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The performance of a computer system is important. One way of improving per-
formance is to use multiprocessors with several processors that can work in par-
allel. Where multiprocessors are used, the programs must also be parallel in
order to achieve high performance. However, it is not always easy to write paral-
lel programs for multiprocessors; program developers need support in this area.
Such support includes, for example, information regarding how well the parallel
program scales-up when the number of processors increases and identification of
performance bottlenecks; ideally, the result should be presented graphically.
Bottlenecks arise both as a result of parallelization as well as traditional (sequen-
tial) code. Further, the developer may need to predict performance on other sys-
tems than the one used for development, since the development environment
often is the (uni-processor) workstation on the developer’s desk. One way of
increasing the performance may be to bind threads on processors statically.
Finding the optimal allocation is NP-hard and it is necessary to resort to heuris-
tic algorithms. When heuristic algorithms are used we do not know how near/far
we are from the optimal allocation. Finding a bound for the program’s comple-
tion time shows what should be achievable using a heuristic algorithm.

In this thesis, I present techniques how to simulate a multiprocessor execution
of a parallel program based on a monitored execution on a uni-processor. The
result of the (simulated) multiprocessor execution is graphically presented in
order to give feedback to the developer. The techniques can be used for heuristic
algorithms to find an allocation of threads to processors. Further, I show an algo-
rithm that identifies the critical path of the parallel program on a multiprocessor,
thereby identifying the segments that are worthwhile optimizing. I also show
how to calculate a tight bound on the minimal completion time for the optimal
allocation of threads to processors. Finally, I discuss the implications of the
choice of simulation model. The techniques and algorithms described have been
manifested in a prototype tool which I have used to perform empirical studies.
The tool has been validated using a real multiprocessor.
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The performance of a computer system is crucial. It seems as if the need for
increasing computing power is never satisfied. If a uni-processor computer does
not give the required performance, i.e., the work cannot be processed fast
enough, an obvious solution is to let several processors work in parallel. Parallel
processing is, therefore, an important way to increase the performance of
demanding applications. Multiprocessors have several processors able to work
in parallel. Applications developed for multiprocessors are thus likely to have
high performance requirements.

If an application is to take advantage of a multiprocessor it must contain paral-
lelism. However, it is not always easy to write parallel applications for multipro-
cessors. Such applications are often very complex and the software development
process for multiprocessors is not as highly developed as the development pro-
cess for sequential applications [55]. In this thesis I consider parallel programs
consisting of several processes/threads. The processes/threads need to synchro-
nize and communicate if they are to complete a common task.

Application developers thus need a great deal of support if they are to write
parallel high-performance applications. Such support includes information
regarding how well the parallel application scales-up when the number of pro-
cessors increases as well as how to identify performance bottlenecks. The scale-
up is often known as “scalability in machine size”, defined in [55] as “how well
the performance [of an application] will improve with additional processors.”
For example, if we have twice as many processors, we should ideally attain
twice as high performance. Performance in this thesis relates to the execution
time of the application [50]. The higher performance, the shorter execution time
required.

A number of programming paradigms and multiprocessor platforms have
emerged, such as the thread concept in Solaris 2.X. These have resulted in multi-
threaded commercial applications (and non-commercial too) written for multi-
1Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors
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processors. These kinds of parallel applications are generally not developed for a
specific number of processors, i.e., there is no single target environment. The
reason for this is that the same application may be executed on a multiprocessor
with few processors as well as on a machine with a large number of processors.
Generally, it is the customer who decides the size of the multiprocessor; this is
determined by the actual performance required and the price/performance ratio.
The customer also wants to be able to buy additional processors and execute the
same application with a higher performance. Developers must therefore make
sure that the application runs efficiently on different numbers of processors. In
some cases, developers want the multithreaded application to scale-up beyond
the number of processors available in a multiprocessor today in order to meet
future demands; the development environment may thus not be the same as the
target environment. Often the development environment is the (uni-processor)
workstation on the developer’s desk.

The use of standards has many benefits. One such benefit is that a program
using some standard, e.g. POSIX threads [20], can easily be ported (ideally only
recompiled) to some other operating system such as Linux. However, the pro-
gram may perform differently from one operating system to another. It is thus
beneficial for the developer to be able to predict the performance on operating
systems other than the one used for development.

Static binding of threads on processors means that the thread is only allowed
to execute on the named processor. This contrasts with dynamic allocation
where the thread may migrate from one processor to another during execution. It
has previously been shown that allocation (static binding) of threads on proces-
sors can increase the performance [80]. This is particularly true in the case of
NUMA (Non Uniform Memory Architecture) machines. Thus, finding good
allocations is important. Basically the problem is NP-hard [40] and it is neces-
sary to resort to heuristic algorithms. Performance prediction for a given alloca-
tion is useful finding a good allocation. When using heuristic algorithms we do
not know how close (or far) we are from the optimal allocation. If we are able to
find a tight bound on the minimal completion time for the optimal allocation, we
can compare the bound with the completion time from the heuristic algorithm.

All of the above arguments lead us to the conclusion that the developer of a
multithreaded application needs support when determining the performance,
identifying performance bottlenecks, and identifying the critical path. Since
many multithreaded applications are developed on a uni-processor workstation,
it is desirable to provide the necessary support in this environment.
2 Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors



Introduction
This thesis work explores techniques and methods for predicting and improv-
ing the performance of parallel programs. While writing this thesis I have devel-
oped a prototype research tool to implement and test my ideas in practice.
Further, I have performed empirical studies on benchmark programs, synthetic
programs, and skeleton versions of industrial programs. Finally, the predictions
of the prototype research tool have been validated in a real multiprocessor envi-
ronment.

The techniques used in this thesis are based on the assumption that the pro-
gram is deterministic, i.e., the program has the same behavior regardless of the
number of processors and/or scheduling policy. A relaxation of this assumption
is found in paper VIII.
3Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors
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All my research results are demonstrated in a practical tool, called VPPB (Visu-
alization of Parallel Program Behavior). The techniques developed during my
research are implemented in this tool. The VPPB tool enables the developer to
monitor the execution of a parallel program on a uni-processor workstation, and
then predict and visualize the program behavior on a simulated multiprocessor
with an arbitrary number of processors. 

The workflow when using the tool is shown in Figure 1. The developer writes
the application and compiles it (a). The application is then executed on a uni-
processor, e.g., the developer’s workstation (b). During execution data about the
behavior of the application are collected (c). The recorded information is used to
simulate a multiprocessor execution of the application. The Simulator is given
specific parameters about the target hardware as well as the scheduling policy
(d). The result of the simulation is displayed graphically (e) to the developer.
Analysis methods can be applied to the simulated execution (f). The extended
critical path (see Section 2.3) can be calculated and shown in the graphs as well
as in a separate table. The minimal completion time for the application when
using statically bound threads (see Section 2.3) can be calculated and visualized.
Automatic finding of an allocation of the threads to the processors is carried out
in (g) (see Section 2.2). The developer can now investigate the (simulated) exe-
cution and perform additional experiments by changing the simulation parame-
ters (d) again. In this way, the developer can run several experiments using the
same recorded information. If the developer needs to modify the application
source code, she/he may start at (a) once again to verify the impact of the modi-
fications.

The VPPB system is designed to work for C or C++ programs using the
Solaris built-in thread package [20] and/or POSIX threads [8]. The target simu-
lation environment is Solaris 2 and Linux 2.

This thesis comprises eight papers. The papers can be categorized according
to how they contribute to the overall method as shown in Figure 2. Papers I, II,
and III show the development of the most fundamental parts of the tool; this is
particularly true of paper I, where the initial versions of the Recorder, Simulator
and Visualizer are to be found. In paper II, extensions are made in order to han-
dle I/O and multiple LWPs by monitoring the kernel of the operating system. In
paper III, I evaluate the applicability of the tool in another target operating envi-
ronment for performance prediction, i.e. Linux. 
4 Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors



Research Results
Papers IV and V present how the VPPB tool can be used to evaluate the differ-
ence (in terms of execution time of the application) between allocations while
searching using heuristic allocation algorithms.

Papers VI and VII present new analysis methods that have been developed
during my research: a multiprocessors extension of the critical path analysis and
an analytical method for bounding the minimal completion time for statically
allocated processes. The latter method is a complement to the heuristic algo-
rithms in papers IV and V. 

Finally, in paper VIII I look more deeply at the simulation approach for per-
formance prediction used in the tool and evaluate a number of alternatives. 

Simulator

Visualizer

Simulation parameters

Figure 1: A schematic workflow of the techniques in this thesis.
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The core papers contain the most fundamental parts of the proposed techniques.
The papers included in this category are I, II, and III. The developer of a parallel
program usually works on a uni-processor workstation. If there is no access to a
multiprocessor, the developer has limited opportunities to estimate the real per-
formance of the parallel program. One approach is to predict the performance by
simulation. Further, if the performance is not sufficiently good, the developer
needs feedback in order to improve the program. The core papers investigate
how to show the performance of the parallel program for the developer and also
give feedback to the developer for her/him to improve the program, where neces-
sary. It should be possible to do all this on a uni-processor workstation.

I show in papers I, II, and III that it is possible to give the developer support
on a uni-processor workstation, i.e. to estimate the performance of the parallel
program and give feedback. I have defined three entities: the Recorder, the Sim-
ulator, and the Visualizer as shown in Figure 3. In the Recorder I have defined
which activities on the uni-processor workstation to be monitored; the function
calls for two Solaris libraries and the activities in the scheduler. I have also
defined which parameters in the function calls need to be monitored. In the Sim-
ulator I have defined how to process the recorded data and how to use it as simu-
lation input in order to mimic a multiprocessor execution. My simulation
approach is based on one list of events per thread. I have made it possible for the
developer to set the number of (simulated) processors regardless of the number
of threads. I have shown how to visualize graphically the (simulated) multipro-
cessor execution in the Visualizer.

No. of processors, etc.

Simulator

Visualizer

Simulation parameters

Figure 3: The workflow in the core papers.
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Paper I contributes to the above by demonstrating how the Recorder, Simula-
tor and Visualizer, operates on the Solaris operating system using user-level
threads. Paper II demonstrates support for handling I/O and for managing kernel
threads in the parallel program by tracing events and activities in the kernel.
Finally, paper III enables the developer to simulate for another target environ-
ment (Linux) than that of the host environment (Solaris).

I have validated my performance predictions by using the SPLASH-2 bench-
mark suite and the skeleton of a large telecommunication application. The vali-
dation for the Solaris operating system proved accurate with an error less than
10% (on average 1.6%, as reported in paper III). On Linux the error was greater
(on average 5.8%, as reported in paper III) since the monitoring operating sys-
tem differs from the target operating system; we still consider this a viable
approach, however. The tracing overhead was less than 2% of the total execution
time for most of the applications in SPLASH-2. The simulation time is as shown
in paper VIII less than half (down to 1/50,000) compared to when the applica-
tion is executed on a uni-processor machine.
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It is known that static allocation (binding) of threads on processors can increase
performance and that static allocation is the only option in some systems. How-
ever, finding the optimal allocation is NP-hard and we must thus resort to heuris-
tic algorithms. Papers IV and V investigate if the techniques developed in the
core papers can be used to find good allocations. The user should not need to
specify anything other than the simulation parameters in the core papers, e.g. the
number of processors in the target multiprocessor. The research question in this
part is thus: Is it possible to automate the search for an allocation without speci-
fying (by hand) anything about the program? 

I have found that it is possible to automate the search for an allocation without
specifying (by hand) anything about the program. The two algorithms developed
for papers IV and V illustrate this conclusion. In both cases the algorithms are
compared to a traditional binpacking algorithm using several thousand automat-
ically generated programs. Both algorithms give approximately 40% shorter
execution times than the traditional binpacking algorithm in our parallel test pro-
grams. The basic approach is to use the recorded information from the core
papers, and then use this information to find a good static allocation. The simula-
tor then predicts performance; the allocation algorithm can use this information
for improving the allocation. This is illustrated in Figure 4.
7Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors
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The algorithm in paper IV allocates the threads on the processors one by one;
the threads which are not yet allocated are placed on one shadow processor each.
When there are fewer processors than threads, the algorithm uses more proces-
sors than those available on the target machine while searching thanks to the
shadow processors; as a result the algorithm cannot run on the target machine
and without simulation techniques it would be impossible to use the algorithm.
The algorithm in paper V uses a start allocation (the allocation from the binpack-
ing algorithm) and then permutes the allocation in the search for a better alloca-
tion. The two algorithms have different properties; the first produces a result
after a fixed time (which is given by a formula based on the number of processes
and processors), whereas the second algorithm gives better and better allocations
incrementally. This means that the second allocation algorithm can be stopped
by the user or by some other criteria at any time and still give a result. Further, in
its basic form the second algorithm never stops iterating; I have, however,
defined a stop criterion. The latter is based on the observation that at some point
further iterations will not be worthwhile. Using the stop criterion, I propose a
new (third) algorithm that reduces the risk of getting stuck in a local maxima.

The allocation techniques used in papers IV and V use the recording and sim-
ulation facilities in the core (Section 2.1) without modifying of the core in any
way. Papers IV and V thus give the core added value.
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Two analysis methods belong to this category, and they are presented in
papers VI and VII. Both methods are implemented using the core described in
Section 2.1.

Simulator

Allocation 
Algorithm

Execution
Recorder

Recorded 
Information

Final
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Figure 4: The use of the Recorder and the Simulator for finding allocations.
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Performance tuning of sequential programs can be carried out through optimi-
zation of the code. The major issue here is to identify which segments of the pro-
gram it is worthwhile to optimize. In sequential programs it is rather trivial and
several commercial profiling tools already exist. However, in general it is not
trivial in a parallel program. In paper VI the focus is on how to find the segments
that are worthwhile optimizing for any combination of number of threads and
number of processors. Showing the developer the relative impact of optimizing a
segment is also important since this gives her/him the opportunity to prioritize
the optimization efforts on the most worthwhile segments of the program.
Another question addressed in this paper is how to present the segments for the
developer. This is especially important since the developer may be used to tools
for sequential programs; finding similar ways of representing the results is thus
of great importance.

I have defined an algorithm in paper VI that identifies which parts are worth-
while optimizing. The algorithm identifies the (extended) critical path through
the parallel program. The extension is used to express that the critical path is
found for any combination of number of threads and number of processors and
not only in special cases (see related work Section 3.4). I define the extended
critical path as all the executed code segments of a program that when reduced
with a small value will reduce the total execution time on a given number of pro-
cessors. Different segments of the program have a different impact on the total
execution time for the program. Although it is perhaps non-intuitive, I show that
some segments may actually increase the execution time if optimized. Each seg-
ment is given a weight representing the optimization impact on the total execu-
tion time. All segments in the (extended) critical path are shown as thicker lines
in the visualization graph. To further aid the developer, the segments are related
to the functions in the program and a list of the functions (weighted by the
weight of the segments) is shown in the same way as a traditional profiling tool
illustrating the (weighted) relative time spent for each function in the (extended)
critical path. The last-mentioned feature required the introduction of additional
recording capabilities in the Recorder.

The second paper in this category, paper VII, addresses one drawback with
heuristic algorithms for finding an allocation of the threads to processors,
namely that one does not know if the heuristic algorithm has found an allocation
that is close to or far from the optimal allocation. One way to solve this is to
compute analytically a bound of the minimal execution time of the program on a
given machine. If the execution time of a certain allocation is above this bound,
then we know that it is possible to find a better allocation and that it is worth-
9Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors
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while to continue the heuristic search. To be useful the bound must be tight. In
this paper our focus is on finding an analytical way to find such a tight bound.

The contribution in paper VII is an analytical method for bounding the mini-
mal execution time of the program on a given machine. The method is based on
parameters describing the parallel program;  is the number of processes/
threads,  the parallel profiling vector showing to what fraction of the comple-
tion time a certain number of threads are executing simultaneously given that
there is one processor for each thread, and  describes how often per time unit
the program synchronizes. All these parameters can be obtained automatically
from the recorded information in the core of the tool. The target hardware is
defined in terms of  - the number of processors and  - the synchronization
latency between processors. The analytical method is optimal in the sense that
for at least some program  (defined by , , ) is equal to the bound. 

My main contributions in paper VII are sections 1, 4.4 (except 4.4.3), 6, 7, 8
and 9. However, I have also made a number of smaller contributions in other
sections, e.g., Section 2 and the formulas in Section 5.

Both analysis methods (papers VI and VII) need a multiprocessor execution of
the parallel program with one processor per process/thread; the simulator from
the core (see Section 2.1) thus plays an important role.
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The model used in the simulator was the same in papers I to VII. The fundamen-
tal issues in paper VIII deal with the possibility of other models for trace-based
simulation. Are there other models? Do they work properly? How accurate are
the predictions they produce? Which one should we use in which situation? Are
there any trade-offs when selecting simulation model? All these questions need
an answer.

In paper VIII I define three trace-based simulation models. The three simula-
tion models are called the Direct Simulation Model, the Client-Server Simula-
tion Model, and the Strict Sequence Simulation Model. The first model is the
one used in the core (see Section 2.1). The last model is used in, for example,
[34] and [44]. The remaining model is similar to the one used in [46]. I have ana-
lyzed the models and found that both the Direct and Client-Server Simulation
Models may introduce deadlocks in an otherwise deadlock-free program. The
Strict Sequence Model will never result in a deadlock since the traced event
order (which obviously did not cause any deadlock) is kept in the simulation.
However, the Client-Server Simulation Model and the Strict Sequence Simula-
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tion Model may introduce artificial constraints into the program that may affect
the accuracy of the predictions (too pessimistic). Quantifying the errors in each
model shows that the Direct Simulation Model clearly yields the lowest average
error. The Strict Sequence Simulation Model had the largest average error. Con-
sequently, there is a trade-off between the accuracy in the predictions and the
capability of avoiding erroneous deadlocks. I have defined a simple deadlock
driven scheme for deciding when to use which model. The scheme provides the
best (average) predictions possible, while avoiding erroneous deadlocks.
11Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors
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We start by presenting work related to papers I, II, and III since these papers are
the core of this thesis; visualization tools are examined in Section 3.1 followed
by simulation tools in Section 3.2. Work related to thread allocation (papers IV
and V) is presented in Section 3.3, followed by the results of investigations
related to profilers and critical path analysis (paper VI) in Section 3.4. Work
related to the analytical bounds of minimal execution time (paper VII) is found
in Section 3.5, and finally, related work for paper VIII is discussed in
Section 3.6. 
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The idea of displaying a representation of the execution of a parallel application
graphically is not new. As can be seen in this section there are many tools. These
tools visualize the execution of a parallel application on a multiprocessor.
Table 1 presents some visualization tools with their fundamental characteristics
in the columns. It should be noted that these characteristics do not necessarily
reflect the full capabilities of each tool. The characteristics may also be subjec-
tive since not all references directly reveal the desired information for inclusion
in the table;, in such cases analysis of screenshots, etc. has been used. The differ-
ent columns in Table 1 are:
• Message-passing - if the tool supports the message-passing programming

model or not. Message-passing often etails the use of PVM or MPI.
• Shared Memory - if the tool supports the shared memory programming model,

(usually in terms of threads). Note that message-passing on a shared memory
machine does not count.

• Post-mortem - if the tool shows the results after the termination of the applica-
tion investigated.

• On-the-fly - if the tool shows the results during the execution of the applica-
tion investigated.

• Re-play - if the tool re-plays (like a tape-recorder) the collected information in
animated views (like a movie). Only the animated views are applicable for on-
the-fly tools.

• Time-line - if the tool supports views where one of the axes is used to repre-
sent time. Where re-play is available, the time axis may be expanded as time
progresses during re-play.

• Statistics - if the tool supports histograms, kiviats, calculations for standard
deviation, or non-trivial metrics, etc.

•
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Name / Reference
Message-
passing

Shared 
memory

Post-
mortem

On-the-
fly

Re-
play

Time-
line

Stati-
stics

ATEMPT [66, 67] Yes No Yes No No Yes No
Carnival [91] Yes Yes Yes No No No Yes
Conspector [110] Yes Yes No Yes No Yes No
Falcon [45] No Yes Yes Yes Yes Yes No
Gthread [142, 143] No Yes Yes No Yes Yes No
Guideview [131] No Yes Yes No No No Yes
IPS-2 [57, 94] Yes Yes Yes No Yes Yes No
Jumpshot/(N)upshot [141] Yes No Yes No No Yes No
Medea [21, 22] Yes No Yes No No No Yes
Moviola [74] Yes Yes Yes No No Yes No
MPP apprentice [27, 133] Yes No Yes No No No Yes
Lei&Zhang [77] Yes No Yes No No Yes No
OSE Illuminator [103] Yes Yes No Yes No Yes No
Pablo [112, 113] Yes No Yes No Yes Yes Yes
Parade [65] Yes Yes Yes No Yes No Yes
Paradyn [93, 95] Yes Yes No Yes No Yes Yes
ParaGraph [49] Yes No Yes No Yes Yes Yes
ParaMap [58] Yes No Yes No No Yes No
ParaVision [102] Yes No Yes No Yes Yes No
PARvis [100] Yes No Yes No Yes Yes Yes
PAT  [28] Yes Yes Yes No No No Yes
PATOP [18] Yes No No Yes No Yes No
PMA [136, 137] Yes No Yes No No Yes No
P-RIO [79] Yes No Yes No Yes Yes No
Projections [121] Yes Yes Yes No No Yes No
PROVE [61, 62] Yes No Yes No No Yes No
PV [54] Yes Yes Yes Yes Yes No No
PVaniM [24] Yes No Yes Yes Yes Yes No
Quartz [2] No Yes Yes No No No Yes
SCALEA [129] Yes No Yes No No No No
SvPablo [30, 31] Yes Yes No Yes No No Yes
TATOO [12] Yes No Yes Yes Yes Yes No
TAU [90, 96, 120] Yes Yes Yes Yes No No Yes
ThreadMon [23] No Yes No Yes No No Yes
Tmon [59] No Yes No Yes No No Yes
TNFView [127] No Yes Yes No No Yes Yes
TraceView [87] Yes Yes Yes No No Yes No
VAMPIR [68] Yes No Yes No Yes Yes No
VGV [17, 51, 63] Yes Yes Yes No Yes Yes No
Virtue [116] Yes No Yes Yes No Yes No
VISTOP [134] Yes No Yes No Yes No No
vt [56] Yes No Yes Yes Yes No No
Xab [8] Yes No Yes Yes Yes No No
XMPI [72, 73] Yes No Yes Yes No Yes Yes
XPVM [41] Yes No Yes Yes No Yes No
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The number of publications each year indicates a constant interest in visual-
ization tools. Most tools handle message-passing (84%), whereas only 47% han-
dle shared-memory. Of the tools that support shared-memory, 67% also support
message-passing. It would seem that a majority of the tools originate from the
message-passing community. This is illustrated in [17], where VGV (a com-
bined VAMPIR and Guideview tool) is presented as (the message-passing)
VAMPIR extended with (the shared memory) Guideview, not vice versa.

