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Abstract— Personalized decentralized learning is a promising
paradigm for distributed learning, enabling each node to train
a local model on its own data and collaborate with other nodes
to improve without sharing any data. However, this approach
poses significant privacy risks, as nodes may inadvertently
disclose sensitive information about their data or preferences
through their collaboration choices. We propose Private Per-
sonalized Decentralized Learning (PPDL), a novel approach
that combines secure aggregation and correlated adversarial
multi-armed bandit optimization to protect node privacy while
facilitating efficient node selection. By leveraging dependencies
between different arms, represented by potential collaborators,
we demonstrate that PPDL can effectively identify suitable
collaborators solely based on aggregated models. Additionally,
we show that PPDL surpasses previous non-private methods in
model performance on standard benchmarks under label and
covariate shift scenarios.

I. INTRODUCTION

Collaborative machine learning is a technique in which
a group of actors collaboratively trains a joint model while
preserving the privacy of their individual datasets [7]. Two
prevalent approaches to collaborative machine learning are
federated learning (FL) and decentralized learning. FL has
several inherent limitations and risks, including the difficulty
in finding a trustworthy third party to coordinate the training
process, and the need for large institutions to maintain
autonomy over their data. Furthermore, FL’s scalability
can be restricted, and it may also have a single-point-of-
failure. Decentralized learning, on the other hand, eliminates
the need for a central server by directly communicating
model parameters among peers in the learning setup using
a communication protocol, such as gossip learning [5], [4].
However, this approach may not be appropriate for non-iid
settings where several distinct learning objectives may be
present.

The idea of each node identifying useful peers in the
network to train a personalized model was proposed in [9]. A
score-based method, decentralized adaptive clustering (DAC),
was presented in [6] where each node scores its neighboring
peers based on the the empirical loss. While DAC manages
to find beneficial nodes and identifies clusters in the network,
model parameters are still communicated over the network in
plain text and the peers receiving the updates must hence be
trusted. As such, DAC is vulnerable to inference attacks. Since
a node only receives an aggregate of the parameter updates of
M nodes at a given point in time, it cannot infer a score on
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the similarity of any one of the peers in the aggregate (as in
DAC); such a score can only be computed for the aggregate.
Instead, our solution exploits dependencies between different
group selections and makes use of adversarial multi-armed
bandit optimization to efficiently find the subsets of peers
that are beneficial for collaboration. Our solution has a
communication efficiency and performance similar to that of
previous methods, but adds a higher level of privacy.

II. DECENTRALIZED LEARNING BY FINDING USEFUL
COLLABORATIONS

We consider several decentralized learning tasks over a
network consisting of K nodes, where each node i ∈ [K] has
a private local data distribution Di over the input features
x ∈ X and the corresponding label y ∈ Y . Each node
i ∈ [K] is equipped with a machine learning model fi with
model parameters wi ∈ Rd and a real-valued loss function
ℓ(fi(wi;x), y) : Rd × X × Y → R. The objective of each
node i is to solve its own task as well as possible (referred
to as personalized learning) by minimizing the expected loss
over the local data distribution,

w⋆
i = arg min

wi∈Rd
E(x,y)∼Di

[ℓ(fi(wi;x), y)] . (1)

Personalized decentralized learning faces the challenge of
determining if nodes should collaborate based on similar
data distributions. Collaboration may hurt performance if
distributions are dissimilar, but collaboration with similar
nodes can help towards the goal in (1). Privacy concerns make
it difficult to reveal node data. We propose a private method
to identify nodes with similar local datasets, similar to [6],
[8]. Nodes aim to identify nodes in M whose parameters
can help approach w⋆

i in (1), achieved through decentralized
federated averaging over T rounds.

Privacy. Although federated averaging is commonly ad-
vertised as being private, recent results have demonstrated
attacks able to recover training data from the models [1].
To protect the nodes from such attacks, we utilize secure
aggregation to ensure that a node who queried multiple model
parameters from a subset of its neighbors only get to observe
an aggregate of those models.

