learning, leading to more robust
systems. We have developed a dataset of ambiguous visual
stimuli which existing pre-trained vision models fail to classify
correctly. We take inspiration from evolutionary optimization
and human psychology, which highlight the benefits of divergent
thinking, and are working towards more creative and curious
AI systems that can learn more complex tasks.

I. INTRODUCTION

One of the fundamental issues of optimization is that
the search landscapes of many tasks are rugged, containing
many local optima. Search cannot always be guided well
with an objective function, because objective functions can
be ‘deceptive’, i.e. get stuck in local optima. This happens
because of failure to value ‘stepping stones’, which are
intermediate solutions that lead to better solutions in the
future [12]. In complex environments and ambitious goals,
good solutions might be many stepping stones away. For this
reason, signals other than the objective function have been
explored, e.g. guiding search via novelty alone [12], surprise
(deviation from the expectation [8]), curiosity [4, 14], and
more.

Lehman’s and Stanley’s Novelty Search algorithm has
spun off Quality Diversity (QD) algorithms, which, in con-
trast to traditional optimization algorithms, search for a
diverse set of solutions [3]. QD algorithms require manually
defined (and/or learned) descriptors for the problem at hand.
Importantly, these descriptors are about the phenotype, not
genotype - they describe high level properties of solutions,
not low level details. These dimensions define a container
(an ‘archive’) where individuals created during search will
be stored. Individuals will be assigned descriptors and are
entered into the archive if they outperform individual(s) in
the same niche or if the niche they fall into is empty. As
a result, a second type of selection pressure is created, one
that does not increase fitness, but diversity.

The QD framework has been used to teach robots to
learn how to walk after incurring damage [1], to produce
procedurally generated content for video games [15], as
an alternative to train neural networks via gradient descent
(neuroevolution, [18]), and also in difficult reinforcement
learning settings [6].

Another issue to highlight is that progress in bench-
marks does not always translate to progress in real-world
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environments [17]. Existing benchmarks fail to fill the gap
between ‘toy’ datasets and real-world complexity [9] and
model failures can only become apparent when the models
are tested on harder tasks [2]. Benchmarks are stateful, which
means that there can be a lottery effect - some research
directions get overemphasized over others due to luck [5].
This calls for more difficult and diverse benchmarks.

II. THE CONSTELLATION IMAGES DATASET

For these reasons, we have created Constellation images,
[11], which are ambiguous visual stimuli resembling star
constellations, where everyday objects (typically one) are
represented as a dotted outline among randomly placed
dots (see Figure 1). Due to the algorithmic nature of these
images, new images with varying difficulty can be easily
created, requiring only a source image and a pre-trained
segmentation model. Difficulty can be varied by reducing
image size, by reducing the amount of injected noise or by
lowering the distance between the dots that form the outline.
A constantly evolving dataset (a ’living dataset’ [5]) can help
combat model overfitting since it will be harder for models
to find and learn shortcuts. Solving these images can be

Fig. 1. Examples of Constellation images (top row) and source images
(bottom row).

framed in various ways: solutions can be modeled directly
by connecting the dots with primitives such as straight lines
or curves (or both), or modeled indirectly, e.g. via training a
GAN [10]. The signal-to-noise ratio is open to interpretation
(meaning that more or less dots can be ignored), the model
has to assume the number, size and position of objects.
While a ground truth label exists for these images, there
is some amount of interpretability or open-endedness in the



classification process - the ambiguity present in the images
creates the potential for multiple correct answers.

We have the following research questions in mind: can
the QD framework be used to find the ground truth objects
but also plausible alternative solutions? What features are
useful to measure diversity and which ones can be learned
on-the-fly? How to combine both bottom-up and top-down
processing (i.e. guiding search with a specific object class as
the target)?

III. ONGOING WORK

We took inspiration from work [19] that used an evolution-
ary algorithm to fit lines on a canvas. An image-text encoder
(OpenAI CLIP [16]) was used to guide the placement of the
lines so that the output of the two encoders would become
more similar. In contrast to that prior work [19], in our case
lines are constrained to the dots found on the image.

Since Constellation images can contain hundreds of dots
and any pair of dots can form a line, then the number of lines
and hence the size of the encoding can rise exponentially.
To combat this, we introduce a length threshold - any pair
of dots beyond this threshold will not be encoded. As the
resulting encoding is discrete, there are no gradients to guide
search, necessitating alternative methods to make search
more efficient. Ideas from QD framework help but require
feature descriptors. We used the MAP-Elites algorithm [13]
and with descriptors for line and object counts, but these
alone do not suffice. Some prior work in QD has used
automated descriptor learning, e.g. with variational auto-
encoders [7], which we are looking into next.

Constellation images can contain objects from thousands
of classes, which means that a population-based search
across many generations will do many comparisons, so the
CLIP score does not necessarily any longer signal the quality
of the solution. Some works have used image augmentations
and averaged the scores, however this is costly, since CLIP
already forms a bottleneck of the search. CLIP is also
known to not work well with out-of-distribution tasks [16].
Prompt engineering plays a crucial role and our current
manually engineered prompts can be replaced with learned
prompts. CLIP prompts are also brittle - we have seen how
punctuation and word order strongly influences predictions,
further complicating search.

Lastly, evolutionary algorithms require an initial popula-
tion, and a popular method is to use random initialization.
Even with sparse individuals, with most of the values in the
chromosome being zeros, the initial solutions are too random
and do not populate enough bins in the archive. We have
introduced heuristics that create solutions that are constrained
to smaller regions in the image to combat this but ideally
such heuristics should be found by the algorithm itself, as
we want to keep manual engineering to the minimum.

We are also exploring the benefits of and the implemen-
tation of autotelic learning, where an agent is forming its
own goals and choosing subtasks to engage with. In order
to tackle difficult problems, an agent must focus first on
those aspects of the task where (most) progress can be made

- the ones that are not too difficult nor too easy. These
‘progress niches’ are not a characteristic of the environment,
but a particular agent at a particular time. Focusing on these
subtasks creates a causal link between curiosity and learning,
leading to a positive feedback loop [14].
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