There are a lot of different views that has been developed in the visualization
tools, e.g. ParaGraph contains more than 25 different views alone. Most sophis-
ticated visualization, including 3-dimensional virtual reality views, 3-dimen-
sional gloves, and speech recognition, can be found in Virtue.

"��
+�����
���
�����
There are a lot of tools for simulating multiprocessors. Some of these are found
in Table 2. The tools are categorized based on the fundamental technique
employed (described later in this section) and whether the tools present metrics
only, or any graphical visualization of the execution flow. Absence of underlin-
ing means support for message-passing, single underlining means support for
shared-memory, and double underlining means support for both. The lower right
corner of Table 2 is described in more detail than the others since this is where
VPPB belongs.
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Technique Simulation and metrics Simulation and visualization

Direct-
execution

DirectRSIM [35], EXCIT [69], 
MPI-SIM [1, 108], ParSim [117, 132], 
PERFSIM [128], SPASM [122], Tango [29], 
WWT-II�[98, 99]

PROTEUS [15], Schumann [118]

Interpre-
tation

PEPSIM�[48], RSIM [35, 53, 105], 
SimICS [85, 86]

SimOS/Rivet [13, 114]

Static 
analysis

Balasundaram et. al. [7], PEPSY [9], 

PerFor [3, 4], P3T+ [38, 39]

EDPEPPS [32, 33], PACE [101, 104]

Modeling CHIP3S [106], PAMELA [42, 43], PerPreT 
[14], PIE�[76, 119], Uysal et. al. [130]

-

Trace-
based

Clement&Quinn [26], Dagger [46, 47], 
Eom&Hollingsworth [36, 37], Intrepid [25], 
Mendes [92], SPAN [123]

AIMS/MK [11, 138, 139],
Demaine [34], PARAVER/DIMEMAS 
[44, 70, 71, 109], PS [5, 6], 
SIEVE [115], SPEEDY [89, 97], ����
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This simulation technique is based on executing the application (for real) on the
machine which carries out the simulation. At each instrumentation point (nor-
mally at calls to message-passing libraries and/or load/store instructions) the
control is passed to the simulator, which simulates the action and passes back the
control. The application must be synchronized frequently in order to prevent one
thread/process executing ahead of the others too much. As a minimum, synchro-
nization is carried out when the control is transferred to the simulator. A static
analysis of the application (assembler/machine instruction level) is used to deter-
mine the number of clock cycles required for executing each basic block on the
target host. Counters are inserted into the code to count the number of times each
basic block has been executed since the last control transfer. Variants (e.g. PRO-
TEUS, Tango, WWT-II) are to be found where a clock is updated at each basic
block with the time for the execution of the basic block. DirectRSIM differs by
tracing the execution path of the program during direct-execution; when the sim-
ulator is called it quickly interprets the path (instruction-by-instruction) and esti-
mates the execution time.

"����
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This technique simulates the program instruction-by-instruction and is also
known as “execution-driven simulation” or “program-driven simulation”. It is
possible to model the whole hardware in detail with pipeline, memory, caches,
buses etc. This technique has been used for a long time in commercial simulators
developed by hardware manufacturers. Simulation of forthcoming hardware
enables suitable software to be developed before the hardware even exists. Since
each instruction is interpreted, focus is on the slow-down factor, ranging from
25-75 (SimICS) up to 500-50,000 (SimOS/Rivet) as compared to running the
program directly on the simulation host. PEPSIM interprets pseudo code. The
number of (real) instructions for implementing a pseudo instruction is used to
estimate the execution time of the program.

"���"
+
�
�	
 ���#���
This is a compiler-based approach. By letting the compiler analyze the code,
performance is predicted. This enables compilers to determine how to distribute
arrays for parallel calculations (PEPSY, Clement&Quinn). PEPSY is targeted
for one machine only; the execution time for an instruction is known. The other
tools need measurements on the target machine. PerFor measures the execution
15Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors
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time for one iteration of each loop on the target machine. PACE translates the

program into a CHIP3S-model and executes sub-components of the program on
the target machine to determine the execution times. Clement&Quinn probe pro-
grams (called training sets) and execute these on the target machine to determine
certain metrics. EDPEPPS uses the source code (C with PVM) in order to build a
queuing network graph. The execution time for a computational block is esti-
mated by counting the number of different kinds of high-level language instruc-

tions (e.g. float addition). P3T+ is coupled with the VFC (Vienna Fortran
Compiling System). The sequential program (which is the input for VFC) is,
however, monitored (by SCALEA [129]) and executed in order to determine
branch probabilities, etc.

"���$
��������
These tools are normally targeted to estimate the performance before any code

exists. CHIP3S uses a programming language to express the model; the sole use
of the language is performance prediction. PAMLEA uses a language built of
binary semaphores (modeling shared resources), delays (modeling computa-
tion), and which parts of the program to be executed in parallel. The model of
the target machine is expressed in the language. The two models are compiled
and optimized into a single model. PIE uses predefined communication models
that can be combined to capture the basic structure of the program. PIE uses
terms of computation and communication intensiveness in the program. Uysal
et. al. models the application by using application emulators. An emulator can be
seen as a skeleton application acting from the point of view of communication
like the real application. PerPreT uses task graphs to represent SPMD message-
passing programs. Each communication- and computation step is defined by a
formula in which � (the problem size) and � (the number of processors) act as
parameters.

"���.
���	�-)����
This technique is based on executing a program on a single- or multiprocessor,
which produces a trace file representing the behavior of the program. The trace
file is the basis for the simulation, normally with respect to the interactions (syn-
chronizations/messages) and the execution times between the interactions.
Clement&Quinn produce formulas which, given � (the number of processors)
and/or ��(the problem size), estimate the execution time for data-parallel mes-
sage-passing programs. The formulas are based on the symbolic expressions in
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loops, etc. Thus, an analysis of the source code is needed in conjunction with the
trace. Both Intrepid and DAGGER are based on the message-driven language
CHARM. SPAN determines the algorithmic speedup of a program. SPAN
assumes independent processes synchronize via a barrier. Mendes considers pre-
diction between machines of equal size only. The trace file is changed due to dif-
ferences in processing speed and communication speed.
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0�
�
�������'�
���
 ��+1�2 is targeted for loop-parallelism, normally operating on arrays. AIMS
contains a source-code to source-code translator for inserting probes. The user
may interact, selecting what is to be monitored and where, or simply use the
default. The (monitored) application is executed on the target machine and a
trace-file is obtained. The trace file can be inspected by replaying the file, which
shows both animated views and automatically scrolling time-line views. Statis-
tics are also shown. Performance prediction is done for both � (the number of
processors) and � (the problem size). Two different approaches to predictions
are used. The first is the compiler-assisted complexity analysis that expresses the
scalability as a function of � and �. Static information from the compiler,
dynamic information from the trace file for determining time constants, and an
algorithmic model over the network are needed. The compiler analysis only con-
siders loops with a constant stride of the loop-variable. The second approach is
simulation by defining a model. The model is created by monitoring interesting/
important parts of the source code. The selection of constructs to be monitored is
to a large extent determined by the user, and the accuracy of the predictions
relies on the user’s skill in determining the proper monitoring. In [11], the mean
error is about 20%, and up to 30% in some cases. None of the approaches han-
dles data-dependent complexities and conditions for communications. AIMS
assumes well-balanced application loads and a contention-free network.
,������ uses a library to trace the start and end of the program, and the sends

and receives in point-to-point communication. No collective communication is
handled. The trace file contains the sequence of the message-passing operation
as well as the computation time between the operations. A simulator schedules
the events and approximates the time that each event would have taken on an
unloaded parallel system. The communication time is not contained in the trace
file; the simulator predicts the time need for a message to travel form one proces-
sor to another. The communication model uses a startup time and the time rela-
tive to the size of the message. The timing is derived by repeatedly sending
messages of different sizes in a ping-pong fashion between two processors on
17Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors
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the target machine, and the measuring the time. The down side of this method is
that this requires access to the target host; on the other hand, changing the target
host is easy. The simulator generates a log file viewable by the Upshot tool. Val-
idation is performed on a cluster with four directly connected IBM RS/6000s
and using two sort algorithms (bubble sort and quick-merge sort) and two matrix
operations called “fan-in” and “fan-out”. The validation shows an error of 9.9%.
� � �!� uses an instrumented MPI library and requires no change to the

application code. The simulator (DIMEMAS) simulates any number of
machines with one or several processors. DIMEMAS considers parameters such
as scheduling policies when several processes are on the same processor
(Round-Robin and First-In-First-Out), data transfer time, communication start-
up time, the number of communication links between the processors, and pro-
cessor relative speed. The user can annotate sequential blocks of code that can be
executed as parallel threads. It is the users responsibility to make dependency
checks. The simulator uses the annotations for SMP predictions. The accuracy of
the predictions is approximately 10%, but in [71] it is more than 20%. The visu-
alization is basically a Gantt diagram based on the processor nodes. Communi-
cation is indicated between the processors as lines.
�+ uses a hierarchy of models for simulation. The models ranges from the

(physical) network, through network interfaces, TCP/IP protocol, PVM dae-
mons, up to the PVM program. PVM programs are modeled on CPU bursts with
communication in between. There are three ways to model a program. First, a
PVM program can be instrumented and monitored on a uni- or multiprocessor
which results in a trace file. The two other methods are modeling and direct-exe-
cution. PS handles heterogeneous clusters by providing the simulator with the
relative speed of the nodes. The PS predictions have an error ranging up to
27.1% as reported in [6], and claimed to be at most 8% in [5]. Visualization is
done using ParaGraph.
+�!�! is a framework for performing predictions and visualizations. The

data collection has not been taken into consideration. The tool uses scripts to
define the syntax of the data collected; any file format can be used. The data is
stored in a relational database and is represented as a spreadsheet for the user.
Macros are used to implement the simulator. The macros manipulate the data in
the spreadsheet in order to re-schedule the execution. SIEVE is claimed to pre-
dict both � and �. The visualization in SIEVE is also configurable using macros.
SIEVE can be seen as a framework for building a specific simulator with visual-
ization ability. A demonstration is given with programs written in pC++. The
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performance prediction in the examples is based on Amdahl’s law. There is no
validation of the predications.
+����# is a part of the TAU tool kit. Speedy includes the ExtraP for the actual

prediction. TAU traces an execution of a program with � threads on a uni-proces-
sor execution and using a non-preemptive version of the pC++ thread library.
The (simulated) target machine has � processors, i.e., one processor for each
thread. The recorded events are sorted on a per thread basis; each thread is then
simulated from start to end. The processor model handles a speed-ratio between
different processors. The network model includes start-up time, bandwidth, mes-
sage types and sizes, network topology, and network contention. The barrier
model is based on a linear master-slave algorithm, where thread 0 is the master
and the other slaves. The validation performed using a simple matrix multiplica-
tion application shows an error larger than 50% [97].
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From Table 2 it is clear that most simulation tools support message-passing
(86%), and only 39% handle shared-memory. Of the tools that support shared-
memory, 64% also support message-passing. This is almost identical to the situ-
ation with visualization tools (see Section 3.1). VPPB is the only tool in the
trace-based category that supports shared memory programming using threads.
Two tools included in Table 2 which handle shared memory are SIEVE and
Speedy. Both tools handle the pC++ language [75, 88]. The pC++ language
assumes one thread/process per processor and that global barriers are the only
synchronization mechanism. In pC++, the shared memory is owned by a single
processor; the other processors can read the values by explicit function calls.
Thus, the programming model in pC++ differs from Solaris or POSIX threads.
SPAN also handles shared-memory; however, the language is more simplified
than pC++ since it only allows independent processes in the parallel sections.
VPPB is as accurate as Demaine and Eom&Hollingsworth, and significantly bet-
ter than the other trace-based tools (by a factor of 2 to 5).

Table 2 shows that most tools are either trace-based or direct-execution. One
reason for the number of trace-based tools could be the impact from pure visual-
ization tools (Section 3.1). Many of these pure visualization tools collect a trace,
and it seems relatively straight forward to use the same technique to “resched-
ule” the trace and obtain a prediction for another system. AIMS/MK,
PARAVER/DIMEMAS and Speedy are typical examples of this, since AIMS,
PARAVER and Tau (includes Speedy) can be used without the corresponding
simulator for visualization of a multiprocessor execution. Demaine and PS use
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Upshot and ParaGraph, respectively, for the visualization of the predicted execu-
tion. Thus, even for these tools there is a strong connection with the pure visual-
ization tools.

As with the pure visualization tools the size of the trace file may be a matter
for concern, e.g. Pablo, that collects a trace-file, has been superseded by svPablo,
which collects statistics only. Techniques using statistics are difficult to use for
simulation purposes. However, 38% of all pure visualization tools are capable of
on-the-fly visualization. This is analogous to the direct-execution approach. The
obvious advantage is that no trace is needed. As opposed to the trace-based
approach, where several experiments can be performed on the same trace file,
direct-execution must re-execute the program for each new experiment.

The interpretation category can be seen as an extreme version of the direct-
execution approach where everything is simulated. The obvious advantage is
that any system can be simulated. These tools are useful for processor manufac-
tures when it comes to reducing the cost of experimental processors on silicon.
These simulators can also be shipped to program developers before the silicon
chip exists. Thus, software can be available from the very first day. The draw-
back is the simulation speed: a slowdown of thousands is not unusual. This
makes the tools less practical as one would wish, with the result that only a few
tools have proved successful. 

Modeling is another approach. Since a model can generally can be used for
performance prediction only, users are perhaps reluctant to invest time in build-
ing the model. The last approach, static analysis, is complicated and limited in
its scope due to the fact information for loop-bounds, etc., is often lacking in the
code. 
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Thread (or rather task) allocation is frequently considered in the real-time area.
The main goal in real-time is to meet all (explicit) deadlines. The GAST tool
[60] is somewhat similar to the VPPB discussed in papers IV and V. GAST orig-
inates from the real-time area. With GAST it is possible to automate scheduling
by defining different scheduling algorithms. The GAST tool needs a specifica-
tion of all tasks, their worst-case execution time, period, deadline and/or depen-
dencies. This specification must be done by hand. High performance computing
does not necessarily have either periods or deadlines. A task may only be a frac-
tion of a thread, since it cannot synchronize with another task inside the task
itself. Each thread must then be split into several tasks (by hand).
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There are many heuristic allocation algorithms, e.g. simulated annealing [10,
64], tabu search [107], genetic algorithms [10]. I show in paper V that at some
point further iterations of the heuristic algorithm are no longer worthwhile. Sim-
ulated annealing, for example, occasionally selects a worse allocation (the less
good the allocation, the smaller the chance of selecting it) in order to avoid local
maxima. The probability for selecting a worse allocation decreases over time as
well. Thus, simulated annealing will jump frequently in the beginning and then
less and less frequently as time goes on. This is in contrast to paper V, where I
propose that one should select one starting point, use it for iterations as long as it
is worthwhile, and only then select a new starting point, and so on.
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Today, profiling tools cannot handle multithreaded programs on a multiproces-
sor in a satisfactory way. The problem is that the profilers assume that all exe-
cuted code segments contribute to the total execution time. Table 3 illustrates
some profilers for the Solaris operating system.

All tools in Table 3 assume that all executed code contributes to the total exe-
cution time as in sequential programs. Quantify and tha are able to give a profile
per thread. This helps the developer to some extent. However, as shown in
paper VI, the critical path may include parts of several threads.

Previous critical path work handles one process/thread per processor [52, 94,
140]. In [140], an attempt to solve the issue when having fewer processors than
threads is provided in a form of as a sketch. Unfortunately, the suggested solu-
tion did not work in all cases, as shown in paper VI.
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Name/
Reference

Handle 
multithreading

Handle 
multiprocessors

Assumes that all executed code 
contributes to the total execution time

prof [126] Yes No Yes

gprof [125] Yes No Yes

tha [124] Yes Yes Yes

Quantify [111] Yes No Yes
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The basic approach in paper VII is to obtain a performance bound, which we
know is achievable. This approach has been used for some time in real time sys-
tems, where it is well known that a set of  tasks is schedulable if the sum of the

processor utilization is less than  [19]. Similar results also exist for
real-time process sets which operate under what is called an “age constraint”
[81, 82].

Proof techniques similar to those in paper VII have been used for performance
bounds in a number of application areas besides multiprocessor scheduling, e.g.
cache memory systems [78], parallel accesses to multiprocessor memory sys-
tems [83], and message scheduling on a number of communication links [84].
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The Direct Simulation Model in VPPB was used as it intuitively mimics the
primitives in Solaris. For semaphores there is no support for the thread to deter-
mine which other thread that woke it up. Thus, selecting the Direct Simulation
Model in VPPB can be seen as a way of mimicing such behavior.

The Client-Server Simulation Model is similar to the one used in [46]. The
language [47] supported by the tool is message-driven. This means that a pro-
cess is triggered by incoming messages. Thus, each process acts as a server
receiving messages, processing them, perhaps by sending new messages to other
processes taking the role of a client, and also possibly sending back an answer.
The Client-Server Simulation Model seems to have been chosen in order to
mimic the language.

Strict Sequence Simulation Model is used in two MPI tools [34, 44]. The MPI
receive primitives have a parameter that shows the sender of the message. This
makes the Strict Sequence Simulation Model the most straightforward choice. In
languages with a simple fork-join structure, the Strict Sequence Model works
perfectly [89, 97, 115, 123]. The work described in [36, 37] seems to use the
Strict Sequence Simulation Model in the models that model dependencies,
although these are not explicitly expressed. Further, it could be noted that the
different models in [36, 37] do not address the same issues as in paper VIII,
since the concern is simulation speed vs. accuracy, in terms of the granularity of
events, not the model as such. Mendes [92] shows that the Strict Sequence Sim-
ulation Model only handles deterministic programs (Mendes call these “sta-
ble	). Mendes is able to identify an unstable message-passing program and
conclude that the tool cannot handle unstable programs. 
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Tools using direct-execution (Section 3.2.1) or interpretation (Section 3.2.2)
techniques handle the non-deterministic issues, but at the expense of, for exam-
ple, simulation speed. To summarize, the tools mentioned seem to use a simula-
tion model that intuitively suits the environment.
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In this thesis I have presented techniques for performance prediction and
improvement of parallel programs in multiprocessors. I have demonstrated how
to simulate a multiprocessor execution of a parallel program based on a moni-
tored execution of the program on a uni-processor. The (simulated) multiproces-
sor execution is graphically visualized. As my thesis shows, the prediction
facility can be used for heuristic algorithms to find an allocation of threads to
processors. Further, I have presented an algorithm that identifies the critical path
of the parallel program on a multiprocessor. I have also shown how to calculate a
tight bound on the minimal completion time for the optimal allocation of threads
to processors. Finally, I have discussed the implications of one’s choice of simu-
lation model. The techniques described have been manifested in a prototype
tool.

Although a number of issues have been dealt with in this thesis, there are addi-
tional aspects which deserve further investigation. One future extension of the
techniques described here could be to handle processes and the communication
between them. Software systems that include several different processes (with
different source code as opposed to the SPMD, Single Program Multiple Data,
approach often used by MPI and PVM) deserve consideration. The techniques
should still be operational on a uni-processor workstation but be capable of sim-
ulating several computers connected via a network.

Another future direction for research could be to take a look at Java; the issues
here are not only technical but also concern how to present results to the pro-
grammer in a convenient way. Java uses monitors and critical regions as lan-
guage primitives for synchronization. On the Solaris Java Virtual Machine these
primitives are mapped to Solaris mutexes, semaphores, etc. Thus, the actual
primitives that are executed on the host are not the same as those the program-
mer wrote. How should the Solaris primitives be presented so the Java program-
mer (who perhaps has no knowledge of Solaris primitives) can improve the
performance of the Java program? This is an interesting and important question.

An extension of the techniques might take the form of using the hardware per-
formance counters available in modern processors. A number of APIs exist
today (e.g. PAPI [16]), and therefore, tracing is perhaps not the primary issue
here. However, integration of the statistical information that the hardware
counters represent in the (current) event based simulation technique is a more
challenging issue.
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VPPB - A Visualization and Performance Prediction Tool
for Multithreaded Solaris Programs

Magnus Broberg, Lars Lundberg, and Håkan Grahn
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University of Karlskrona/Ronneby

Soft Center, S-372 25 Ronneby, Sweden
{Magnus.Broberg, Lars.Lundberg, Hakan.Grahn}@ide.hk-r.se

Abstract
Efficient performance tuning of parallel programs is

often hard. In this paper we describe an approach that
uses a uni-processor execution of a multithreaded pro-
gram as reference to simulate a multiprocessor execution.
The speed-up is predicted, and the program behaviour is
visualized as a graph, which can be used in the perfor-
mance tuning process.

The simulator considers scheduling as well as hard-
ware parameters, e.g., the thread priority, no. of LWPs,
and no. of CPUs. The visualization part shows the simu-
lated execution in two graphs: one showing the threads’
behaviour over time and the other the amount of parallel-
ism over time. In the first graph is it possible to relate an
event in the graph to the code line causing the event. Vali-
dation using a Sun multiprocessor with eight processors
and five scientific parallel applications shows that the
speed-up predictions are within +/-6% of a real execution.

1. Introduction

Parallel processing is an important way to increase the
performance. It is often easier to develop parallel applica-
tions for shared memory multiprocessors than for message
passing systems. Shared memory multiprocessors are
therefore becoming increasingly important.

The thread concept in the Solaris operating system [13]
makes it possible to write multithreaded programs which
can be executed in parallel. Having multiple threads does,
however, not guarantee that a program will run faster on a
shared memory multiprocessor. One major performance
problem is that thread synchronizations may create serial-
ization bottlenecks which are often hard to detect.

Removing serialization bottlenecks is referred to as
performance tuning. Different tools for visualizing the
behaviour of, and thus the bottlenecks in, parallel pro-
grams have been developed [1, 2, 3, 5, 6, 9, 10, 11, 12, 14,
16, 18]. The tuning process may benefit significantly from
using such tools.

Some performance visualization tools show the behav-
iour of one particular monitored multiprocessor execution
of the parallel program [1, 2, 3, 5, 6, 9, 10]. If we monitor
the execution on a multiprocessor with four processors

such tools make it possible to detect bottlenecks which are
present when using four processors. The problem with this
approach is the lack of support for detecting bottlenecks
which appear when using another number of processors.