Multi-armed bandits. Choosing collaborative nodes from
a large pool in limited training rounds is difficult, so a node
must evaluate a sampled group with a local measure, such
as local accuracy. However, local accuracy is stochastic and
non-stationary due to dependence on node selection and
training of others in the network. Therefore, we frame the
group-selection problem as an adversarial multi-armed bandit



problem. In the problem at hand, some groups will have
overlapping member nodes. To leverage this idea, we utilize
the framework of pseudo-rewards, as presented in [2]. Let
the different groups available to node i be indexed from
1, . . . , Ci and, w.l.o.g., let the reward from choosing group
j ∈ [Ci] at time t satisfy r

(t)
j ∈ [0, 1]. We define the pseudo-

rewards s(t)l,j (α
(t)
j ) ∈ [0, 1] as an upper bound on the expected

reward on r
(t)
l given that we observe r

(t)
j for j ∈ [Ci]

and l ∈ [Ci] \ {j}. This is mathematically represented as
E
[
r
(t)
l |r(t)j = α

(t)
j

]
≤ s

(t)
l,j (α

(t)
j ). Let ul,j ∈ {0, . . . ,M − 1}

denote the number of overlapping nodes between group l and
group j. We consider pseudo-rewards of the form

s
(t)
l,j (α

(t)
j ) = min

{
α
(t)
j +

q(t)

ul,j
, 1

}
(2)

III. PRIVATE MULTI-ARMED BANDITS FOR NODE
SELECTION

Here, we present our bandit algorithm for a given node
i ∈ N . For ease of notation, we exclude the node index
in the sequel. Let k(t) ∈ [Ci] denote the group chosen at
time t and let nk(t)(t) denote the number of times group
k(t) has been chosen after t rounds. The empirical reward
from choosing group j ∈ [Ci] is defined as µj(t) =∑t

τ=1 1{k(τ)=j}r(τ)
j

nj(t)
and the empirical pseudo-reward for group

l ∈ [Ci] \ {j} when group j ∈ [Ci] is selected, is given by

ϕl,j(t) =
∑t

τ=1 1{k(τ)=j}s(τ)
l,j (r

(τ)
j )

nj(t)
. [2] reduced the size of the

multi-armed bandit problem by only selecting arms that are
empirically competitive, i.e., arms whose minimum empirical
pseudo-rewards exceeds the maximum empirical reward. To
this end, we define the set of significant arms as S(t)

i = {j ∈
[Ci] : nj(t) > t/N} and let k̄(t) = argmax

l∈S(t)
i

µl(t). The

set of empirically competitive arms is defined as A(t)
i ={

j ∈ [Ci] : min
l∈S(t)

i
ϕj,l(t) ≥ µk̄(t)(t)

}
∪ {k̄(t)}. We use

the Tsallis-Inf algorithm to consider adversarial rewards,
which achieves optimal scaling pseudo-regret [10]. The value
of q(t) in (2) determines the size of empirical pseudo-
rewards, affecting the competitive set. Large q(t) encourages
exploration, while small q(t) encourages exploitation.

IV. EXPERIMENTS

We experiment with various cluster configurations and
use CIFAR-10 and Fashion-MNIST datasets commonly used
in literature for decentralized learning evaluations (Section
3.1 [3]). The results of our label shift experiment with two
clusters (animals and vehicles) on CIFAR-10 are presented in
Table I. We observe that both PPDL and DAC perform well,
with PPDL achieving superior results. The highest accuracy
is achieved with PPDL-var, in which q(t) is exponentially
decayed with respect to the number of communication rounds.
It is worth noting that Random performs worse than local
training without collaboration, likely due to model poisoning
caused by nodes communicating with incorrect clusters.
The node models learn different representations for the
different clusters, and when merging models from two distinct

clusters, the resulting model is inferior due to the significant
dissimilarity between the models, a phenomenon known
as client drift. Future research could explore aggregation
methods for models trained on different datasets to enhance
node robustness and understand the impact of the number of
nodes participating in secure aggregation on privacy. We plan
to extend our algorithm to allow for group sizes of arbitrary
sizes at each node by leveraging scaling bandits.

TABLE I: CIFAR-10 label shift test accuracy with 60 nodes
in ’animal’ cluster and 40 nodes in ’vehicle’ cluster.

Method Vehicles Animals Mean

PPDL 51.86 36.31 43.81
PPDL-var 52.86 36.33 44.60
DAC 52.78 33.87 43.32
Random 44.79 30.00 37.40
Local 51.10 35.11 43.11
Oracle 57.17 39.74 48.45
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