There are a number of tools which make it possible to
visualize the (predicted) behaviour of a parallel program
using any number of processors. However, these tools are
either developed for message passing systems [12] or for
non-standard programming environments [11, 14, 16, 18].

In this paper we present a performance prediction and
visualization tool called VPPB (Visualization of Parallel
Program Behaviour). Based on a monitored uni-processor
execution, the VPPB system shows the (predicted) behav-
iour of a multithreaded Solaris program using any number
of processors. To the best of our knowledge, VPPB is the
only available tool which supports this kind of flexible
performance tuning of parallel programs developed for
shared memory multiprocessors using a widely spread
standardized parallel programming environment (Solaris).

Validation using five scientific multithreaded programs
from the SPLASH-2 suite [19] and a multiprocessor with
eight processors showed that VPPB was able to predict the
behaviour very accurately. The maximum difference
between the real speed-up and the speed-up predicted by
VPPB was 6%, and for most cases the difference was less
than or equal to 1%. As discussed above, the predictions
are based on recordings from a monitored uni-processor
execution. The time overhead for doing these recordings
was less than 3% for all five programs.

The paper is structured in the following way. Section 2
gives a short overview. In section 3 the implementation is
described. Section 4 describes the validation. A small case
study is shown in section 5. Section 6 discusses the limita-
tions and applicability. Section 7 concludes the paper.

2. Overview of VPPB

The VPPB consists of three major parts, the Recorder,
the Simulator, and the Visualizer. The workflow when
using the VPPB system is shown in figure 1. The devel-
oper writes the multithreaded program, (a) in figure 1,
compiles it, and an executable binary file is obtained. After
that, the program is executed on a uni-processor. When
39Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors
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starting the monitored execution (b), the Recorder is auto-
matically placed between the program and the standard
thread library. Every time the program uses the routines in
the thread library, the call passes through the Recorder (c)
which records information about the call, i.e., the identity
of the calling thread, the name of the called routine, the
time the call was made, and other parameters. The
Recorder then calls the original routine in the thread
library. When the execution of the program finishes all the
collected information is stored in a file, the recorded infor-
mation (d). The recording is done without recompilation
or relinking of the application.

The Simulator simulates a multiprocessor execution.
The input for the simulator is the recorded information, (d)
in figure 1, the hardware configuration (e), and scheduling
policies (f). The output from the simulator is information
describing the predicted execution (g).

Using the Visualizer the predicted parallel execution of
the program can be inspected (h). The Visualizer uses the
simulated execution (g) as input. When visualizing a simu-
lation, it is possible for the developer to use the mouse to
click on a certain interesting event, get the source code dis-
played, and the line making the call that generated the
event highlighted. With these facilities the developer may
detect problems in the program and can modify the source
code (a). Then the developer can re-run the execution to
inspect the performance change. The VPPB system is
designed for C or C++ programs that uses the built-in
thread package in the Solaris 2.X operating system.

3. Tool Description and Implementation

3.1. The Recorder
In order to trace the behaviour of the program when

executed on a uni-processor, the Recorder inserts probes
when the program starts. The probes are inserted at spe-
cific events, i.e., before and after calls to the thread library,
and they do not affect the behaviour or function of the pro-
gram. For each event, the probes record the following
information: when an event has occurred; the type of

No of Processors
Communication delays

No of LWPs
Thread priorities
Binding of threadsC or C++ source code

Compiler

Binary file

Execution

Solaris 2.X
Thread Library

Calls

Calls Returns
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Figure 1: Schematic flowchart of the VPPB system.
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event, e.g., locking of a mutex; which object the event con-
cerns, e.g., the identity of the mutex being used; the iden-
tity of the thread generating the event; and the location of
the event in the source code. The data collected by the
Recorder is kept in memory until the program terminates,
then the recorded data is written to a log file. By using this
technique, the intrusion is kept to a minimum.

We will use a small multithreaded program, found in
the upper left corner of figure 2, as an example when dem-
onstrating the functionality of the VPPB. The optimal par-
allel execution of this program can be found in the lower
left corner of figure 2; a solid line denotes execution, no
line that the thread is blocked, and an arrow represents an
event. The Recorder executes the threads sequentially on a
uni-processor. The output of the Recorder is the list of
events found on the right side of figure 2. The sequentially
ordered list is used as the behaviour profile when simulat-
ing a multiprocessor execution of the program.

Our current implementation of the Recorder is based on
the ideas described in [8]. We insert a new library between
the program and the dynamically linked library
libthread.so.1, which implements the threads in
Solaris 2.X. This is achieved by using the built-in facilities
of Solaris with run-time linking and shared objects. The
insertion is handled at program start-up by the run-time
linker via an environment variable called LD_PRELOAD.
The probes in the inserted library are exemplified in figure
3, where we show how thr_exit is implemented.

The probe does four things. First it looks up the address
of the real implementation of thr_exit and stores it in a
variable. This is done only the first time the probe is
called. The next thing is to make a time stamp and store
the data about the event. The next part of the code stores
which source line the thread primitive was called from.
Finally, the probe calls the original function in the Solaris
thread library.

The time recorded for each event is wall clock time
with a resolution of 1 microsecond. We are can not moni-

void* thread(void *) {
work();

}
int main() {
thread_t thr_a, thr_b;
thr_create(0, 0, thread, 0, 0, &thr_a);
thr_create(0, 0, thread, 0, 0, &thr_b);
thr_join(thr_a, 0, 0);
thr_join(thr_b, 0, 0);

}

Figure 2: An example program and the output from the
Recorder. The operating system assigns the following
thread identity numbers to the threads: main = 1, thr_a
= 4, and thr_b = 5. We will use T1, T4, and T5, respec-
tively, when we refer to the different threads.

Time

T5 (thr_b)

T4 (thr_a)

T1 (main)

time thread action duration
0.00 T1 start_collect
0.0 T1 Running 0.03
0.03 T1 thr_create thr_a 0.04
0.0 T1 Running 0.03
0.10 T1 thr_create thr_b 0.02
0.0 T1 Running 0.05
0.17 T1 thr_join thr_a 0.05
0.0 T4 Running 0.10
0.32 T4 thr_exit
0.0 T5 Running 0.11
0.43 T5 thr_exit
0.0 T1 Running 0.10
0.53 T1 ok thr_join thr_a 0.05
0.0 T1 Running 0.01
0.59 T1 thr_join thr_b 0.05
0.0 T1 Running 0.10
0.74 T1 ok thr_join thr_b 0.05
0.0 T1 Running 0.01
0.80 T1 thr_exit

0.11

0.10

0.030.03
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tor the kernel switches between LWPs (lightweight pro-
cesses) and are forced to do the monitoring on one single
LWP. A more thorough discussion is found in Section 6.

We have divided the tracing of the source code location
of the call to a probe into two steps. The first step is to
record where the calling code is placed in memory. This is
done by saving the return address which is the place where
execution will continue after the function has returned. On
the SPARC processor this return address is kept in a CPU
register called i7. The second step translates the recorded
memory addresses into specific source code lines. This is
done by using a source code debugger and a small parser,
which converts the output from the debugger into a format
that is readable for the Simulator and Visualizer.

In every thr_create call, a function pointer is sup-
plied. This pointer contains the start address of a new
thread. The function pointer is recorded and the debugger
is used to translate the address to the function name in the
source code.

3.2. The Simulator
The Simulator emulates the scheduling in Solaris 2.5

[13]. In Solaris, threads are used at two levels [17]. The
application programmers use user-level threads for
expressing parallel execution within a process. Kernel
threads are used within the operating system kernel. The
kernel knows nothing about user-level threads.

Between the user-level and kernel threads are LWPs.
Each Solaris process contains at least one LWP. In most
cases, user-level threads are multiplexed on the LWPs of
the process, such threads are referred to as unbound
threads. It is, however, possible to bind a thread to an
LWP. Compared to unbound threads, it is much more
expensive to create and synchronize threads which are
bound to an LWP [17].

There is a kernel thread for each LWP. However, some
kernel threads have no associated LWP, e.g., a thread to
service disk requests. Kernel threads are the only objects
scheduled by the operating system, and they can either be
multiplexed on the processors in the system, or bound to a
specific processor. To some extent, the user can control
thread scheduling, e.g. by binding threads to LWPs and

void thr_exit(void *status) {
static void (* fptr)() = 0;
if ( fptr == 0 ) {

fptr = (void (*)())dlsym(RTLD_NEXT, "thr_exit");
if ( fptr == NULL ) {

(void) printf("dlopen: %s\n", dlerror());
return;

}
}
mthr_collect(THR_EXIT, thr_self(), BEFORE, -1);
asm("set returnpointer, %l0");
asm("st %i7, [%l0]");
mthr_recallAddress();
(*fptr)(status);
return;

}

Figure 3: The implementation of the thr_exit probe.

LWPs to processors. It is also possible to indicate how
many LWPs a certain process should have. The (user-
level) threads can be created dynamically at run-time.

In the Simulator, threads may be manipulated in the fol-
lowing ways: Each thread can individually be unbound;
bound to a LWP; or bound to a certain CPU. A thread that
is bound to a CPU is automatically bound to an LWP. Each
thread can individually be assigned a certain priority level.
This will then override all manipulation of that thread’s
priority within the log file, e.g., the thr_setprio event
for that thread will be ignored.

Binding a thread to a CPU can increase the speed of the
program [7]. When a thread is moved to a different CPU,
parts of the old cache contents has to be moved to the
cache on the new processor. This may result in a perfor-
mance-loss. The Simulator does not simulate the caches,
but it is possible to use this facility to determine which
thread to bind to which CPU in order to get the best result
from a load balancing point of view.

Not only user-level threads has a priority level, but also
the LWPs. The priority of an LWP is set by the operating
system and is adjusted during run-time depending on, e.g.,
whether the LWP is interactive or only runs in batch mode.
The simulator emulates the priority adjustment as it is han-
dled in Solaris. The length of a time slice for an LWP is
related to the priority level, thus we also adjust the time
slice length during our simulation.

The following parameters can also be adjusted: the
communication delay between the CPUs; the number of
processors; and the number of LWPs. In this case the
thr_setconcurrency in the program has no effect.
The communication delay affects how fast an event on one
CPU is propagated to another CPU.

The concept of mutex_trylock and similar try-
operations are handled in the following way: If the thread
gained access to the lock in the log file, the simulation will
do a mutex_lock, otherwise no action is taken by the
simulator. The cond_timedwait is handled as a delay
if the operation timed out in the log file and as an ordinary
cond_wait operation otherwise. Consequently, the
information in the log file corresponds to a deterministic
execution of the program with some minor exceptions,
which are explained in Section 6.

Creating a bound thread is simulated to take 6.7 times
longer than an unbound thread [17]. A synchronization on
a semaphore takes 5.9 times longer [17] with bound
threads than unbound. This value is used in the simulator
for mutexes, conditions, and read/write locks, as well.

When running the Simulator, all events in the log file
from the Recorder are sorted into a set of lists, one list for
each thread as shown in figure 4.

Our simulation technique is an ordinary eventdriven
approach. When the simulation starts, all threads are
41Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors
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marked as blocked except for the starting (main) thread,
i.e., T1. In order to run the threads, the number of LWPs
and CPUs specified by the user are simulated. Each (simu-
lated) CPU picks a (simulated) LWP, which in turn picks a
(simulated) thread. Each CPU executes the minimum time
required for one of the threads to reach an event from the
thread’s list. The event is simulated and, if appropriate,
some blocking or scheduling of threads or LWPs are done.

3.3. The Visualizer
The Visualizer offers two graphs: the parallelism vs.

time graph, or parallelism graph for short; and the execu-
tion flow vs. time graph, or execution flow graph for short.
The parallelism graph is the upper graph in figure 5. The
higher the graph reaches the more parallelism exists in the
application. The number of running threads are indicated
with green. On top of the graph, all the threads that are
runnable but not running are presented in red. It is easy
see where the performance bottlenecks are in time as well
as the potential parallelism. This kind of graph har previ-
ously been presented as two separete graphs in [15].

The execution flow graph (the lower graph in figure 5)
contains more detailed information than the parallelism
graph. In the execution flow graph the time is represented
on the X-axis and the threads are represented on the Y-
axis. A horizontal line indicates that the thread of that Y-
position is executing, the lack of a line indicates that the
thread can not execute, a grey line that the thread is ready
to run but does not have any LWP or CPU to run on. Dif-
ferent events are displayed with different symbols and
colours, e.g., all semaphores are shown in red, and the
primitives sema_post and sema_wait are represented
as an upward and a downward facing arrow, respectively.

The zoom utility can increase (or decrease) the magnifi-
cation to an arbitrary magnification degree in steps of a
factor of 1.5 or 3. The zoom keeps the left-most time fixed

Recorder output

Figure 4: The Simulator’s sorting of the log file from
the Recorder. We use the same program as in figure 2.

time thread action duration
0.00 T1 start_collect
0.0 T1 Running 0.03
0.03 T1 thr_create thr_a0.04
0.0 T1 Running 0.03
0.10 T1 thr_create thr_b0.02
0.0 T1 Running 0.05
0.17 T1 thr_join thr_a0.05
0.0 T4 Running 0.10
0.32 T4 thr_exit
0.0 T5 Running 0.11
0.43 T5 thr_exit
0.0 T1 Running 0.10
0.53 T1 ok thr_join thr_a0.05
0.0 T1 Running 0.01
0.59 T1 thr_join thr_b0.05
0.0 T1 Running 0.10
0.74 T1 ok thr_join thr_b0.05
0.0 T1 Running 0.01
0.80 T1 thr_exit

time thread action duration
0.00 T1 start_collect
0.0 T1 Running 0.03
0.03 T1 thr_create thr_a0.04
0.0 T1 Running 0.03
0.10 T1 thr_create thr_b0.02
0.0 T1 Running 0.05
0.17 T1 thr_join thr_a0.05
0.0 T1 Running 0.10
0.53 T1 ok thr_join thr_a0.05
0.0 T1 Running 0.01
0.59 T1 thr_join thr_b0.05
0.0 T1 Running 0.10
0.74 T1 ok thr_join thr_b0.05
0.0 T1 Running 0.01
0.80 T1 thr_exit

time thread action duration
0.0 T4 Running 0.10
0.32 T4 thr_exit

time thread action duration
0.0 T5 Running 0.11
0.43 T5 thr_exit

T1’s event list

T4’s event list

T5’s event list

Time

T5 (thr_b)

T4 (thr_a)

T1 (main)

0.11
0.10

0.030.03

in the execution flow graph. The user can mark a time
interval in the parallelism graph , and the execution graph
will automatically show only the marked interval.

When there are too many threads to fit in one display,
irrelevant threads can be removed automatically. The com-
pression only shows the threads active during the time
interval shown in the execution flow graph. It is also possi-
ble to control which threads to be shown by hand, allowing
the user to select which threads to show from a list.

By selecting a particular (interesting) event, e.g., when
thread T1 joins with thread T4 (marked in Figure 5 with a
circle), a popup window is shown that gives more informa-
tion. The selected event starts to flash in the execution flow
graph. The popup window gives information about the
thread causing the event: the thread identity; the name of
the function passed to the thr_create function; the
time the thread started and ended; how long time the
thread actually was working; and finally, the total execu-
tion time of the thread (including the time the thread was
blocked or runnable). There are also information about the
event: that the event was a join operation with thread T4;
that the thread was running on CPU 0 in the simulated exe-
cution; when the event started, ended, and how long it took
to perform; and the source code file and source code line.

The user can step to the previous or next event made by
this thread. The execution flow graph is automatically
scrolled in order to place the event in the centre of the win-
dow. The the popup window is updated with the corre-
sponding data about the new event. Further, the user can
find the next or previous similar event. This means that the
next event caused by the same event type or variable, e.g.,
the next operation on the same mutex variable, will be
found. Finally, the tool can start an editor with the source
code file and highlight the line where the event took place.

4. Validation

The validation of the predictions was made using a sub-
set of the SPLASH-2 benchmark suite [19]. The programs
that we use from the SPLASH-2 suite are: Ocean (with
data set 514-by-514 grid), Water-Spatial (512 molecules,
30 time step), FFT (4M points), Radix (16M keys, radix
1024), and LU (contiguous, 768x768 matrix, 16x16
blocks). All programs that we use are from the scientific
and engineering domain.

Figure 5: The execution parallelism and flow graphs
after running a simulation.
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The other benchmarks in the SPLASH-2 suite could not
be used as validations. Barnes, Radiosity, Cholesky, and
FMM could not run in one single LWP as required by the
Recorder. The reason is that these programs all spin on a
variable, and since the thread never yields the CPU, no
other thread could possibly change the value of that vari-
able. The program Raytrace and Volrend could not be used
since all tasks that are executed by a thread are put in a
queue. Whenever a thread is idle it steals a task from
another thread’s queue. The impact of using one LWP
gives the result that only one thread steals all tasks, since it
never yields the CPU.

All executions were made on a Sun Ultra Enterprise
4000 with 8 processors and 512MByte memory. Since the
SPLASH-2 programs are designed to create one thread per
physical processor, one log file were made for each pro-
cessor setup when using the Recorder.

Table 1 shows the measured and predicted speed-up for
the five programs. The real speed-up is the middle value of
five executions of the program. The values between paran-
thesis show the maximum and minimum speedup for the
executions. The error is defined as |((Real speed-up) -
(Predicted speed-up))/(Real speed-up)|.

With one exception the predicted speed-up is very close
to the real speed-up, i.e., the error is less than 1.5%. The
exception is Ocean where the error is 6.2% on eight pro-
cessors. However, the values between brackets show that
the variations in the real speedup is rather large , and the
predicted value is within the interval defined by the execu-
tions.

Table 1: Measured and predicted speed-ups.

Application/
Speed-up

2 processors 4 processors 8 processors

Ocean Real 1.97 (1.97-1.98) 3.87 (3.85-3.89) 6.65 (6.42-7.11)

Pred. 1.98 3.89 7.06

Error 0.5% 0.5% 6.2%

Water-
spatial

Real 1.99 (1.99-2.00) 3.95 (3.94-3.97) 7.67 (7.37-7.76)

Pred. 1.98 3.91 7.56

Error 0.5% 1.0% 1.4%

FFT Real 1.55 (1.54-1.55) 2.14 (2.14-2.15) 2.62 (2.61-2.63)

Pred. 1.55 2.14 2.63

Error 0.0% 0.0% 0.4%

Radix Real 2.00 (1.99-2.00) 3.99 (3.98-3.99) 7.79 (7.77-7.81)

Pred. 1.98 3.95 7.87

Error 1.0% 1.0% 1.0%

LU Real 1.79 (1.78-1.80) 3.15 (3.12-3.15) 4.82 (4.74-4.90)

Pred. 1.79 3.14 4.81

Error 0.0% 0.3% 0.2%

Due to the recordings, the monitored uni-processor exe-
cution takes somewhat longer than an ordinary uni-proces-
sor execution of the program. However, our measurements
showed that the execution time overhead for doing the
recordings was very small. The maximum overhead,
which was obtained for Ocean, was 2.6% of the total exe-
cution time. Another concern was the size of the log files.
The largest log file, obtained for Ocean, was 1.4 MByte.
This file could be handled without any problems. Conse-
quently, neither the execution time overhead, nor the size
of the log files caused any problems for these programs.

Programs with fine granularity generate more synchro-
nization events, and thus larger log files, per time unit than
coarse grained programs. The maximum number of events
per second for our programs was 653 (Ocean). The uni-
processor execution time for the five programs ranged
from 60 seconds to 210 seconds. The size of the log files
could become a problem for very long executions of fine
grained programs.

We have done experiments with log files up to 15
MByte. Unfortunately the time required for obtaining the
predicted speed-up values, and also the graph visualizing
the behaviour of the program, increases for large log files.

5. A Simple Example

We use a producer-consumer problem to demonstrate
how the tool can be used for improving the performance of
an application. There are 150 Producers, each imple-
mented by a thread, which inserts ten items in the buffer
and then exits. There are 75 Consumers, picking one item
each from the buffer. A semaphore is used to represent the
number of items in the buffer, insertion and fetching of
items is controlled by one mutex. The buffer size is large
enough to avoid producer stalling as a result of a full
buffer.

We began with making a log file on a uni-processor
computer. After simulating the log file, we found that the
program ran only 2.2% faster on 8 CPUs. To find out the
reason of the poor performance, we use the Visualizer. A
small part of the simulated execution is found in figure 6.
In the execution flow graph we see that no threads are
actually running in parallel. We also see that all threads are
being blocked by a wait on a mutex, the arrow facing
downwards. By clicking with the mouse on the arrows, we
reach the conclusion that it is the same mutex causing the
blocking for all threads. The mutex is the one that we use
to lock the insertion and fetching.

When we have pinpointed the performance bottleneck
we have to find a solution to our problem. One solution is
to have 100 buffers with their own mutex locks. We keep a
mutex for the whole buffer system to lock the small
amount of time to check which buffer to insert the item in.
We also have different mutexes for inserting and fetching.
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After making a new log of the improved program, we
find that the program runs 7.75 times faster when using the
simulated eight processor machine. A validation gives the
speed-up of 7.90 on a real multiprocessor, thus the error in
the prediction is only 1.9%. A picture of the simulated
execution is found in figure 7. In the parallelism graph we
can see that a larger number of thread are runnable but has
no processor to run on. This is indicated by the high red
part of the graph, and the constant low green part.

6. Discussion

Our approach is based on the assumption that the
behaviour of the multithreaded program is (more or less)
independent of the scheduling policy and the number of
processors used for executing the program. Using the trace
log file in a deterministic way when simulating and visual-
izing the execution may cause some problem. Some of
them will be discussed below.

Conditions variables [17] are hard to simulate, since
their behaviour depends on the value of an ordinary vari-
able, which can not be traced by the Recorder. However,
since it is common to use condition variables when imple-
menting barriers, the simulator is designed to model the
behaviour of a barrier as accurate as possible. The problem
concerns the last thread that arrives at the barrier in the
monitored execution. In the simulation that thread may be
scheduled in a way that makes the thread arrive at the bar-
rier before some other threads do. If the number of threads
released during the recorded execution are less than those
in the log file, the cond_broadcast will block the call-

Figure 6: Parts of the execution of the initial program.

Figure 7: Simulated execution the improved program.

ing thread waiting for the correct number of threads to
arrive at the barrier. Thus, the last thread arriving at the
barrier releases all the waiting threads.

The primitive thr_join [17], waits until another
(specific) thread has exited. It is possible to pass a wild-
card to thr_join, meaning that the thread will wait for
any thread the exit, which may not be the one that exited in
the log file. Finally, the simulator does not consider the
overhead for LWP context switches on a multiprocessor.

The Recorder can only be used when running one sin-
gle LWP since the Recorder can not detect when an LWP’s
time slice is over and another LWP starts to execute. This
makes it impossible to run a program with several threads
where one thread executes in a tight loop during the whole
execution since the loop will be the only one executing.
Also having a thread spinning on a (ordinary, volatile)
variable will cause a livelock for the same reason. Further
reading on thread synchronization and scheduling can be
found in [17]. Finally, our technique does not model I/O,
and is therefore applicable only to CPU-intensive applica-
tions. We are currently working on solving this problem.

In the current implementation VPPB supports Solaris
2.X threads. However, the tool can easily be adjusted to
support, e.g., POSIX threads [17] with only small modifi-
cations of the probes in the Recorder.

We have chosen not to use the recording facilities found
in TNF [4], although the technique is similar to our
Recorder. The main reason is that TNF uses a circular
buffer to store the recorded information and thus informa-
tion may be overwritten if the buffer is too small.

In [16] and [20] the authors stress the following issues:
selective representation; integration between development
time and run-time information; high-level and automated
performance debugger; automated instrumentation of par-
allel programs; low overhead in monitoring program exe-
cution; and graphs and indices to expose performance
bottlenecks. As mentioned throughout this paper all these
requirements are met.

In parallel program development today there exists a
number of tools, most ones with graphical (and even aural)
displays. VPPB offers two different graphs, the execution
flow graph and the parallelism graph. The execution flow
graph is a commonly used graph, e.g., [5, 16]. We expect
the parallelism graph to be very useful for detecting per-
formance bottlenecks in large applications. A huge
amount of graphs may cause more confusion than clarity
of the performance problem as stated in [2]. Some other
tools use statistical graphs [5]. The main problem with sta-
tistical graphs and data is that they often give only average
values which are often useless since it is hard to identify
when and where the program generated the statistics.
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7. Conclusion

In this paper we describe a tool called VPPB, Visual-
ization of Parallel Program Behaviour. The main goals are
to predict the speed-up of a multithreaded application and
to visualize the application’s multiprocessor behaviour for
the developer. The target programs are written in C or C++
and run on the Solaris 2.X operating system, an environ-
ment commonly used in both industry and academia.

Our approach relies on a monitored execution of the
multithreaded application on a uni-processor. During that
execution a log file is created containing all calls that the
application made to the thread library. Then, the multipro-
cessor execution is simulated according to user supplied
scheduling and hardware parameters. The result of the
simulation is visualized graphically. The developer can
then inspect the behaviour of the application as if it had
been run on a multiprocessor without even having one.

The visualization of the execution is based on an execu-
tion flow graph along with some numeric data, a concept
that previously has been shown to be successful [9]. The
execution flow graph can be scrolled and zoomed, both in
fixed steps and according to a specific time interval. A sec-
ond graph shows the number of threads running at the
moment, as well as the number of threads that are runnable
but not running, i.e., the amount of available parallelism.
VPPB gives the developer information enough to pin point
the bottlenecks and correct them.

The tool also has a unique stepping facility, which gives
the user of the tool a possibility to follow all operations on,
e.g., a specific semaphore. Further, the tool supports an
automatic mapping between an event in the execution flow
graph and the source code line causing the event. It also
starts an editor with the correct code line high-lighted.

We have validated the predicted speed-up using five
benchmarks from the SPLASH-2 suite [19] and a multi-
processor with 8 processors. The predictions were found
to be very accurate; for four of the applications the error
was less than 2% as compared to a real multiprocessor
execution. For the fifth application the error in the pre-
dicted speed-up was 6%. The intrusion made by the probes
that collect the event log is very low; the execution time of
the monitored application is prolonged by at most 3%.
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Abstract
Efficient performance tuning of parallel programs is

often hard. We present a performance prediction and visu-
alization tool called VPPB. Based on a monitored uni-pro-
cessor execution, VPPB shows the (predicted) behaviour
of a multithreaded program using any number of proces-
sors and the program behaviour is visualized as a graph.

The first version of VPPB was unable to handle I/O
operations. This version has, by an improved tracing tech-
nique, added the possibility to trace activities at the kernel
level as well. Thus, VPPB is now able to trace various I/O
activities, e.g., manipulation of OS internal buffers, physi-
cal disk I/O, socket I/O, and RPC. VPPB allows flexible
performance tuning of parallel programs developed for
shared memory multiprocessors using a standardized envi-
ronment; C/C++ programs that uses the thread package in
Solaris 2.X.

1. Introduction

The thread concept in the Solaris 2.X operating system
[10] makes it possible to write multithreaded C/C++ pro-
grams which can be executed in parallel. Having multiple
threads does, however, not guarantee that a program will
run faster on a shared memory multiprocessor. One major
performance problem is that thread synchronizations may
create serialization bottlenecks. Such bottlenecks are often
hard to detect [6]. Removing serialization bottlenecks is
referred to as performance tuning. In this context, it is
important with tools that efficiently support the program-
mer in the performance tuning process, e.g., by visualizing
the behaviour of, and thus the bottlenecks in, the parallel
programs [2, 7, 8, 9, 11, 12, 14, 16].

In an earlier paper [2], we presented a performance pre-
diction and visualization tool called VPPB (Visualization
of Parallel Program Behaviour). The target programs are
written in C/C++ and run on the Solaris 2.X operating sys-
tem, an environment commonly used in industry as well as
in academia. Based on a monitored uni-processor execu-
tion, the VPPB system shows the (predicted) behaviour of
a multithreaded Solaris program using any number of pro-
cessors.

The first version of VPPB [2] could only monitor activ-
ities that took place in user space, i.e., only user level
threads could be handled. Whenever a user level thread is
blocked on an I/O operation, not only the user level thread
is blocked, but also the corresponding kernel level thread
(a.k.a. Light Weight Process, LWP) is blocked. The Solaris
operating system then tries to dynamically create a new
LWP to continue to execute some other user level thread.
The first version of the tool could not manage several
LWPs simultaneously and thus no blocking I/O.

The main contribution in this paper is an extension that
overcomes the limitations above by tracing the kernel level
threads as well. By recording all state transitions in the OS
kernel for the LWPs, it is now possible to have several
LWPs running at the same time. The tool can now handle
various I/O activities, including physical disk I/O, socket
communication, and RPC calls.

Validation has been done using ten benchmarks from
the SPLASH-2 suite [15] and a skeleton of an I/O inten-
sive commercial telecommunication application [6]. The
simulated performance predictions were compared to real
executions on a multiprocessor with eight processors. The
maximum error of the predictions for those application are
less than 10% for all applications and less than 4% for
more than half of the applications.

The paper is structured in the following way. Section 2
gives a short overview of VPPB. In Section 3 the tracing
part is described along with a discussion of how we sort
and manage the collected data. The simulation part is
described in Section 4. The validation part is found in Sec-
tion 5 and the related work is found in Section 6. The
paper concludes in Section 7.

2. Overview of VPPB

The VPPB consists of three major parts, the Recorder,
the Simulator, and the Visualizer. The workflow when
using the VPPB system is shown in Figure 1. The devel-
oper writes the multithreaded program (a) in Figure 1.

When starting the monitored execution (b) on a uni-
processor, the Recorder is automatically placed between
the program and the standard thread library. Every time
the program uses the routines in the thread library, the call
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passes through the Recorder (c) which records information
about the call. The Recorder then calls the original routine
in the thread library. Whenever an LWP does a state
change the operating system informs a program called
prex. Prex is a standard program on the Solaris plat-
form used to create logfiles about LWP state changes.
When the execution of the program finishes the two data
files (from Recorder as well as prex) are sorted in time
order and transformed into the file format (d) used in the
first version of this tool. The recording is done without
recompilation or relinking of the application.

The Simulator simulates a multiprocessor execution.
The main input for the simulator is the recorded informa-
tion (d) in Figure 1. The simulator also takes the hardware
configuration (e) and scheduling policies (f) as input. The
output from the simulator is information describing the
predicted execution (g).

Using the Visualizer the predicted parallel execution of
the program can be inspected (h). The Visualizer uses the
simulated execution (g) as input. The simulated execution
is shown as two graphs; one parallelism graph and one
execution flow graph, as shown in Figure 2. It is possible
for the developer to click on an event, get the source code
displayed, and the line making the call that generated the
event highlighted. With these facilities the developer may
detect problems in the program and can modify the source
code (a). Then the developer can re-run the execution to
inspect the performance change.

No of Processors
Communication delays

No of LWPs
Thread priorities
Binding of threads

C/C++
Compiler

Binary file

Execution

User level
Thread Library

Calls

Calls Returns

Returns
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(Instrumented

Thread Library)
 Encapsulating
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Figure 1: A schematic flowchart of the VPPB system.
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source code

Figure 2: The execution flow and parallelism graphs.

3. Monitoring the Program Behaviour

The main contribution in this second version of VPPB
is the ability to trace kernel threads in addition to user
level threads. User level threads are non-preemtive and are
executed on kernel threads. The kernel threads are preem-
tive and scheduled in a time-slice manner. This gave some
implications in the first version of VPPB since only user
level threads were traced and thus only one kernel thread
was allowed. One example is the concept of spinning
locks. Whenever a user level thread enters a spinning lock,
the other threads can not pre-empt the thread. This makes
the program to hang on the spinning lock. Another exam-
ple is I/O. Whenever a user level thread blocks, the corre-
sponding kernel thread is also blocked. The Solaris
operating system will then, in order to continue execution
of the multithreaded program, create new kernel threads
for the other user level threads to execute on.

In Solaris, threads are used at two levels (see Figure 3)
[13]. The application programmers use user-level threads
for expressing parallel execution within a process. Kernel
threads (a.k.a. LWPs) are used within the operating system
kernel. The kernel knows nothing about user-level threads.

The LWPs are scheduled by the kernel in a preemtive
round-robin fashion with timeslices from 20 milliseconds
up to more than 200 milliseconds depending on the age of
the LWP etc. A user level thread can be bound to a specific
LWP or be floating around on the LWPs that are free.

3.1. Tracing user level threads
In order to trace the behaviour of the program when

executed on a uni-processor, the Recorder dynamically
inserts probes when the program starts. The probes are
inserted at specific events, i.e., before and after calls to the
thread library, and they do not affect the behaviour or
function of the program. For each event, the probes record
the following information: when an event has occurred;
the type of event, e.g., locking of a mutex; which object
the event concerns, e.g., the identity of the mutex being
used; the identity of the thread generating the event; and
the location of the event in the source code.

The user level tracing has been extended to capture
some primitives in the libc library. In particular the
open, close, read, write, and fsync primitives. To
allow RPC calls [1] generated by, e.g., rpcgen [1], we
also capture the primitives putmsg, getmsg, and pipe.
One I/O operation will produce two different events in the
log file; one event corresponding the CPU time needed to

Figure 3: The Solaris thread structure.
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execute the operation, and another event, called IO_wait,
that corresponds to the time the thread was blocked.

One single I/O operation may consist of using the CPU
several times with waiting times between. In order to keep
the log file as small as possible all CPU time for one single
I/O operation are concatenated into one. This concatena-
tion is also done with the waiting time as well.

Our current implementation of the Recorder is based on
TNF-probes [5]. The basic idea is to insert a new library
between the program and the dynamically linked thread
library. This is achieved by using the built-in facilities of
Solaris with run-time linking and shared objects. The
insertion is handled at program start-up by the run-time
linker via the program prex. We also trace the source
code location of the call to a probe.

3.2. Tracing kernel level threads
The first version of VPPB were restricted to have only

one single LWP running at any time during the execution
of the multithreaded program. The reason for this is that
we could not trace the context switches of the LWPs in the
kernel. This tracing can be done without any changes since
Solaris 2.5 already have probes inside the kernel that trace
this. The probes are implemented by using TNF-probes
[5]. The super-user can extract the information by the
prex command which gives as output a binary file which
has to be merged with the ordinary user level trace from
the Recorder. The approach that allows several LWPs to
execute also makes it possible to trace programs with spin-
ning locks. However, there is still a problem with poor per-
formance prediction for programs with spinning locks as
we will show in Section 5.1.

3.3. Basic merging and sorting of the two TNF-files
An example is used to illustrate the basic principles of

how the sorting is done. The code is found in Figure 4. The
main thread creates thread tid bound to an LWP. Then
the main thread does some CPU bound work and then
waits for thread tid and exits. The thread tid does some
CPU bound work and exits.

The optimal execution on two processors can be found
in Figure 5(a). Note that we have made some considerable
simplifications in this example discussed at the end of this
section, e.g., all thread primitives take no time to perform.
The main thread starts at time 0 and creates thread tid at
time 10. From time 10 to 25 the threads execute in parallel,
then the main thread wants to join with thread tid.
Thread tid will continue executing until time 30 and then
void *thr(void *in) {
work(20); /* CPU bound work for 20 time units */

}
void main() {
thread_t tid;
thr_create(0, 0, thr, 0, THR_BOUND, &tid);
work(15); /* CPU bound work for 15 time units */
thr_join(tid, 0, 0); }

Figure 4: The source code of the example.

exits. By this time the main thread can resume execution
for the last 10 time units. Since the Recorder works on a
uni-processor, the two threads can not execute in parallel,
thus the execution may look like in Figure 5(b). At time 10
the main thread creates the thread tid, which waits for
the CPU. At time 20 the time slot expires and the main
thread leaves the CPU and the thread tid starts executing.
When the thread tid has finished its execution, the main
thread has 5 time units left until it reaches the join with
thread tid. At time 45 the two threads has joined and the
main thread executes until the end at time 55.

The two log files generated during the execution are
found in Figure 5(c). The user level log file consists of a
start event at time 0 and at the same time in the kernel level
log file the corresponding LWP starts running. The next
event that occurs is the thread create event at time 10.
However, the newly created thread tid does not start to
execute until time 20, as seen in the kernel log file, when
the corresponding LWP starts running. At time 40 the
thread tid has finished, as indicated in the user level log
file as well as in the kernel level log file, since the main
thread continues to execute. At time 45, the threads joins
as indicated in the user level log file, and finally, the main
thread stops executing at time 55.

Now, we take a close look at the merging of the two log
files into one single log file. During the merging we want
to eliminate the concept of LWPs, thus only representing
the behaviour of the user level threads. The resulting log
file is shown in Figure 5(d). At time 0 we have the start
event for the main thread and we see that its LWP is exe-
cuting in the kernel log file in Figure 5(c). The LWP is
running until time 20, i.e, the main thread is running 10
time units until it creates thread tid at time 10. At time
40 the thread tid has finished its execution, and we have
to calculate how many time units it has executed as well as

Figure 5: Merging the user and kernel level log files.

(a)

(b)

Time LWP Thread Event
0 0 0 Start collect
10 0 0 Thread create 1
40 1 1 Thread exit
45 0 0 Thread join 1
55 0 0 Thread exit

Time LWP Thread Event
0 0 0 LWP starts running
20 1 1 LWP starts running
40 0 0 LWP starts running

User level log file:

Kernel level log file:

(c)

Length Thread Event
0 0 Start collect
10 0 Running
0 0 Thread create 1
15 0 Running
20 1 Running
0 1 Thread exit
0 0 Thread join 1
10 0 Running
0 0 Thread exit

Merged log file:

Thread tid (1)
Main thread (0)

0

0

50

50 Time

Time

(d)

Time slot expires

Thread tid (1)
Main thread (0)

Thread executes

Thread executes work(15)

Thread executes work(20)
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the time the main thread executed. The LWP switch
occurred at time 20, thus the main thread must have been
running for 10 time units (from time 10 to 20) and the
thread tid has been running for 20 time units (from time
20 to 40). The next event is at time 45. Since the main
thread’s LWP started executing at time 40, the main thread
must been running for five time units before the join, and
in order to make the merged log file compact, we add the
previous running time for the main thread with this one.
The resulting merged log file is found in Figure 5(d).

Other issues, must be considered, e.g., the kernel log
file does not indicate which thread it is executing, the map-
ping must be done via the LWP identity. Also, the kernel
threads are started before the corresponding user level
thread starts and representing that time in the user level
thread must be done in reverse order. The threads may
float around on several LWPs, other processes may inter-
act and put LWPs in both running and runnable states.
Each user level event must have a start and stop time in
order to measure how long the primitive took to execute.
This made the user level log file to include nine lines in
reality and the kernel level log file have 57 lines. Finally,
things do not occur at the exactly same time in the kernel
level log file as in the user level log file, and vice versa.

3.4. Merging and sorting the TNF-files with I/O events
We keep the example in Figure 4, but the main thread

does not call work(15), instead it writes to a file using
the C standard primitive write. We have intentionally
omitted the necessary open and close primitives in
order to simplify the example. The optimal execution on
two processors will look as in Figure 6(a). The main
thread starts at time 0 and creates the thread tid at time
10. Immediately after, the main thread initiates a write to
the disk. The writing of the file is finished at time 25 and
the join with thread tid is reached at time 30. The main
thread is finished at time 40. The thread tid is running
between time 10 and 30, i.e., 20 time units.

The execution on a uni-processor system looks like in
Figure 6(b), where we take a closer look at the write oper-
ation, time 10 to 45. The write operations include two
important issues. The first issue is the time required by the
processor to perform the write operation. The second is the
time required by the disk to perform the write, meanwhile
the processor may execute the other LWP and its thread.
This is indicated in Figure 6(b) at time 15 since the thread
tid starts executing when the main thread is waiting for
the disk. Thread tid leaves the processor at time 35, and
the write can be completed at time 40, the execution of the
main thread continues and join with the thread tid, and
finally ends at time 50.

The user level log file and the kernel level log file are
found in Figure 6(c). In the kernel level log file at time 15
the main thread leaves the processor and the thread tid

starts executing. At time 20, the waiting for the disk is
over and the main thread’s LWP can be put in the runnable
state. At time 35 in the kernel level log file, the main
thread’s LWP starts executing to completion.

Whenever an I/O operation is performed, we collect
two kinds of time information: The time that the I/O
required the processor; and the time the I/O was waiting
for the disk. These two times are represented as two events
in the log file. The first event is the processor bound part of
the I/O operation (write I/O) and the second event is the
time the I/O operation was blocked (wait I/O) as shown in
Figure 6(d). The I/O is the time from 10 to 40 in the user
level log file. At time 15 in the kernel level log file the
main thread becomes blocked. Thus, five time units execu-
tion on the CPU was needed before the actual writing to
the (physical) disk. In the kernel level log file the main
thread becomes runnable at time 20, i.e., the (physical)
disk is ready and the wait for (physical) I/O is over. At
time 35 the main thread start execute again as seen in the
kernel log file. The write operation ends at time 40, i.e.,
the main thread needed yet five time units execution on the
CPU in order to end the I/O operation. The two CPU
bound parts of the I/O operation is added together. Other-
wise the merging is performed as described in Section 3.3.

Note once again that the example is simplified, e.g.,
during one I/O operation the processor might have to wait
several times for the (physical) disk and have to execute in
between the waitings. Also, all state transitions between
user space and kernel space are traced since each funda-
mental I/O operation is a system call. This make, together
with the issues stressed earlier, that the user level log file
consists of 15 lines in reality and the kernel level log file
consists of 1340 lines in the case of writing a 10 million
bytes large file. The merged log file consists of 15 lines.

Figure 6: Merging the user and kernel level log files.

(a)

(b)

Time LWP Thread Event
0 0 0 Start collect
10 0 0 Thread create 1
10 0 0 Write starts
35 1 1 Thread exit
40 0 0 Write ends
40 0 0 Thread join 1
50 0 0 Thread exit

Time LWP Thread Event
0 0 0 Starts running
15 0 0 Becomes blocked
15 1 1 Starts running
20 0 0 Becomes runnable
35 0 0 Starts running

User level log file:

Kernel level log file:

(c)

Length Thread Event
0 0 Start collect
10 0 Running
0 0 Thread create 1
0 0 Running
10 0 Write I/O
5 0 Wait I/O
20 1 Running
0 1 Thread exit
0 0 Thread join 1
10 0 Running
0 0 Thread exit

Merged log file:

Thread tid (1)

Main thread (0)

0

0

50

50 Time

Time

(d)

Thread tid (1)

Main thread (0)

Thread executes

Thread performs I/O

Thread waits for I/O
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4. Predicting the Program Execution

The Simulator mimics the scheduling in Solaris 2.5
[10]. The modeling of I/O follows the discussion in Sec-
tion 3.1 with one part of the I/O to be considered as CPU
bound and one part as waiting time. The Simulator first
simulates the CPU bound time in a chunk just as any other
event that only takes time. Then, the Simulator simulates
the waiting for I/O to be completed, which is similar to a
sleep primitive. However we simulate that only one thread
can perform an I/O operation at the same time and only
one I/O request, i.e., IO_wait, may be issued at the same
time. This seems to mimic the OS quite accurate.

There are advantages and disadvantages of merging the
parts of an I/O operation into one CPU bound part and one
part that is representing the waiting time. The obvious
advantage is that the log file will be shorter than if all the
individual parts in were stored in the file. The obvious dis-
advantage is that we loose some information. However,
this loss of information could actually be regenerated, to
some extent, in the simulator by assuming that the internal
I/O buffer within the kernel is of a particular size. Thus it
is simple to calculate how many times the write operation
must enforce a physical write, and thus a wait period, on
the disk. This facility is not implemented and left to future
development of the tool.

Much of the Simulator is kept from the first version of
the tool [2], e.g., threads may be bound or unbound as well
as the number of processor simulated is adjustable. Creat-
ing a bound thread is simulated to take 6.7 times longer
than an unbound thread [13]. A synchronization on a
semaphore takes 5.9 times longer with bound threads than
unbound. The value is found in [13] and is incorporated in
the simulator for semaphores as well as for mutexes, con-
dition variables, and read/write locks.

5. Validation of the Predictions

The validation of the predictions was made using a sub-
set of the SPLASH-2 benchmark suite [15] and a skeleton
of a telecommunication application that uses a lot of I/O in
different manners. All executions were made on a Sun
Ultra Enterprise 4000 with eight processors and 512
MByte memory. Our measurements showed that the exe-
cution time overhead for doing the recordings was very
small. The maximum overhead, was obtained for Raytrace
in the SPLASH-2 benchmark suite, was 31% of the total
execution time. More than half of the log files caused less
than 2% overhead. More than 75% of the log files were
less than 1.5 Mbyte in size. The largest log file, which was
obtained for Radiosity, was 19 MByte. This file could be
handled without any problems. Consequently, neither the
execution time overhead, nor the size of the log files
caused any problems for these programs.

5.1. The SPLASH-2 benchmark suite
The programs that we use from the SPLASH-2 suite

are: Ocean (with data set 514-by-514 grid), Water-Spatial
(512 molecules, 30 time step), FFT (4M points), Radix
(16M keys, radix 1024), LU (contiguous, 768x768 matrix,
16x16 blocks), Raytrace (teapot), Barnes (2048 bodies),
Cholesky (tk29.O), FMM (2048 bodies), and Radiosity
(Default, batch mode, en 0.1). Since the SPLASH-2 pro-
grams are designed to create one thread per physical pro-
cessor, one log file was generated for each processor setup.

The first version of VPPB could only use five of the
benchmarks [2]. This was because of spinning locks, as
described in Section 3. Another issue is task stealing, i.e.,
a thread steals a waiting job from another whenever the
stealing thread is idle. In the first version of the tool we
could not handle several LWPs. This led to the result that
the first thread that begun execute would steal all jobs
from the other threads (which never got a chance to exe-
cute on the CPU). Thus, the recording showed that all
work were done by one single thread and the others did
nothing. When simulating this on a multiprocessor the
load imbalance would be at its maximum. In this second
version of VPPB we can handle several LWPs and thus the
jobs may distribute better.

The 5 benchmarks we could use in the first version of
the tool are discussed first. Then, we will look at the other
benchmarks as well. Table 1 shows the measured and pre-
dicted speed-up for 5 programs from the SPLASH-2
benchmark suite we could use in the first version of VPPB.
The real speed-up is the middle value of 5 executions of
the program. The error is defined as |((Real speed-up) -
(Predicted speed-up))/(Real speed-up)|, where |-x| = |x| = x,
for all x > 0. As we can see in Table 1 the maximum error
is 5.2%, which we consider to be a very low error. It is also
an improvement with more than 16% as compared to the
first version of the tool [2].

The benchmarks Barnes, Cholesky, FMM, and Radios-
ity could not be used in the first version of the tool since
they use spinning locks. When a thread runs into a spin-
ning lock, it will stay there for (in average) half a time slot
until another thread can execute and possibly change the
value of the lock. Raytrace uses a task stealing scheme,
that might cause load imbalance if the tasks were executed

Table 1: Speed-ups for the first 5 benchmarks.

Application
2 processors 4 processors 8 processors

Pred Real Error Pred Real Error Pred Real Error

Ocean 1.95 1.97 1.0% 3.75 3.87 3.1% 6.47 6.65 2.7%

Water-spatial 1.97 1.99 1.0% 3.86 3.95 2.3% 7.27 7.67 5.2%

FFT 1.52 1.55 1.9% 2.06 2.14 3.7% 2.57 2.62 1.9%

Radix 1.99 2.00 0.5% 3.98 3.99 0.3% 7.91 7.79 1.5%

LU 1.82 1.79 1.7% 3.08 3.15 2.2% 4.72 4.82 2.1%
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in the same order on a multiprocessor as on a uni-proces-
sor. These problems are clearly shown in Table 2 since the
error may be as high as 62% (FMM).

The error was caused by the time a thread was bound to
stay spinning on a lock until the time slice was over. By
increasing the number of threads executing on a uni-pro-
cessor, and thus causing more threads spin on the spinning
locks, we exaggerated that behaviour. Another way of test-
ing this is to, for each iteration in the spinning loop, volun-
tarily give up the processor and thus decrease the overhead
with spinning locks. Tests conducted on Cholesky and
FMM confirmed our thoughts.

The spinning locks in Radiosity, Barnes, and Cholesky
could easily be replaced by semaphores and mutexes. The
spinning locks in FMM could not be replaced easily and
we did not change that program, since we do not want to
perform too large changes to the programs. The results
after replacing the spinning locks with blocking locks are
found as italic rows in Table 2. Further, Raytrace has been
slightly modified to avoid task stealing. As can be seen,
the error drop dramatically, in most cases with at least
83%. The maximum error is now 9.6%.

5.2. The Billing Gateway
None of the SPLASH-2 programs contained any (sig-

nificant) I/O, and in order to validate the I/O we used a
telecommunication application developed by Ericsson
Software Technology called Billing Gateway (BGw) [6].
We used a skeleton version of the BGw for our validation
because the real BGw has an advanced graphical user
interface, and that the application uses customer adjusted
data input formats which made it hard for us to find proper
loads. The skeleton was created together with Ericsson to
mimic the characteristics of the original BGw and ended
up consisting of around 1000 lines of C++ code. The orig-
inal BGw consists of about 100,000 lines of code.

A principal sketch over the BGw (skeleton) is found in
Figure 7. The BGw (skeleton) works as a kind of filter.

Table 2: Speed-ups for the 5 benchmarks with
(without in italic) spinning locks / load imbalance.

Appli-
cation

2 processors 4 processors 8 processors

Pred Real Error Pred Real Error Pred Real Error

Raytrace 1.67 1.73 3.5% 2.19 2.69 18.6% 3.38 3.73 9.4%

Raytrace 1.71 1.72 0.6% 2.42 2.50 3.2% 3.24 3.28 1.2%

Radiosity 1.74 1.91 8.9% 3.09 3.72 16.9% 5.25 6.20 15.3%

Radiosity 1.91 1.86 2.7% 3.63 3.75 3.2% 5.97 6.31 5.4%

Barnes 1.72 1.95 11.8% 2.85 3.34 14.7% 4.28 5.77 25.8%

Barnes 1.97 1.97 0.0% 3.57 3.38 5.6% 5.84 5.33 9.6%

Cholesky 1.37 1.62 15.4% 1.98 2.31 14.3% 2.42 2.89 16.3%

Cholesky 1.59 1.62 1.9% 2.21 2.31 4.3% 2.80 2.85 1.8%

FMM 1.58 1.90 16.8% 1.99 3.50 43.1% 1.98 5.19 61.8%

The Socket receivers get the information to be filtered
through a socket. The information chunk is 1 Mbyte large
and consists of integers. As soon as all data are received
the information is stored on disk, the disk is synchronized,
i.e., all data is physically written to disk, and the receiver
is ready for the next chunk of data. The Sorter reads the
file created by the Socket receiver and puts all the integers
in a binary tree. As workload all integers are converted to
floating points and back to integers again during a traver-
sion of the tree, this is repeated 1024 times. Finally, the
Sorter stores the odd integers into one file and the even
integers into another file. As previously the information on
the disk are synchronized. The Consumers then read the
data and discards it. The skeleton we use has eight Socket
receivers, eight Sorters, and 16 Consumers as shown in
Figure 7. Each Socket receiver were fed with two 1Mbytes
chunks.

The skeleton is also able to consider hot billing which,
as in the original BGw, is managed by RPC. Once an RPC
call is made to the BGw, a new thread is created to process
the data. The processing of the hot billing data is the same
as described above. However no data are stored on disk.
The skeleton received 5 RPC calls of 5 kbytes each of hot
billing data. The skeleton performs, on average, approxi-
mately 800 Kbytes per second of I/O traffic on a Sun
Enterprise 4000 with eight processors.

The result of the BGw skeleton can be found in Table 3.
As can be seen, the predictions for this I/O application is
very accurate, at most with 6.1% error.

6. Related Work

Some performance visualization tools show the
behaviour of one particular monitored multiprocessor exe-
cution of the parallel program [3, 7, 16]. The problem with
this approach is that there is no support for detecting bot-
tlenecks which appear on another number of processors.
TNF probes are used for a similar purpose in [3]. Another

Table 3: Speed-ups for the BGw skeleton.

2 processors 4 processors 8 processors

Pred. Real Error Pred. Real Error Pred. Real Error

1.99 1.98 0.5% 3.98 3.75 6.1% 6.44 6.17 4.4%

Socket receiver Sorter
Consumer

Consumer

Main ThreadHotbilling
Hotbilling

Hotbilling
HotbillingHot billing

RPC

Thread created by
Data flow

Dynamically created thread

Statically created thread

Figure 7: The organization of the BGw skeleton.

Eight “pipelines”

file file file
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tool [4] focus on the contention in multithreaded pro-
grams.

There are a number of tools, [8, 9, 14, 12, 11], which
make it possible to visualize the (predicted) behaviour of a
parallel program using any number of processors. How-
ever, these tools are either developed for message passing
systems or for non-standard programming environments.

7. Conclusion

In this paper we have presented an improved version of
the VPPB tool. This tool makes it possible to predict the
speed-up and visualize the behaviour of a multithreaded C/
C++ application using the Solaris 2.X thread package. It is
a common environment in both industry and academia.

Our approach is based on a monitored uni-processor
execution of the multithreaded program. Based on record-
ings from this execution and some parameters describing
the target multiprocessor, the behaviour and execution
time of the multithreaded program is predicted. The first
version of the tool was not able to handle I/O. The main
improvement in this version is that I/O can be handled
because we monitor kernel threads as well. The monitor-
ing is performed using the TNF probes in Solaris.

We have validated the predicted speed-up using the
SPLASH-2 suite [15], an I/O intensive skeleton of a tele-
communication application, and a multiprocessor with
eight processors.

The first version of the tool could only handle five of
the applications in the SPLASH-2 suite. The current ver-
sion of the tool can handle all applications in the test suite.
The maximum error in the speed-up predictions for the
first five applications is 5%; in most cases the error is
much smaller. The other applications in SPLASH-2 could
not be handled by the first version of the tool because they
contain spinning locks. These applications can now be
handled. The maximum speed-up prediction error for
these applications is relatively large, up to 62%. However,
if we replace spinning locks with semaphores and mutexes
the predictions become better. The maximum error was
less than 10%, and more than half of the predictions had
an error of less than 4%.

To validate the speed-up predictions for applications
heavily depending on I/O we used a skeleton version of a
large commercial telecommunication application. This
validation shows that the simulation of I/O is very accu-
rate; the maximum error is only 6%.

In the current version of the tool, we can handle any
multithreaded Solaris program. Our technique requires no
modification of the source code of the multithreaded pro-
gram. The recording overhead is small for most applica-
tions, e.g., less than 2% of the total execution time for
more than half of the SPLASH-2 applications.
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Abstract
Performance tuning of a parallel application is often

hard. The use of standards, such as POSIX threads, makes
it possible to move a multithreaded application from one
platform to another. Doing performance tuning for many
platforms is even tougher since the implementation of the
standards may vary on different operating systems. The
developer needs tools for analysing how the application
will behave on different operating systems in order to do
adequate performance tuning.

In this paper we present a technique based on cross-
simulation that will solve the issues above. The technique
uses a monitored execution of a multithreaded application
on a single processor workstation running the Solaris oper-
ating system. Then the technique, which has been imple-
mented in a tool, simulates a multiprocessor with an
arbitrary number of processors running either Solaris or
Linux. The tool then displays the behaviour of the applica-
tion on the selected target configuration.

Validation, using a subset of the SPLASH-2 bench-
mark suite, shows that the tool predicts speed-ups cor-
rectly. The average error in the predicted speed-up when
simulating Linux is 5.8%. All this can be done using the
ordinary Solaris workstation on the developer’s desk,
without even having a multiprocessor.

Key words: Multithreading, cross-simulation, multi-
processor, visualization, performance prediction.

1. Introduction

Writing parallel applications for multiprocessors is
often hard. In many cases the reason for using a multiproc-
essor is to achieve more computing power for the applica-
tion. Doing performance tuning of a multithreaded
application for a multiprocessor is an important but tedi-
ous task and few tools are available for the developer.
Most tools require the application to be executed on the
target multiprocessor, e.g., [5, 8, 10, 19].

When introducing standards, such as POSIX threads
[3], the aim is to make applications portable. This makes it
possible to move one application from one operating sys-
tem, e.g. Solaris, to another operating system, e.g. Linux.
However, it is not obvious that an application tuned for

one operating system will run efficiently on another oper-
ating system. Different characteristics for the operating
systems may lead to different tuning or trade-offs when
tuning the application for both operating systems.

The developer then has to tune the application for sev-
eral operating systems, using different tools for the differ-
ent operating systems. The developer must also have
access to all combinations of multiprocessors and operat-
ing systems in order to do the performance tuning. Not
only a tedious task to do, in many cases it is impossible (or
expensive) to have all the machines needed. Also the
developers would like to know if their application will
handle larger multiprocessors than the ones available
today and, thus, avoid rewriting the application when a
larger multiprocessor is available.

In this paper we present a tool called VPPB (Visualiza-
tion of Parallel Program Behaviour). The tool is capable of
executing a multithreaded application (using POSIX
Threads) on a single processor workstation with Solaris
and shows how the execution behaviour if the application
was executed on an SMP (Symmetric MultiProcessor)
with an arbitrary number of processors, running either
Solaris or Linux. The predictions have good accuracy. The
tool has previously been used for predictions on Solaris for
Solaris-threads [1, 2, 16] and has now been extended to
cover the major parts of POSIX threads as well. The main
thing is, however, that VPPB now also can mimic the
Linux 2.2 operating system. Based on an execution of an
application on a single processor Solaris workstation, the
tool is able to predict the behaviour of the application on a
multiprocessor running Linux. Thus, the tool is able to
perform cross-simulation. We use the term cross-simula-
tion when a program is monitored on one operating system
and then simulated for another (target) operating system.
The performance tuning of the application can be done on
the developer’s ordinary workstation without the need for
a multiprocessor.

The rest of this paper is as follows. In Section 2 we
give an overview of the VPPB system and in Section 3
Solaris, Linux, and POSIX threads are briefly discussed.
Section 4 shows the validation of the predictions and Sec-
tion 5 shows that the same application will execute differ-
ently on different operating systems. Section 6 discusses
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the results and points at some future work, the conclusions
are found in Section 7.

2. Overview of VPPB

The VPPB consists of three major parts, the Recorder,
the Simulator, and the Visualizer. The workflow when
using the VPPB system is shown in Figure 1. The devel-
oper writes the multithreaded program (a) in Figure 1,
compiles it and an executable binary file is obtained. After
that, the program is executed on a single processor. When
starting the monitored execution (b), the Recorder is auto-
matically inserted between the program and the standard
thread library. Each time the program uses the routines in
the thread library, the call passes through the Recorder (c)
which records information about the call, i.e., the identity
of the calling thread, the name of the called routine, the
time the call was made, and other parameters. The
Recorder then calls the original routine in the thread
library. Also some systems calls, e.g., read() are monitored
in the same way for the clib library. When the execution of
the program finishes all the collected information is stored
in a file, the recorded information (d). The recording is
done without recompilation or relinking of the application,
making our approach very flexible.

The Simulator simulates a multiprocessor execution.
The main input for the simulator is the recorded informa-
tion (d) in Figure 1. The simulator also takes the configu-
ration (e) as input, such as the target operating system,
number of processors, etc. The output from the simulator
is information describing the predicted execution (f).

Using the Visualizer the predicted parallel execution of
the program can be inspected (g). The Visualizer uses the
simulated execution (f) as input. The main view of the
(predicted) execution is a Gannt diagram. When visualiz-
ing a simulation, it is possible for the developer to use the
mouse to click on a certain interesting event, get the source

code displayed, and the line making the call that generated
the event highlighted. With these facilities the developer
may detect problems in the program and can modify the
source code (a). Then the developer can re-run the execu-
tion to inspect the performance change. The VPPB system
is designed to work for C or C++ programs that uses the
built-in thread package [8] and POSIX threads [3] on the
Solaris 2.X operating system. The Simulator is able to
simulate both Solaris and Linux.

3. Some Key Differences Between Solaris and
Linux

Both Solaris and Linux 2.2 implement the POSIX
thread interface [3]. However, there are differences
between the implementations. Solaris uses a two-layered
approach illustrated in Figure 2 [7, 13]. At the user level
there are user level threads. These threads are executed in
a non preemptive way. This means that the thread must, in
some way, voluntarily give up the execution in favor of
another thread. This could be done explicitly or implicitly
by calling a synchronization primitive that blocks the
thread or releases a previously blocked thread with higher
priority.

The kernel level threads (also known as LightWeight
Process, LWP [16]) are scheduled by the kernel in a pre-
emptive fashion. The scheduling is priority based, with a
round robin policy on each priority level. The priority is
changed over time, the longer time an LWP executes the
lower priority and longer time slices it gets. Each CPU has
its own run queue. In order to migrate an LWP to another
CPU the LWP must have been in the queue for some pre-
defined time without being selected by the current CPU.
The user level threads are executed by the LWPs. This
means that the kernel only schedules LWPs, the user level
threads are not seen by the kernel. From the user level
threads’ point of view the LWPs could be seen as virtual
CPUs. A user level thread might be bound to a specific
LWP, i.e., the user level thread will in that case (indirectly)
be scheduled in a pre-emptive manner. Non-bound user
level threads will execute on the LWPs that are not bound
to any thread. There could be many LWPs to serve this
kind of user level threads.

No of Processors
Operating system

C or C++ source code

Compiler

Binary file
Execution

Calls

Calls Returns

Returns
Recorder

(Instrumented

Thread Library)
 Encapsulating

Recorded
information

Simulator

Information describing

Visualizer

b

f

g

d

ea

c

Start

Figure 1: A schematic flowchart of the VPPB system.

Configuration

simulated execution

VPPB

Binding of threads
Thread priorities

Thread Library

Thread Thread Thread Thread

LWP LWP LWP

User level

Kernel level

Figure 2: The thread model in Solaris. A bound thread
may only execute on the LWP that it is bound to,
whereasa non-bound thread may execute on any

LWP that is not bound to a user level thread.

Bound threadNon-bound threads

A Multithreaded Solaris Process
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Linux [9] uses a single-layered approach, similar to
merging the Thread and LWP concepts in Solaris together
into one single unit. The creation of threads is made by
cloning the parent thread, using the system call clone. This
is quite similar to fork, but the cloned threads share the
same address space, open files, etc. However, each thread
gets its own process id and is scheduled as a process. The
scheduling is pre-emptive and time-sliced, as for any other
process in Linux. The time-slices are fixed (210 millisec-
onds). Linux calculates a goodness-value in order to select
which thread/process to execute next. This goodness-value
represents two things, first it represents how long the
thread has executed in its current time slice. A thread that
has been executed a small part of its time slice will be
given a higher goodness value than threads that have exe-
cuted a longer part of their time slices. The second thing is
that a thread is given higher priority for the processor it
previously ran on in order to run on the same processor
again. This is done by increasing the goodness value for
the thread when the processor it previously executed on
looks for a new thread to execute. Newly awakened
threads can force another thread from a processor when
the newly awakened thread has a higher goodness value
than the other thread.

There are differences between synchronizations as
well. In Linux all locks have ordered queues. When a
thread releases the lock, the first thread in the queue is
given the lock and put in the running queue. In Solaris,
there is no ordered queue (for guaranteed). When a thread
releases a lock, it may lock it again, before any other
thread (both those waiting in the queue or other) has been
able to grab the lock.

4. Validation of the Predicted Execution
Times

4.1. The SPLASH-2 benchmark suite
The validation of the predictions was made using a

subset of the SPLASH-2 benchmark suite [18]. The appli-
cations that we used from the SPLASH-2 suite are listed
with the data set in Table 1. All applications that we used
are from the scientific and engineering domain.

All executions were made on a Sun Ultra Enterprise
4000 with 8 processors and 512 MBytes memory. The
operating systems in this validation was Solaris 2.6 and
Linux 2.2 (RedHat 6.1). The compiler used for both Sola-
ris and Linux was the egcs-1.1.2 (a.k.a. gcc 2.91.66). Since
the SPLASH-2 applications are designed to create one
thread per physical processor, one log file was made for
each processor setup when using the Recorder. This in
order to not change the intentions of the benchmarks when
verifying them on a real multiprocessor. Thus, 9 applica-
tions running each on 4 different CPU setups generated a

total of 36 log files. The benchmarks were modified in
order to remove spinning locks and task stealing. When a
thread runs into a spinning lock, it will stay there for (in
average) half a time slot until another thread can execute
and possibly change the value of the lock. In Solaris the
time slot may be up to 0.2 seconds and this affects the exe-
cution time of the application when executing on a single
processor machine during the logging. Raytrace uses a
task stealing scheme, that might cause load imbalance if
the tasks were executed in the same order on a multipro-
cessor as on a single processor. A further discussion on
these matters is found in [1].

4.2. Validation results
Table 2 shows the measured and predicted speed-up for

the 9 applications from the SPLASH-2 benchmark suit on
the Solaris platform. The real speed-up is the middle value
of 5 executions of the application. The error is defined as
|((Real speed-up) - (Predicted speed-up))/(Real speed-up)|,
where |-x| = |x| = x, for all x > 0.

Due to the recordings, the monitored single processor
execution takes somewhat longer than an ordinary single
processor execution of the application. However, our
measurements showed that the execution time overhead
for doing the recordings was very small. The maximum
overhead, which was obtained for Radiosity, was 16.4% of
the total execution time, but still more than half of the 36
log files caused less than 0.5% overhead. Another concern
was the size of the log files. 75% of the log files were less
than 2 MBytes in size. The largest log file, which was
obtained for Radiosity, was 20.4 MBytes. This file could
be handled without any problems. Consequently, neither
the execution time overhead, nor the size of the log files
caused problems for these applications.

Table 3 shows the measured and predicted speed-up for
the 9 applications from the SPLASH-2 benchmark suite

Table 1: The parallel applications together with the
data set sizes we used.

Application Data set size/Input data

Ocean (contiguous) 258-by-258 grid

Water-Spatial 512 molecules, 30 time steps

FFT 4M points

Radix 16M keys, radix 1024

LU (contiguous) 768x768 matrix, 16x16 blocks

Raytrace balls4

Barnes 2048 bodies

Cholesky tk29.0

Radiosity Default, batch mode, en 0.1
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on the Linux 2.2 platform. The columns are the same as in
Table 2.

The mean error for Solaris was 1.6% and when simu-
lating the Linux platform the mean error was less than
5.8%. Thus, the error on the Linux platform is then on
average 3.6 times larger than on the Solaris platform.

4.3. Study of the application with the largest error,
Ocean

There are three applications in Table 3 that have large
errors in the predictions. These are Ocean, FFT, and Radi-
osity. Ocean has the largest error and we will focus on that
application for this study.

The first thing to notice is the total CPU time needed to
execute the application (without the Recorder) behaves

quite differently on Solaris and Linux. Since the monitor-
ing is done on Solaris all the overhead, etc., on Solaris is
incorporated in the monitoring. Thus, if Solaris behaves
differently than Linux, the estimation can be no good. The
CPU time needed to execute Ocean is shown as the first
row in Table 4. The values are normalized to the case for 1
processor for easy comparison reasons. As can be seen,
Solaris increases the needed CPU time with up to twelve
percent when executing the 8 threaded Ocean. On the
other hand, Linux needs three percent less CPU time to
execute Ocean with 8 threads than with one thread. The
difference between Solaris and Linux is then 15.5% (1.12 /
0.97).

By increasing the data set for Ocean to 514 and 1026,
these differences decrease as shown in the two last rows in

Table 2: Measured and predicted speed-ups for the
benchmark applications on Solaris 2.6.

Application 2 proc. 4 proc. 8 proc.

Ocean

Real Speed-up 1.98 3.67 4.39

Pred. Speed-up 1.90 3.35 4.35

Error 4.0% 8.7% 0.9%

Water-
spatial

Real Speed-up 1.99 3.93 7.41

Pred. Speed-up 1.97 3.83 7.24

Error 1.0% 2.5% 2.3%

FFT

Real Speed-up 1.58 2.22 2.76

Pred. Speed-up 1.59 2.23 2.80

Error 0.6% 0.5% 1.4%

Radix

Real Speed-up 1.99 3.96 7.66

Pred. Speed-up 1.99 3.96 7.79

Error 0.0% 0.0% 1.7%

LU

Real Speed-up 1.78 3.02 4.45

Pred. Speed-up 1.78 3.00 4.50

Error 0.0% 0.7% 1.1%

Raytrace

Real Speed-up 1.88 2.97 4.86

Pred. Speed-up 1.88 2.94 4.83

Error 0.0% 1.0% 0.6%

Radiosity

Real Speed-up 1.85 3.60 5.78

Pred. Speed-up 1.81 3.42 5.89

Error 2.2% 5.0% 1.9%

Barnes

Real Speed-up 1.94 3.56 6.35

Pred. Speed-up 1.93 3.57 5.97

Error 0.5% 0.3% 6.0%

Cholesky

Real Speed-up 1.60 2.30 2.94

Pred. Speed-up 1.60 2.30 2.90

Error 0.0% 0.0% 1.4%

Table 3: Measured and predicted speed-ups for the
benchmark applications on LINUX 2.2.

Application 2 proc. 4 proc. 8 proc.

Ocean

Real Speed-up 1.99 3.75 5.77

Pred. Speed-up 1.90 3.35 4.35

Error 4.5% 10.7% 24.6%

Water-
spatial

Real Speed-up 1.99 3.95 7.75

Pred. Speed-up 1.97 3.83 7.24

Error 1.0% 3.0% 6.6%

FFT

Real Speed-up 1.71 2.56 3.40

Pred. Speed-up 1.59 2.23 2.80

Error 7.0% 12.9% 17.6%

Radix

Real Speed-up 1.98 3.93 7.17

Pred. Speed-up 1.99 3.96 7.79

Error 0.5% 0.8% 8.6%

LU

Real Speed-up 1.81 3.11 4.80

Pred. Speed-up 1.78 3.00 4.50

Error 1.7% 3.5% 6.2%

Raytrace

Real Speed-up 1.82 2.85 4.41

Pred. Speed-up 1.88 2.94 4.83

Error 3.3% 3.2% 9.5%

Radiosity

Real Speed-up 1.85 3.75 5.05

Pred. Speed-up 1.81 3.42 5.89

Error 2.2% 8.8% 16.6%

Barnes

Real Speed-up 1.94 3.51 6.03

Pred. Speed-up 1.93 3.57 5.98

Error 0.5% 1.7% 0.8%

Cholesky

Real Speed-up 1.60 2.30 2.93

Pred. Speed-up 1.60 2.30 2.90

Error 0.0% 0.0% 1.0%
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Table 4, to 5.0% and 1.1%, respectively for the case with 8
threads. It is then most likely that the predictions also will
be more accurate for Linux as the needed CPU time does
not differ. In Table 5 the predictions for Ocean on Linux is
shown. As assumed the error in the predictions drops as
the data set increases. The measured CPU time can thus
act as an indicator of the degree of reliability in the predic-
tion.

The measured CPU time may not only act as an indica-
tor, it could also be used to compensate the prediction. In
the case of Ocean with data set 258 there is a difference of
15.5% between Solaris and Linux. Thus, the monitored
execution on 8 processors was 15.5% longer on Solaris
than on Linux and this made the predicted execution for
Linux 15.5% longer as well, assuming an even distribution
of the overhead over the whole execution. If the predicted
execution was 15.5% longer, the predicted speed-up will
only be 86.6% ( 1 / 1.155) compared to the speed-up with-
out the differences in CPU time. Thus, by adding 15.5%
more speed-up we are able to compensate for the differ-
ences in CPU time. The predicted speed-up is 4.35 and
with a 15.5% increase it will be 5.02. The latter is much
closer the real measured value of 5.77.

The result of calculating in the same way for the other
data sets and number of processors is shown in Table 5 in
italic. The average error in Table 4 has decreased from
7.8% to 5.6% due to this compensation. In three cases the
predictions become worse than without compensation,
however, those errors are still within the range of errors for
the Solaris prediction in Table 2 as well as the errors
reported in [1].

5. Scheduling Differences

When dealing with performance debugging, the speed-
up metric does not give all the information needed. If the
speed-up is not as the desired speed-up there are some
kind of performance bottlenecks in the application. The
VPPB system has, as mentioned in Section 2, the ability to
show the execution flow as a Gannt diagram. This diagram
can help the developer understand where the bottlenecks
are and how to remove them.

In Section 4 there is very little difference between the
predicted speed-up for the Solaris platform and the Linux
platform. Although the speed-up is similar, the execution
flow may not be the same. To illustrate that issue Figure 3
shows the same execution segment of the Barnes bench-
mark. Each horizontal line in the figure represents an exe-
cuting thread over time. Different symbols indicate
different events, e.g., an arrow facing downwards repre-
sents a locking operation. Different colours (appear as dif-
ferent gray shades in black and white printing) are used for
mutexes, semaphores, etc. Though the execution flow is
quite different in Figure 3 the source code is the same.
This shows that the execution flow is different when using
different operating system, and thus the performance bot-
tlenecks may also differ between the operating systems.

6. Discussion and Related Work

6.1. Comments on the validation
Validation of the cross-simulation was done on a Sun

Enterprise 4000 with 8 CPUs by executing 9 benchmarks
from the SPLASH-2 benchmark suite. Only three applica-
tions had larger than ten percent error in the predicted
speed-up. A further study of the application with the larg-
est error (Ocean) shows that the error is reduced when the
data set grows.

As the data set increases the overhead for executing
Ocean on Solaris decreases. Since this overhead is
included in the monitored data used for the cross-simula-
tion the simulation results for small data sets may not be
very accurate. By compensating the predictions with the
measured overheads, the error of the predictions was
reduced with up to nearly a factor of two.

Table 4: Normalized CPU time required to execute the
OCEAN benchmark with different

data sets on Solaris and Linux.

Data
set

Operating
System

1
Thread

2
Threads

4
Threads

8
Threads

258
Solaris 1.00 0.99 1.03 1.12

Linux 1.00 0.96 0.97 0.97

514
Solaris 1.00 1.02 1.04 1.05

Linux 1.00 1.00 1.01 1.00

1026
Solaris 1.00 1.00 1.00 1.01

Linux 1.00 1.01 1.00 1.00

Table 5: Ocean on Linux with different data sets. The
compensated values are given in italic.

Data set /
Speed-up

2
Processors

4
Processors

8
Processors

258

Real 1.99 3.75 5.77

Pred. 1.90 1.96 3.35 3.56 4.35 5.02

Error 4.5% 1.5% 10.7% 5.1% 24.6% 13.0%

514

Real 1.84 3.67 5.27

Pred. 1.94 1.98 3.71 3.82 4.51 4.74

Error 5.4% 7.6% 1.1% 4.1% 14.4% 10.1%

1026

Real 1.96 3.83 6.93

Pred. 1.90 1.88 3.74 3.74 6.66 6.73

Error 3.1% 4.1% 2.3% 2.3% 3.9% 2.9%
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The reason for the increased usage of CPU time on
Solaris, when increasing the number of threads in the
Ocean application has not been found. A further study of
the reason for this behaviour on Solaris is considered to be
future work. Understanding why the error for the bench-
marks FFT and Radiosity is almost twice as large as the
largest error on Solaris could also be interesting future
work.

Currently the VPPB system implements all the POSIX
thread primitives that are common between Solaris and
Linux except the thread cancelling primitives. The sema-
phore primitives are supported, although semaphores are
not a part of the POSIX threads, but originate from
POSIX.1b.

6.2. Other tools
There are a number of tools, shown in Table 6, which

make it possible to visualize the (predicted) behaviour of a
parallel application using any number of processors. How-
ever, these tools are either developed for message passing
systems or for non-standard programming environments.

Only a few tools, PARAVER and SIEVE, can do some
kind of cross-simulation. The PARAVER tool uses the
DIMEMAS simulator [4]. DIMEMAS is a simulator for
distributed memory multiprocessors, and the ability to re-
configure in order to mimic different operating systems is
limited. In [4] there is no validation of the predictions at
all. In SIEVE all simulation is performed by scripts work-
ing like macros on a spread-sheet, where the spread-sheet
is the trace file. By supplying different scripts different
operating system can be simulated. The SIEVE system
does not address the issue of data monitoring. In [14] there
is no validation of the predictions at all. Other tools, such
as Tmon [6] is capable of tracing multithreaded applica-

tions on single processors, but not on multiprocessor
machines.

7. Conclusion

POSIX threads are used to make multithreaded appli-
cations portable. However, the implementation of POSIX
threads differs for different operating systems. Thus, an
application will not always have the same performance
and behaviour on different operating systems. Tuning mul-
tithreaded applications for a multiprocessor is hard. Tun-
ing applications for good performance on several
operating systems is even harder. Most tools use a real
execution of the multithreaded application on a given
operating system in order to give the developer support in
the performance tuning, e.g., [5, 8, 10, 19]. It is often
impractical and expensive to have several multiprocessors
in order to run different operating systems.

Table 6: Comparison of some visualization tools
similar to VPPB.

Name
Platform /
Language

Cross-
simulation

Comment

CHIP3S
[11]

Mathematica /
CHIP3S

No
Pseudo
language

PARAVER
[12]

Any PVM3
platform

Yes
Message
passing

PERFSIM
[17]

TMC CM-5 /
CM-Fortran

No
Limited vis-
ualization

PIE
[15]

VAX 11/780 and
784, MicroVAX /
MP with Pascal

No
Pseudo
language

SIEVE
[14]

BBN GP1000 /
pC++

Yes
Hard to use
the scripts

Figure 3: Execution flows for Barnes. Solaris is the upper graph, Linux is the lower. The five ovals in
the Solaris graph indicates the same events as the five ovals in the Linux graph.
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In this paper we have presented a tool, called VPPB,
that based on an execution of a multithreaded application
on an ordinary single processor Solaris workstation can
predict the behaviour of the application on a multiproces-
sor with an arbitrary number of processors, running Sola-
ris or Linux 2.2. The predictions are accurate, with a mean
error of 5.8% for the predicted speed-ups for Linux, and
even better for Solaris. The validation was based on 9 of
the benchmarks from the SPLASH-2 benchmark suite on a
Sun Enterprise 4000 with eight processors.

During a detailed study of the Ocean benchmark we
have shown that it is possible to find an indicator that
shows how reliable the predictions are. The indicator is
based on the CPU time required to execute an application
with a different number of threads. This indicator works
on a single processor workstation with Solaris.

The Ocean benchmark also shown that the indicator
can be successfully used to compensate the predictions in
order to get more accurate predictions. With Ocean the
error in the predictions was reduced with up to almost a
factor of two. The average error decreased with 28%. Both
the indicator and compensator technique was based on a
single application and will need further study and, possi-
bly, refinement.

Thus, we have shown that it is possible to use the
described tool to predict the behaviour of a multithreaded
application on a multiprocessor with either Solaris or
Linux, with the means of a single processor workstation
running Solaris.
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Paper IV
Abstract

Efficient performance tuning of parallel programs for
multiprocessors is often hard. When it comes to assigning
threads to processors there is not much support from com-
mercial operating systems, like the Solaris operating sys-
tem. The only known value is, in best case, the total
execution time of each thread. The developer is left to the
binpacking algorithm with no knowledge about the inter-
actions and dependencies between the threads. The bin-
packing algorithm assigns, in the worst case, the threads to
the processors such that the program will have the longest
possible execution time. A simple example of such an pro-
gram is shown in the paper. We present here a way of
retrieving more information and a test mechanism that
makes it possible to compare two different assignments of
threads on processors also with regard to the interactions
and dependencies between the threads. Also an algorithm
is proposed that gives the best assignment of threads to
processors in the case above where the binpacking algo-
rithm gave the worst possible assignment. The algorithm
uses shadow-processors and requires more processors than
on the target machine during some allocation steps. Thus,
a simulation tool like the one presented here must be used.

Key words: Thread allocation, simulation technique,
monitoring tool, shadow-processors

1. Introduction

Parallel processing is an important way of increasing
the performance of an application. Applications made for
parallel processing are then likely to have performance
requirements. For instance, a transaction based telecom-
munication billing system have performance requirements.
It also have deadlines. The deadlines are often specified as
the time to complete a transaction. The deadline is not
specified on a thread/process level but on a transaction
level perhaps involving several threads/processes.
Although a missed deadline is not a life threatening event
the company will loose income. Thus, predictability is an
important issue in order to know that deadlines frequently
will be met. By binding the threads/processes statically to
processors we reduce the unpredictability of memory
caches, etc. Selecting which thread should execute on
which processor is vital for the performance. In Solaris
[8], an commercial operating system that support multi-
threading on multiprocessors (SMPs, symmetric multi-

processors), there is little support for the application
developer to make that choice. Basically the developer can
only retrieve information about the number of threads and
their respective execution time with a system tool called
tha [11]. Based on that information a good selection of
which threads to bind to which processors is hard, in prac-
tice the developer is left with the traditional binpacking
algorithm [5]. Although the binpacking algorithm can not
take any interaction and dependencies between the threads
in account it is left as our only choice.

In this paper we present a way of retrieving more infor-
mation and a test mechanism that makes it possible to
compare two different assignment of threads on processors
also with regard to the interactions and dependencies
between the threads. We also propose a processor assign-
ment algorithm called simple greedy algorithm (SGA) that
uses the ability of the test. The SGA uses shadow-proces-
sors (shadow-processors executes the so-far not assigned
threads, see Section 4) which means that the algorithm
during search for the best allocation requires more proces-
sors than in the target machine. The algorithm is imple-
mented in a simulator that can simulate any number of
processors. An empirical study with 9,100 automatically
generated applications shows that the new algorithm is
gives in average 10% to 40% shorter execution time than
the binpacking algorithm when having at least twice as
many threads as processors. With less number of threads
the SGA is still better but to a less degree. For some appli-
cations the improvement may be as much as 140%.
Although the proposed new algorithm performs better than
binpacking in most cases, there are cases when binpacking
performs better. By including the binpacking algorithm in
SGA, a combined algorithm called C-SGA, we can guar-
antee to never be worse than binpacking.

The paper is structured in the following way. In Sec-
tion 2 a general overview of the tool that is the foundation
for both the information gathering and the test mechanism
is given. Some worst case discussions about the binpack-
ing algorithm is found in Section 3. The description of the
proposed algorithm is found in Section 4 with the empiri-
cal study in Section 5. Empirical studies for the combined
algorithm are found in Section 6. Related and future work
are found in Section 7 and in Section 8 the conclusions are
found.

An Allocation Strategy Using Shadow-processors and Simulation Technique

Magnus Broberg, Lars Lundberg, and Håkan Grahn
Department of Computer Science, Blekinge Institute of Technology

P.O. Box 520, S-372 25 Ronneby, Sweden
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2. Overview of Tool

The tool used for information gathering and test is
called VPPB (Visualization of Parallel Program Behav-
iour) and consists of three major parts, the Recorder, the
Simulator, and the Visualizer [1, 2]. The workflow when
using the VPPB system is shown in Figure 1. The devel-
oper writes the multithreaded program (a) in Figure 1,
compiles it, and an executable binary file is obtained. After
that, the program is executed on a uni-processor.

When starting the monitored execution (b), the
Recorder is automatically placed between the program and
the standard thread library. Every time the program uses
the routines in the thread library, the call passes through
the Recorder (c) which records information about the call,
i.e., the identity of the calling thread, the name of the
called routine, the time the call was made, and other
parameters. The Recorder then calls the original routine in
the thread library. Whenever an LWP’s state change the
operating system informs a program called prex. Prex
is a standard program on the Solaris platform used to cre-
ate logfiles about various kernel events, such as state
changes, page faults etc. Then the collected information is
stored in a file, the recorded information (d). The record-
ing is done without recompilation or relinking the applica-
tion, making the tool flexible.

The Simulator simulates a multiprocessor execution.
The main input for the simulator is the recorded informa-
tion (d) in Figure 1. The simulator also takes the hardware
configuration and scheduling policies as input (e). The
output from the simulator is information describing the
predicted execution (f). By binding threads differently in
(g) the effects on different bindings can be tested. The
VPPB system is designed to work for C or C++ programs
that uses POSIX threads [3] or the built-in thread package
[12] in the Solaris 2.X operating system.

3. A Worst Case Application for the
Binpacking Algorithm

The binpacking algorithm is based on the only two
parameters available from Solaris tools; the number of
threads and each thread’s execution time. The binpacking
algorithm assigns the longest thread that yet has not been
assigned to the processor with lowest aggregated execu-
tion time based on the so far assigned threads. In the worst
case the binpacking algorithm will assign the threads in
such way that the execution time will be the longest possi-
ble. This property is not desirable when having perform-
ance requirements.

Below is a simple example of an application that bin-
packing will assign in such way that the execution time of
the application will be the longest possible. There are four
threads; T1, T2, T3, and T4 to be executed on a two proces-
sor machine. The threads T3 and T4 are both depending on
the results of both T1 and T2 before they can execute. The
threads T1 and T2 are not depending on any other thread.
The execution times for the threads are shown in 1, where

. The binpacking algorithm will start to assign Thread
T1 (which is the longest thread) to any processor (since
both processors have zero aggregated execution time),
let’s say processor A. Then thread T4 (which is the second
longest thread) is assigned to processor B, since it has zero
aggregated execution time. Thread T3 (the third longest
thread) is assigned processor B, since processor B’s aggre-
gated time ( ) is smaller than processor A’s ( ).
Finally, thread T2 (the shortest thread) is assigned to proc-
essor A, since processor A’s aggregated time ( ) is
smaller than processor B’s ( ).
The result is that thread T1 and T2 is assigned to processor
A and thread T3 and T4 is assigned to processor B. This
means that the threads in practice are executed in sequen-
tial. This is since while processor A executes T1 and T2,
processor B with T3 and T4 must wait. After time
units both T1 and T2 are finished and processor B can exe-
cute T3 and T4 for time units. Total execution time
is then time units, which is also the largest possi-
ble execution time for these particular threads on a two
processor machine.

No of Processors
Binding of threads

C or C++ source code

Compiler

Binary file
Execution

Calls

Calls Returns

Returns
Recorder

(Instrumented

Thread Library)
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Figure 1: A schematic flowchart of the VPPB system.
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VPPB
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Table 1: Data about the four threads.

Thread Depends on Execution time, Assigned to

T1 None Processor A

T2 None Processor A

T3 T1 and T2 Processor B

T4 T1 and T2 Processor B
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4. The Simple Greedy Algorithm

Based on the information recorded by the tool, we are
able to take synchronization behaviour into account when
deciding which thread to bind to which processor. We use
the tool’s simulator in order to test the effect of placing a
thread on a certain processor.

The heuristic we have chosen use a set of shadow proc-
essors that contains the so far unassigned threads. The
threads are placed one by one on the most suitable target
processor. The algorithm works as follows. First all
threads are placed on one shadow-processor each. The
threads are executing on these shadow-processors as long
as they are not placed on a processor. Each thread is then
moved from a shadow-processor to the most suitable proc-
essor, beginning with the longest executing thread. The
thread is then tested on each processor by running the
application in the simulator including the remaining
threads on the shadow-processors. The thread is placed on
the first processor that gave the shortest execution time.
Then the next longest thread is moved from its shadow-
processor and tested on each processor and so on. If we
have T threads and P processors we will have to perform

tests before all threads are moved from the shadow-
processors.

There is a reason for testing threads on processors that
already are assigned a thread, even when there are proces-
sors that are not already assigned a thread. An example is
found in Figure 2 The three threads in the example will
execute to completion in 16 time units if they are assigned
one processor each. If the first thread is assigned one proc-
essor and the other two executes on one shared processor
the threads will execute to completion in 13 time units.

The number of tests can be reduced according to the
following observation. Every processor is equal, then if
there are several processors that still have not been
assigned a thread, only one of them has to be tested. This

is illustrated in Figure 3 where the first thread is tested on
one processor, the second thread is tested on two proces-
sors (the processor which where assigned the previous
thread and a free processor), the third thread is tested on
the previously assigned processors and a free processor
and so on until all processors have been assigned at least
one thread each. After that each processor must be tested
for the remaining threads. The first thread can directly be
assigned any of the processors without any test, since
every processor is free. In Figure 3 the worst case is shown
where the P first threads are assigned an individual proces-
sor.

We will now look how SGA handles the worst case
example for binpacking in Section 3. The threads are spec-
ified as previously (see 1) and the machine has two proces-
sors. The longest thread (T1) is assigned to any processor,
lets say processor A. Then the second longest thread (T4)
is tested on processor A while the threads T3 and T4 is
executing on a shadow processor each. The execution will
look like in Figure 4(a) and the total execution time is

. Then thread T4 will be
tested on processor B which is shown in Figure 4(b) with a
total execution time of .
This means that the execution times are equal and the first
occurrence will be selected, i.e., thread T4 will be assigned
processor A. The third longest thread (T3) is then tested on
processor A as shown in Figure 4(c) with an execution
time of . Then
thread T3 is tested on processor B as shown in Figure 4(d)
with a total execution time of

. Thread T3 is assigned to
processor B since it resulted in the shortest total execution
time. Finally, thread T2 (the shortest) is first tested on
processor A as shown in Figure 4(e) with an execution
time of . Then thread
T2 is tested on processor B as shown in Figure 4(f) with an
execution time of . Thread
T2 is assigned to processor B since it was the assignment
with the shortest execution time. There is no other assign-
ment that result in a shorter execution time than the result-
ing assignment, T1 and T4 on processor A and T2 and T3
on processor B.

P T⋅

T1 on P1
T2 on P2
T3 on P2

T1 on P1
T2 on P2
T3 on P3

0 100 5 10 15
Time Time

Figure 2: Illustrating the effect of assigning each thread their
own processor. To the upper the three threads are specified.
To the lower left the threads are assigned an own processor.
To the lower right thread 2 and 3 shares processor 2, while

thread 1 is assigned processor 1.
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Figure 3: Calculating the maximum number of tests when
having T threads and P processors.
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5. Empirical study: Simple Greedy Algorithm
vs. Binpacking

In this study we have compared SGA with a binpack-
ing algorithm. 9,100 applications have been generated
with 3 to 37 threads (260 applications for each number of
threads). Each applications contains critical sections pro-
tected by semaphores. The number of critical sections is
between two and three times the number of threads. Each
thread is generated by first executing for 2x time units,
where x is 0 to 15. Then, either the thread enters (if possi-
ble) a critical section or exits (if possible) a critical sec-
tion. The probability for entering or exiting a critical
section is fifty-fifty. If there is no critical section to enter or
exit only the execution for 2x time units, where x is 0 to 15,
is generated. In order to avoid deadlock the critical sec-
tions are hierarchically numbered allowing a thread to
enter a critical section only if the thread is not already in a
critical section with a higher logical number. The threads
are divided into one to half of the number of threads
groups. Threads within one group only synchronizes with
each other, thus, two threads in different groups will be
independent. By a probability of 93.75% the thread con-
tinues to execute for 2x time units, where x is 0 to 15, then
enter or exit a critical section and so on. With a probability
of 6.25% the thread will start terminating, by releasing the
critical sections it has entered. Exiting each critical section
is proceeded with an execution for 2x time units, where x is
0 to 15. Finally, when all critical section are exited the
thread executes for 2x time units, where x is 0 to 15. These
test applications are thought to mimic the core of a trans-
action based system, where each thread service a transac-
tion. The transactions needs exclusive access to a number
of resources, e.g., data structures, thus the critical sections.

Some transactions are independent of other and some are
not. This is why the threads are divided into groups.

In Figure 5 only the results of the applications with 4,
8, 12, 16, 20, 24, 28, and 32 threads respectively are
shown, however, the other number of threads show similar
results. The x-axis is the number of processors while the y-
axis shows the (execution time for binpacking) / (execu-
tion time for SGA). The average curve shows the average
value for all the applications with that number of threads.
The max curve shows the maximum value for any applica-
tion in the set, while the min curve shows the minimum
value for any application in the set. As can be seen the
average value is between 1.1 and 1.4 as long as there are
twice as many threads as processors which means that our
proposed algorithm makes the application run to comple-
tion 10% to 40% faster than the binpacking algorithm.
There exists applications that can run to completion up to
2.4 times faster than the binpacking algorithm. On the
other hand some applications can run to completion in
only 71% of the time when using the binpacking algorithm
than using SGA. This means that there are applications
that the binpacking algorithm will handle better. Deter-
mine the assignment of an test application for multiproces-
sor with a given number of processors takes only a couple
of minutes.

6. Combining the two algorithms: C-SGA

In Section 5 we showed that although in average SGA
worked better than binpacking, there were cases where
binpacking worked better. However, the tool that we used
to implement the SGA can also be used to evaluate the
binpacking algorithm. By also testing the binpacking algo-
rithm, which requires only one more test in Figure 3, we
can individually for each application choose between SGA
or the binpacking algorithm. The resulting algorithm is
called combined simple greedy algorithm (C-SGA) and
the empirical result using the same applications as above is
shown in Figure 6. The x-axis is the number of processors
while the y-axis shows the (execution time for binpacking)
/ (execution time for C-SGA). The average curve shows
the average value for all the applications with that number
of thread. The max curve shows the maximum value for
any application in the set. The min curve is not shown
since it almost always (99.9% of the cases) will be 1.0.
The average curve increased slightly (actually quite insig-
nificantly), thus the number of applications with a value of
less than 1.0 was very small in Figure 5. Out of the 9,100
test applications only 2.6% performed worse with SGA
than with binpacking.
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Time

(a)

Figure 4: The different steps in the SGA algorithm for
assigning the four threads in Section 3. A shadow processor

is named S-Proc. The synchronization is the vertical bar,
analogous to a barrier. The final assignment is the one in (f).
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Figure 5: Simulation results for SGA. The Y-axis shows (Binpack execution time)/(SGA execution time).
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Figure 6: Simulation results for C-SGA. The Y-axis shows (execution time for binpacking) / (execution time for C-SGA).
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In the case that we want an application assigned by
binpacking to execute as fast as assigned by the C-SGA
we would need in average up to 40% faster processors. If
we on the other hand wants to be sure that binpacking will
execute as fast as C-SGA we will, in worst case, need 2.4
times faster processors, based on the max curve in Figure
6. Another way of looking at the difference between bin-
packing and C-SGA is the number of additional proces-
sors that is needed when we use binpacking for the same
performance as C-SGA. If we look at a four processors
machine that run an application assigned by C-SGA, we
would need seven processors in the machine to reach the
same performance with binpacking. This result is fairly
constant (+/-1 processor) for all applications in this study
with eight threads or more. For the applications with less
than eight threads, the number of threads sets the limit on
the number of processors needed.

7. Related and Future Work

In the real-time community different assignment strat-
egies for placing threads (or processes) on processors have
been used for a long time [5]. Most of those strategies uses
a test, called feasibility test, that determine if the current
assignment will fulfil the given constraints. When it comes
to multithreaded applications the goal is to make the appli-
cation to run as fast as possible. Then we do not have any
explicit deadlines specified for each thread. However, on a
system level there might very well be specified deadlines,
such as deadlines for processing an incoming event. This
processing may include several threads performing a lot of
work. Also these deadlines is not that hard, in other words
nothing dramatic, like risk for human life, will occur if the
deadline is occasionally not met. This leads us to make
another kind of test that evaluates the assignment in such a
way that we can say if assignment A is better than assign-
ment B. To the best of our knowledge, simulation tools has
not been used in this area before for processor assignment,
although simulation tools like the one described in this
paper previously exist, mainly for message passing sys-
tems [6, 7, 9, 10, 13]. The test mechanism can be used
with other algorithms than SGA and C-SGA, for instance,
simulated annealing [4] with probably even better result.
This, however, is considered to be future work.

8. Conclusion

Placing threads on processors is not a trivial task.
Actually, the problem is NP-complete [5]. This leaves us
with heuristics. The more information we have about the
application the better are our chances to achieve a good
assignment. In Solaris, a multithreaded commercial oper-
ating system for multiprocessors, the support for the appli-
cation developer to make an adequate assignment is
limited. The operating system can provide the number of
threads and their respective execution time.

However, binpacking does not deal with interactions
between the threads. In this paper we use a tool to collect
more information about an application and a tool for test-
ing different assignments of threads on processors in order
to determine the best of the assignments. We also propose
an algorithm that uses test above, the algorithm is called
SGA (simple greedy algorithm). The algorithm uses
shadow-processors that makes it impossible to run the
algorithm on the target machine, thus a simulation tech-
nique like the one in this paper must be used. An empirical
study with 9,100 automatically generated applications
shows that SGA in average gives 10% to 40% shorter exe-
cution time than binpacking when there are at least twice
as many threads as processors, otherwise SGA gives
shorter execution time but to a less degree. Occasionally
SGA behaves worse than binpacking. However, the test
can also cope with the binpacking algorithm. By combin-
ing the two algorithms, resulting in an algorithm called C-
SGA (combined simple greedy algorithm), the result is
guaranteed to be at least as good as binpacking and per-
forms even slightly better in average than SGA.
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Paper V
A Tool for Binding Threads to Processors
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Abstract. Many multiprocessor systems are based on distributed shared mem-
ory. It is often important to statically bind threads to processors in order to avoid
remote memory access, due to performance. Finding a good allocation takes long
time and it is hard to know when to stop searching for a better one. It is sometimes
impossible to run the application on the target machine. The developer needs a
tool that finds the good allocations without the target multiprocessor. We present
a tool that uses a greedy algorithm and produces allocations that are more than
40% faster (in average) than when using a binpacking algorithm. The number of
allocations to be evaluated can be reduced by 38% with a 2% performance loss.
Finally, an algorithm is proposed that is promising in avoiding local maxima.

1 Introduction

Parallel processing is a way of increasing application performance. Applications made
for parallel processing are also likely to have high performance requirements. Many
multiprocessor systems are based on a distributed shared memory system, e.g., SGI Or-
igin 2000, Sun’s WildFire [4]. To minimize remote memory accesses, one can bind
threads statically to processors. This can also improve the cache hit ratio [8] in SMPs.
Moreover, some multiprocessor systems do not permit run-time reallocation of threads.
Finding an optimal static allocation of threads to processors is NP-complete [7].

Parallel programs are no longer tailored for a specific number of processors, this in
order to reduce the maintenance etc. This means that different customers, with different
multiprocessors, will share the same application code. The developer have to make the
application run efficiently on different numbers of processors, even to scale-up beyond
the number of processors available in a multiprocessor today in order to meet future
needs. There is thus no single target environment and the development environment is
often the (single processor) workstation on the developer’s desk.

Heuristics are usually able to find better bindings if one lets them run for a long pe-
riod of time. There is a trade-off between the time spent searching for good allocations
and the performance of the program on a multiprocessor. Another property of the heu-
ristics is that the improvement per time unit usually decreases as the search progresses.
It is thus not trivial to decide when to stop searching for a better best allocation.

In operating systems like Sun Solaris there is little support to make an adequate al-
location. A tool called tha [10] only gives the total execution time for each thread
enough for an algorithm like binpacking [7] which does not take thread synchronization
into consideration. The result is quite useless, since the synchronizations do impact.

In this paper we present a tool for automatically determining an allocation of
threads to processors. The tool runs on the developer’s single-processor workstation,

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 57-61, 2001. 
c Springer-Verlag Berlin Heidelberg 2001
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and does not require any multiprocessor in order to produce an allocation. The tool con-
siders thread synchronizations, thus producing reliable and relevant allocations.

In Sect. 2 an overview of the tool is found. Empirical studies are found in Sect. 3.
In Sect. 4 related and future work is found. The conclusions are found in Sect. 5.

2 Overview of the Tool

The tool used for evaluation of different allocations is called VPPB (Visualization of
Parallel Program Behaviour) [1] and [2] and consists of the Recorder and the Simulator.
The deterministic application is executed on a single-processor workstation, the Re-
corder is automatically placed between the program and the thread library. Every time
the program uses the routines in the thread library, the call passes through the Recorder
which records information about the call. The input for the simulator is the recorded in-
formation and an allocation of threads generated by the Allocation Algorithm. The out-
put from the Simulator is the execution time for the application on a multiprocessor with
the given size and allocation. The predicted execution time is fed into the Allocation
Algorithm and a new allocation is generated. Simulations are repeated until the Alloca-
tion Algorithm decides to stop. The evaluation of a single allocation by the Simulator
is called a test. The VPPB system works for C/C++ programs with POSIX [3] or Solaris
2.X [11] threads. In [1] and [2] the Simulator was validated with dynamically scheduled
threads. We validated the tool on a Sun Enterprise 4000 with eight processors with stat-
ically bound threads and used nine applications with 28 threads, generated as in Sect. 3.
The maximum error is 8.3%, which is similar to the previous errors found in [1] and [2].

3 Empirical Studies with the Greedy Algorithm

3.1 The Greedy Algorithm

The Greedy Algorithm is based on a binpacking algorithm and makes changes (swap
and move) to the initial allocation and test it. If the new allocation is better it is used as
the base for next change and so it continues, see Fig. 1. The algorithm keeps track of all
previous allocations in order to not test the same allocation several times.

3.2 The Test Applications Used in This Study

In this study we used 4,000 automatically generated applications divided into eight
groups of 500 applications with 8, 12, 16, 20, 24, 28, 32, and 36 threads, respectively.
Each application contains critical sections protected by semaphores. The number of
critical sections is between two and three times the number of threads. Each thread ex-
ecutes first for 2x time units, x is 0 to 15 throughout this section. Then, with a probability
of 50%, the thread enters (if possible) a critical section or exits (if possible) a critical
section. Deadlocks are avoided by a standard locking hierarchy. The threads are divided
into groups. Threads within one group only synchronizes with each other. The number
of groups is between one up to half of the number of threads. With a probability of
93.75% the thread continues to execute for 2x time units then enter or exit a critical sec-
tion and so on. With a probability of 6.25% the thread will start terminating by releasing
it’s critical sections. Exiting each critical section is proceeded with an execution for 2x

time units. Finally, the thread executes for 2x time units.
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3.3 Characterizing the Greedy Algorithm

The Greedy Algorithm presented in Sect. 3.1 will actually never stop, thus in order to
investigate its performance we had to manually set a limit. We chose to continue the
algorithm until 500 tests had been performed. We also stored the so far best allocation
when having done 20, 60, ... , 460, 500 tests, shown in Fig. 2. When the number of tests
is high yet another 40 tests will not decrease the application’s execution time much.

3.4 A Threshold for the Greedy Algorithm

The graphs in Fig. 2 clearly shows that it should be possible to define a threshold that
stops the Greedy Algorithm to do more tests when the gain will not be significant. The
stop criterion for the Greedy Algorithm is defined as to stop when a number of consec-
utive tests have not gained anything in execution time. We have empirically found that
100 consecutive tests is a good stop criterion if we accept a 2% loss in performance
compared to performing 500 tests. By reducing the gain by 2% we reduce the number

Allocation bestAlloc = allocateAccordingToBinpack();
Time bestExecutionTime = simulate(bestAlloc);
addToAllocationHistory(bestAlloc);
algorithm(bestAlloc);

procedure algorithm(Allocation alloc) {
Time executionTime;
if(random() > 0.5 and allThreadsAreNotOnTheSameProcessor())
swapARandomThreadWithARandomThreadOnAnotherProcessor(alloc);

else
moveARandomThreadToAnotherRandomProcessor(alloc);

if(allocationIsAlreadyInAllocationHistory(alloc))
{ alogrithm(bestAlloc); return; }

addToAllocationHistory(alloc);
executionTime = simulate(alloc);
if(executionTime == bestExecutionTime)
{ alogrithm(alloc); return; }

if(executionTime < bestExecutionTime)
{ bestAlloc = alloc; bestExecutionTime = executionTime; }

alogrithm(bestAlloc);
}

Fig. 1. The greedy algorithm in pseudo code

Fig. 2. The average gain by using the Greedy Algorithm as compared to binpacking
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of tests by 38%. This is of important practical value since the number of tests performed
is proportional to the time it takes to calculate the allocation. Performing 500 tests took
at most two minutes for any application in the population used in this study.

3.5 Local Maxima and Proposing a New Algorithm

There is always the danger of getting stuck in a local maximum and the Greedy Algo-
rithm is not an exception. In order to investigate if the algorithm runs into a local max-
imum we used the previous application population with 16 and 24 threads. By giving
the Greedy Algorithm a random initial allocation, instead of an allocation based on bin-
packing, we reduced the risk of getting stuck in the same local maximum.

The result of using 10 x 500 vs. 1 x 5000 tests and 10 x 50 vs. 1 x 500 tests is shown
in Fig. 3. As can be seen, sometimes it is better to run ten times from different starting
allocations than running the Greedy Algorithm ten times longer from a single starting
allocations and sometimes it is not. The reason is found in Fig. 2. As the number of tests
increases the gain will be less and less for each test. Thus, when the number of tests
reaches a certain level the Greedy Algorithm is close to a local maximum and ten times
more tests will gain very little. By using ten new initial allocations that particular local
maximum can be avoided, and if the new initial allocations are fortunate a better result
is found when reaching the same number of tests. This is what happened in the case with
10 x 500 and 1 x 5000. On the other hand if the number of tests is low the Greedy Al-
gorithm still can gain much with running the same initial allocation for ten times longer.
This opposed to running ten Greedy Algorithm with random initial allocation to the pre-
viously low tests. This is the case for 10 x 50 and 1 x 500.

Based on the findings above and the threshold we propose a new algorithm, called
Dynamic Start Greedy Algorithm. The algorithm is the Greedy Algorithm with an ini-
tial allocation based on binpacking. When the threshold has been reached a new initial
allocation is created and the algorithm continues until the threshold is reached again.
The new algorithm uses the threshold in order to determine whether it is useful to con-
tinue running or not. At the same time the algorithm is able to stop running and choose
a new initial allocation before it runs too long time with an initial allocation The history
of already tested allocations should be kept from one initial allocation to the next.

The Dynamic Start Greedy Algorithm continues with an initial allocation until it
reaches a local maximum, then it jumps to a new initial allocation to investigate if it is
better. This is the inverse of simulated annealing [6] that jumps frequently in the begin-
ning and more seldom after a while.

Fig. 3. The difference between 1 x 500 vs. 10 x 50 tests, and 1 x 5000 vs. 10 x 500 tests
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4 Related and Future Work

The GAST tool [5] is somewhat similar to the tool described here. GAST originates
from the real-time area. With GAST it is possible to automate scheduling, by defining
different scheduling algorithms. The GAST tool needs a specification of all tasks, their
worst case execution time, period, deadline and dependencies. This specification must
be done by hand, which could be a very tedious task to do. Also, high performance com-
puting does not necessarily have either periods or deadlines and a task in GAST may
only be a fraction of a thread, since a task can not synchronize with another task inside
the task. Each thread must then (by hand) be split into several tasks.

The Greedy Algorithm could be compared, using the tool described in this paper,
by replacing the algorithm with simulated annealing [6], etc. This, however, is consid-
ered to be future work.

5 Conclusion

We have presented and validated a tool that makes it possible to execute an application
on a single processor workstation and let the tool find an allocation for the application
on a multiprocessor with any number of processors. The tool uses a Greedy Algorithm
that may improve the performance of an application with more than 40% (in average)
compared to the binpacking algorithm. We have also shown that it is possible do define
a stop criterion that stops the algorithm when there have been no gain for a certain time.
By trading off a speed-up loss of 2% we reduced the number of tests performed with
38%. Finally, a new algorithm is proposed that seems promising in giving even better
allocations and reducing the risk of getting stuck in a local maxima.
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Efficient performance tuning of parallel programs is often hard. Optimiza-
tion is often done when the program is written as a last effort to increase the
performance. With sequential programs each (executed) code segment will
affect the completion time. In the case of a parallel program executed on a
multiprocessor this is not always true, due to dependencies between the dif-
ferent threads. Thus, certain code segments of the execution may not affect
the completion time of the program. Optimization of such code segments will
not increase the performance. In this paper we present an approach to
optimize performance by finding the extended critical path of the multi-
threaded program. The extended critical path analysis is a generalization of
the critical path analysis in the sense that it also deals with more threads than
processors. We have implemented the extended critical path analysis in a per-
formance optimization tool. The tool allows the user to determine the
extended critical path of a multithreaded application written for the Solaris
operating system for any number of processors based on execution on a
single processor workstation. � 2001 Academic Press

Key Words: Multithreading; multiprocessor; critical path analysis; perfor-
mance optimization; performance analysis.

1. INTRODUCTION

Parallel processing is an important way to increase the performance of computa-
tionally demanding applications, and applications developed for multiprocessors
are likely to have high performance requirements. However, it is not always easy to
write parallel applications for multiprocessors. The application developers need
support in order to write parallel applications with high performance.
A number of commercial multiprocessor platforms have emerged. The developer

must make sure that the application runs efficiently on different numbers of pro-
cessors, since it is the customer that decides the size of the multiprocessor based on

doi:10.1006!jpdc.2000.1667, available online at http:!!www.idealibrary.com on

115 0743-7315�01 �35.00
Copyright � 2001 by Academic Press
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the actual performance requirements and the price!performance ratio. In some
cases, the developers want the multithreaded application to scale-up beyond the
number of processors available in a multiprocessor today in order to meet future
needs. Thus, there is no single target environment and the development environ-
ment may not be the same as the target environment. Often the development
environment is the (single processor) workstation on the developer's desk.
Just like the code in sequential applications, the code in parallel applications can

be optimized in order to reduce the completion time of the application and thus
increase the performance. The optimization is done by reducing the execution time
for certain code segments, preferably the code segments that have the largest impact
on the completion time of the application. In the case of a sequential application,
all executed code segments contribute to the completion time. When executing a
parallel application on a multiprocessor all code segments may not contribute to
the completion time. Therefore, it is hard for the developer to know which code
segments will actually reduce the completion time of the parallel application, thus
making it hard to prioritize the optimization efforts.
Consider the program in Fig. 1. We assume that all functions (a�d) take an equal

amount of time to execute and that signaling takes no (or negligible) time. When
executing the program on an SMP (symmetric multiprocessor) with three pro-
cessors (or more) the execution will look like Fig. 1. Imagine that function a( ) is
optimized with a small value =; then the completion time will be 2= shorter. Further,
imagine that function b( ) is optimized with a small value =, then there will be no
reduction in the completion time at all. When optimizing functions c( ) or d( )
with a small value = the reduction will be equal to =. Thus, optimizing function a( )
will have the largest impact. However, when executing the program on one pro-
cessor, function b( ) will be the function with the largest impact (3=).
The functions execute for the same amount of time in this example. Neither dif-

ferent execution length of the different functions nor different execution length for
different invocations of the same function (due to, e.g., different input parameters)
are limitations in our technique (see Section 3.2).
We define the extended critical path as all the executed code segments of a

program that, when reduced with a small =, will reduce the completion time on

FIG. 1. A simple program with three threads and the execution on a multiprocessor with
three processors.

116 BROBERG, LUNDBERG, AND GRAHN

Thread 1

Thread 2

Thread 3

a

b

b

b

d

c

X

Y

Z

Time

a

Thread 1: Thread 2: Thread 3:
Execute a() Execute b() Wait for event X
Signal event X Wait for event Y Execute c()
Execute b() Execute d() Signal event Y
Wait for event Z Signal event Z Execute b()
Execute a() End End
End
88 Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors



Paper VI
a given number of processors. Consequently, all code segments of a program
executed on a single processor will be considered as part of the extended critical
path. This is because if we reduce any part of a program on a single processor it
will result in a shorter completion time.
Ordinary profiling tools, such as Quantify [13], only consider the (extended)

critical path in the case of one processor. They will indicate that the program in
Fig. 1 spends most of the time in function b( ) and suggest that function for
optimization. This is shown in Fig. 2 where the functions a( ) to d( ) are found
at the top; the other functions shown are only for internal use in the Solaris operat-
ing system. The tools and methods described in [3, 8, 18] have critical path
analysis and will show that a( ) is the most beneficial to optimize. However, those
tools and methods assume that there is only one thread (or process) scheduled on
each processor.
Our approach with the extended critical path generalizes the two extreme cases

above. Not only in the case of one processor for all threads, or one processor for
each thread, but for any number of processors regardless of the number of threads.
Thus, with our approach it is also possible to analyze the application in Fig. 1 for
the case of two processors. The techniques presented here do not require access to
a multiprocessor. The approach used is to trace the behavior of a parallel applica-
tion on a single processor workstation. Using these recordings, information about
the performance of the parallel application on a multiprocessor with an arbitrary
number of processors is obtained by simulation. As a proof of concept, a tool called
visualization and predication of parallel program behavior (VPPB) has been
modified to show that the methods are applicable in a real world programming
environment.

FIG. 2. Quantify's list of the functions to optimize.
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The paper is structured as follows: Section 2 describes the algorithm for calculat-
ing the extended critical path. In Section 3 we present a working tool with the
extended critical path analysis implemented and show by three practical examples
in Section 4 the need for such a tool. Discussion is found in Section 5, and related
work is found in Section 6. In Section 7 future work is discussed. The conclusion
is found in Section 8.

2. THE EXTENDED CRITICAL PATH ALGORITHM

In this section we describe how the extended critical path algorithm works. First,
we describe the algorithm for identifying the extended critical path in the special
case with one thread per processor. Then, we describe how to calculate the time
spent by each function executed in the extended critical path. Finally, we show how
to calculate the extended critical path for multithreaded programs with more run-
nable threads at the same time than there are processors.

2.1. Finding the Extended Critical Path with One Thread per Processor

We start to look at the extended critical path algorithm under the condition that
the program is executed on a sufficient number of processors and thus no threads
have to share a processor at any time. This is the same assumption used in [3, 8,
18]. We assume that explicitly synchronized events happen at the exact same time,
such as one thread releasing another thread. This means that a thread starts to
execute at exactly the same moment as the other thread releases it. This assumption
is realistic, does not change the algorithm in principal, and is kept here in order to
simplify the presentation. A segment is the execution for a thread between two syn-
chronizations, in this case we also regard the beginning and the end of the thread
as a synchronization. The algorithm is found in Fig. 3 in pseudo-code.
The algorithm starts at the end of the execution and follows the last thread,

called i; it continues backward until the thread i was blocked for some reason. Then
the algorithm finds the event by thread j that released thread i. The algorithm then
continues to follow the releasing thread j backward until it also was blocked. Thus,
in that manner the algorithm continues until the start of the program. All code
segments of the program that the algorithm goes through are part of the extended
critical path.

FIG. 3. Pseudo-code for finding the critical path with unlimited number of processors.
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segment = find_last_executing_segment();
stop = find_first_executing_segment();

mark_for_critical_path(segment);
while(segment != stop) {
previous_segment = find_previous_segment_for_the_same_thread(segment);
if(start_time_for(segment) == end_time_for(previous_segment)) /* Was blocked? */
segment = previous_segment; /* Not blocked */

else
segment = find_segment_with_end_time_equal_to_start_time_of(segment); /* Blocked */

mark_for_critcal_path(segment);
}
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To illustrate the algorithm we use the example program with three threads in
Fig. 4. The execution times for the different functions are illustrated in the lower
part of Fig. 4, where also the execution of the program on three processors is
illustrated.
Following the algorithm described above we start at the end of the execution, i.e.,

thread 3 at time 11. Tracing thread 3 backward makes us go through functions
f( ), a( ), h( ), and finally g( ). At time 4 to 5 the thread was not executing; i.e.,
it was blocked. The thread (3) was waiting for event Z. Thread 1 releases thread
3 at time 5; thus we continue the algorithm with thread 1. Thread 1 executes
through functions b( ) and a( ) without being blocked until the start of the
program at time 0.
Thus the extended critical path for the program is thread 1 executing functions

a( ) and b( ) and thread 3 executing functions g( ), h( ), a( ), and f( ). It is
easily verified that optimizing any other part of the program will not affect the com-
pletion time when using three processors.

2.2. Calculating Function Execution Times Contributing to the Extended Critical
Path

In the previous section, all the synchronizations were done between the function
calls. This is not always the case, since synchronizations could appear inside the
functions as well. This complicates the calculation of the time spent in certain func-
tions during the extended critical path. This calculation is done after the extended
critical path analysis; thus we only concentrate our effort on those parts that are
in the extended critical path. We will calculate three values per function:

FIG. 4. The optimal execution of the program with three threads. The values in italic indicate the
number of executing threads.
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v The number of calls. This is the number of times the function was called
during the extended critical path.

v The total execution time (TET). This time is the accumulated time, in the
extended critical path, the program was executing in the function.

v The total execution time including all descendant functions (TETID). This
time is the accumulated execution time for the function and its descendants during
the extended critical path.

The first value is determined by calculating the number of function entrances
along the segments in the extended critical path. The other two values are
calculated by re-creating the function call stack. For each segment in the extended
critical path, the function on the top of the stack will increase its TET with the
length of the segment. The other functions on the stack will increase its TETID
with the length of the segment. The re-creation of the function call stack is needed
since the function entrance may not be in the extended critical path, but parts of
the execution in the function may be.

2.3. Finding the Extended Critical Path with CPU Constraints

In Section 2.1 we defined the algorithm for finding the extended critical path
when an unlimited number of processors are available. Unfortunately, this is not
always the case in real life. The work done in [3, 8, 18] does not address that.
Thus, we need to adjust the algorithm to fit whenever there are more runnable
threads than there are processors. In that case, some threads at some times must
be multiplexed by the scheduler on one processor.
We keep the example in Fig. 4, but look at what happens if we only have two

processors available. The number of executing threads is indicated for each time
unit as the figures in italic. The interesting parts are when the number of threads
is larger than the number of processors. In the example this is time 2 to 3 and time
8 to 9 where three threads are executing on the two available processors. One way
of modeling the multiplexing is to consider the processors to run more slowly as the
number of threads increases. The processors run at only 2!3 speed for time 2 to 3
and time 8 to 9; i.e., we assume that the scheduling is ideal with infinitely small time
slices and no scheduling overhead. This assumption has previously been used in
some performance prediction tools with accurate result when compared with real
scheduling [7].
In Fig. 5 pseudo-code for finding the extended critical path is found. Before

explaining the algorithm we define two different kinds of segments:

v A segment is the execution for a thread between two synchronizations, in
this case we also regard the beginning and the end of the thread as a synchron-
ization, using one processor per thread. In Fig. 4 each ``execute'' statement is a
segment.

v A time segment is the time period when no threads synchronize or are
started or finished in the optimal execution. In Fig. 4 each time unit is a time
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FIG. 5. Pseudo-code for finding the extended critical path with limited number of processors. P is
the (limited) number of processors available.

segment. Consequently, since we assume that no events happen exactly at the same
time, the number of time segments is equal to the total number of segments for each
thread.
The first function (calculate�execution�time) in Fig. 5 calculates the time

required to execute the application. First we divide the execution into time
segments. The time required for executing such a time segment depends on the
number of currently executing threads. If the number of executing threads during
the time segment is less than or equal to the number of processors available then
the execution time is the same as the time segment length. When there are more
threads than processors, the time required to execute that time segment will be
longer. How much longer is given by the number of threads divided by the number
of processors. This is then multiplied with the time segment length in order to get
the executing time of the time segment.
The second part of Fig. 5 (calculate�extended�critical�path) describes

how to identify the segments that are in the extended critical path. First the total
execution time required is calculated. Then, for each segment, the execution time is
calculated if that segment is shorted by a small value =, less than the shortest time
segment above. In Fig. 4, this corresponds to less than one time unit. If the execu-
tion time is not affected by this change, the segment is not part of the extended
critical path. In other cases the segment is part of the extended critical path. By
dividing the difference of the execution times with the selected = we get a weight of
how much impact the segment has on the extended critical path.
Following the algorithm in Fig. 5 the extended critical path for the application

in Fig. 4 when executed on two processors will be: thread 1, a( ), b( ), e( ), and
i( ); thread 2, g( ); and thread 3, g( ), h( ), a( ), and f( ). The path a( ) and
b( ) on thread 1 and g( ), h( ), a( ), and f( ) on thread 3 is the critical path
for an unlimited number of processors as discussed in Section 2.1. The execution
time is found in Fig. 6a and is 12 time units. If we, e.g., select function g( ) on
thread 2, the algorithm will shorten the execution time for g( ) on thread 2 with
a small value, e.g., one half time unit. Then the execution will look like Fig. 6b. The
time segment where g( ) is included is now from time 2 to 2.5 and the following
time segment is from time 2.5 to 4. The resulting execution time is now 11.75 and
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calculate_execution_time() {
exec_time = 0;
for_each_time_segment {
exec_time = exec_time + length_of_time_segment * max(number_of_threads/P, 1);

}
return exec_time;

}
calculate_extended_critical_path() {
original_execution_time = calculate_execution_time();
for_each_segment {
decrease_segment_execution_time_with(epsilon);
set_segment_weight((original_execution_time - calculate_execution_time())/epsilon);
increase_segment_execution_time_with(epsilon); /* to restore the execution time */

}
}
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FIG. 6. A program with its three threads. Each time segment is indicated with dotted lines. The
values in italic indicate the time required to execute that time segment.

FIG. 7. An example showing that the weight for a segment may be more than one. (a) The nonop-
timized execution. (b) The thicker line optimized with half a time unit. In this example the weight for
the thicker line is 1.333.
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FIG. 8. An example of how optimization can extend the total execution time for an application.

this is less than in Fig. 6a. Thus, function g( ) on thread 2 is part of the extended
critical path and the weight is 0.5=(12&11.75)!0.5.
A segment, e.g., function c( ), on thread 1 is not part of the extended critical

path as shown in Fig. 6c since the execution time is the same as in Fig. 6a.
Now, we have found the extended critical path and can calculate how much a

function spent in the extended critical path as discussed in Section 2.2, but with the
difference that the function times are multiplied with the weight for the segment.
The weight of a segment can be more than one, as shown in Fig. 7. When

optimizing the thicker segment with, say, half a time unit and executing on three
processors two things happen. First, the period of time when there are four pro-
cessors is reduced; thus, total execution time is gained. Second, the last thread
executing (thread 2) decreases by half a time unit. The total effect is 2!3 time units
by optimizing half a time unit. The weight will then be 1.333=0.667!0.5. Note that
when analyzing the same example on two processors the same segment will have a
weight of 1.0; i.e., the weight of the segment increases when going from two pro-
cessors to three.
Another aspect of the extended critical path algorithm described is that the algo-

rithm also identifies which segments have a negative impact on the total execution
time when optimized. Consider the example in Fig. 8a. When this application is
executed on three processors an optimization of the thicker segment will increase
the total execution time. This is because optimizing the thicker line will shift thread
1 and the time segment when there are four threads competing for the processors
is even longer as shown inFig. 8b.Our algorithmwill give the segment a negativeweight.

3. IMPLEMENTATION OF THE EXTENDED CRITICAL PATH ALGORITHM

The extended critical path analysis has been implemented in a tool called VPPB
[1, 2]. The extended critical path analysis increases the capacity of the tool in a
natural way.

3.1. Short Description of the VPPB Tool and the Environment

VPPB is a tool for performance optimization of multithreaded programs written
in C!C++ on the Solaris 2.X operating system. This is an environment common
in both academia and industry. The VPPB tool combines two things: visualization
of a multithreaded program's behavior, and prediction of how the program will
execute on a multiprocessor.
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The tool traces the execution of a multithreaded program on a single processor
workstation. The tracing is performed by wrapping the thread library in Solaris 2.X
and recording all the calls made by the program. The recorded information includes
data about when, by which thread, with what parameters, etc., the call was issued.
The recorded information is saved to file upon program exit. Thus, the behavior of
the program is traced. Additional information about the preemptive scheduling of
the LWPs (lightweight processes) [16] is also collected with a Solaris system com-
mand called prex described in [1]. The next step is to simulate the recorded infor-
mation. The Simulator mimics a multiprocessor with any number of processors, the
Solaris scheduling model, and different configurations of the threads [2].
The simulated execution is displayed graphically with two graphs. The first graph

shows the amount of parallelism over time, as well as the number of runnable
threads, i.e., the number of threads ready to execute but with no processor
available. The second graph shows the execution as a Gant diagram based on the
threads, with all synchronization (semaphores, mutexes, etc.) as symbols through
the execution. It is possible to get more information about a single event (such as
a signal on a semaphore at a given time) including the source code line where the
call was made. With this information the developer can easily detect and identify
performance bottlenecks.

3.2. Introducing Extended Critical Path Analysis

The introduction of extended critical path analysis requires that all the function
entrances and exits must be traced. The insertion of function probes is done as a
stage in the compilation phase of the program. Previously, there was no need for
any recompilation or special compilation. The compilation is now done in three
stages for each source code file. The first stage is to compile the source code into
assembler code. The assembler code is then parsed in the next stage and for each
function entrance�exit probes are inserted to record the events. We are then able to
probe each invocation of each function. We use the same kind of recording probes,
TNF (trace normal form), as previously used in the tool [1]. To simplify the
implementation of the parser it assumes that the compiler uses the default optimiza-
tion. It made the implementation easier because a function will then have one single
exit point and the function calls will look the same even if the function is a leaf. A
more sophisticated parser could, however, deal with those issues. Also, more exten-
sive optimization may inline functions instead of making explicit calls; this cannot
be dealt with (this is, however, a common limitation in profilers). The third step is
then to compile the modified assembler code into object code. This stage is per-
formed by the ordinary C!C++ compiler. The probes keep track of the function
call depth for each thread. The developer may set a function call depth limit where
the function calls are no longer recorded in order to avoid the recursive algorithm
generating large amounts of recorded data. In the work by Hollingsworth in [3]
the collected data were limited by only considering a few functions to be traced.
The functions were selected by hand by the user. However, the technique by
Hollingsworth will not automatically avoid recursive function calls generating large
amounts of collected data.
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The Simulator is extended with the algorithms discussed in Section 2. All the dif-
ferent synchronization primitives in the Solaris 2.X thread library are handled,
including semaphores, mutexes, read�write locks, and condition variables as well as
the creation and joining of threads.
The Simulator is used to obtain the execution of the program with one thread per

processor. After the (simulated) execution is obtained, the extended critical path
algorithm can be applied with any number of processors as the argument, as dis-
cussed in Section 2.3, and the result is displayed on a function level as discussed in
Section 2.2 and by making the lines thicker in the Gant diagram for the segments
in the extended critical path.

4. THREE PRACTICAL EXAMPLES

4.1. Parallel Quick Sort

In this example we have used a parallel version of the quick sort algorithm. We
sorted 2,000,000 random integers. The algorithm used is shown in pseudo-code in
Fig. 9. As can be seen, new threads will be created as long as the number of items
to be sorted is greater than 100,000.
The structure of the program can be illustrated as a tree, where the function

RecursiveQuickSort represents the leaves in the tree and the function
ParallelQuickSort the other nodes. Since the tree is unbalanced there will
always be one leaf that is the last to finish execution. This is illustrated in Fig. 10.
Most of the work is performed in the leaves. With one processor per thread only
the path to the latest leaf will be considered and in this path the most time will be
spent in the function ParallelQuickSort . The path is shown in Fig. 10 with the
dashed line.

FIG. 9. Pseudo-code for the ParallelQuickSort algorithm.
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int data[2000000];

ParallelQuickSort(int left, int right) {
/* Sort the integers to the left and right of the selected pivot.
Calculate start and end index for the next calculations to left and right. */

if(right - left > 100000) {
thread_create(ParallelQuickSort, leftStart, leftEnd);
thread_create(ParallelQuickSort, rightStart, rightEnd);

}
else {

RecursiveQuickSort(leftStart, leftEnd);
RecursiveQuickSort(rightStart, rightEnd);

}
}

RecursiveQuickSort(int left, int right) {
/* Sort the integers to the left and right of the selected pivot.
Calculate start and end index for the next calculations to left and right. */

RecursiveQuickSort(leftStart, leftEnd);
RecursiveQuickSort(rightStart, rightEnd);

}
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FIG. 10. An illustration of the tree. The length of the edges illustrates how much data are to be
sorted by the following node.

When the extended critical path analysis is applied, it yields that with a few pro-
cessors (five or less) the recursive function will dominate the extended critical path.
However, with six processors or more our analysis shows that the parallel function
dominates. Thus, depending on the number of processors in the target machine, the
most suitable function for optimization will be different. This is shown in Fig. 11.
We optimized the functions with approximately 200. A verification of the quick

sort program was made on a Sun Enterprise 4000 with eight processors. The result
is found in Fig. 12 and shows that the sort program behaves as predicted in
Fig. 11; i.e., the crossover occurs between five and six processors.
The execution overhead for the instrumentation in this example is less than 20.

This overhead includes all instrumentation needed to do the simulations as well,
not only the data needed for extended critical path analysis.

FIG. 11. The time for the recursive sort function and the parallel sort function spent in the extended
critical path on different numbers of processors.
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FIG. 12. Validation of the predictions on a multiprocessor with eight processors.

4.2. Finding the n Largest h(x) for N Numbers xi

The second application used in this study is a general search problem. The
problem is to find the n largest h(x), for N numbers xi (1LiLN) where n<<N. If
the function h(x) has local maximas and is computationally expensive then searching

FIG. 13. Schematic picture of the search principle.
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FIG. 14. The parameters and functions used for the study.

through each h(xi) would be computationally expensive. If it is possible to identify
two functions f (x) and g(x) such that h(x)=g( f (x)) where f (x) is computationally
inexpensive and g(x) is monotone, then the following solution would be applicable.
Assume we have k threads. Apply f (x) on each xi with a subset of N!k elements for
each thread and find the n largest f (xi) for each thread. Merge the n largest f (xi)
for all threads into one vector containing the n largest f (xi) for the entire set
xi(1LiLN). Then g(x) will only have to be applied to n numbers at the end. In
Fig. 13 a principal sketch is found.
When applying this algorithm with the parameters found in Fig. 14 we get the

execution times for f (x) and g(x) in the extended critical path as found in Fig. 15.
As can be seen it is in this case most beneficial to optimize f (x) for up to four pro-
cessors, whereas g(x) is most beneficial to optimize for more than four processors.

FIG. 15. The time f (x) and g(x) spent in the extended critical path on different numbers of processors.
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FIG. 16. Validation of the predictions on a multiprocessor with eight processors.

This is verified on an eight-way multiprocessor, as shown in Fig. 16 where f (x)
has better speedup than g(x) for four processors or less. The situation is the
opposite for five processors or more.

4.3. Billing Gateway

The third application used in this study is based on a commercial telecom-
munication application built by Ericsson, called BGw (billing gateway) [4]. We
used a skeleton version of the BGw for our validation because the real BGw uses
a lot of I!O, which is currently not supported by the extended critical path. The
original BGw consists of about 100,000 lines of C++ code.
A principal sketch over the BGw (skeleton) is found in Fig. 17. The BGw

(skeleton) works as a kind of filter. The Readers get the information to be filtered.
As soon as all data are received the information is stored on disk, the disk is syn-
chronized, i.e., all data are physically written to disk, and the receiver is ready for
the next chunk of data. The Sorter reads the file created by the Reader, sorts and
converts the data, and feeds two Writers. The Writers then read the data and send
it further in the system. The skeleton had no I!O and consists of two Readers, two
Sorters, and four Writers as shown in Fig. 17. Each Reader got three packets of
information.
If the extended critical path analysis (shown in Fig. 18) is applied, it is shown

that with a few processors (one or two) the Writer will dominate the extended
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FIG. 17. The organization of the BGw skeleton. In the application used the data were not stored on
file.

critical path. However, with more than two processors our analysis shows that the
Sorter dominates. Ordinary profiling tools, such as Quantify, would indicate Writer
as the most beneficial to optimize. Tools that do critical path analysis for an
unlimited number of processors would identify Sorter as the most beneficial to
optimize. The hump for the Sorter at three to four processors in Fig. 18 is due to
the effect of segments with a weight greater than one as previously shown in
Fig. 7.
Experimental results on an eight-processor Sun Enterprise 4000 show that Writer

is the most beneficial to optimize on one or two processors and Sorter is more
beneficial to optimize on more than two processors. This is shown in Fig. 19 where
Writer, Sorter, and Reader have been optimized by approximately 200 each. The

FIG. 18. The time the three function spent in the extended critical path on different number of
processors.
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FIG. 19. Execution time for Writer, Sorter, and Reader when optimized with approximately 200
each, normalized to a nonoptimized execution time. The nonoptimized execution and the case with one
processor are omitted for readability.

breakpoint when Sorter is more beneficial to optimize than Writer occurs between
two and three processors as predicted. We can also see that the crossing point
between Reader and Writer is between three and four processors as predicted in
Fig. 18.

5. DISCUSSION

The examples in Section 4 show that the function dominating the extended criti-
cal path may change when a different number of processors is used for the same
application. The extended critical path analysis described here assumes that the
scheduling is ideal with infinitely small time slices and no scheduling overhead.
Even if this assumption is quite close to the real world [7], it still differs from a
real execution. Although not implemented, the tool (VPPB) could be extended with
the capability to simulate the execution with one or several functions optimized to
any degree. The result will be a simulation that will mimic the scheduling of the
Solaris operating system with the optimized application. The complexity of the
extended critical path algorithm is manageable, the three examples used for verifica-
tion in Section 4 took at most 0.2 s to analyze on an ordinary workstation (300
MHz Sun Ultra10).

131EXTENDED CRITICAL PATH ANALYSIS

Number of processors

Sp
ee

du
p

2

2.5

3

3.5

4

4.5

5

2 3 4 5 6 7 8

Writer optimized with 20%
Sorter optimized with 20%

Reader optimized with 20%
103Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors



Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors
The extended critical path analysis is developed for CPU intensive applications
and I!O has not been addressed. The tool (VPPB) is capable of recording and
simulating I!O behavior. A simple approach for adding I!O capability for the
extended critical path analysis is to approximate the time the thread waits for
the I!O operation with a sleep for the same period of time. The result is then that
the thread does not use the processor while waiting for an I!O operation and the
extended critical path continues through the I!O operation and continues on the
same thread. With this approach, no change in the extended critical path analysis
is needed. However, I!O could also be used to (implicitly or explicitly) synchronize
between threads. If one thread reads from a file that is empty the thread will be
blocked until another thread writes something to the same file. The effect is then a
synchronization. By recording the corresponding file descriptor for each I!O opera-
tion these dependencies could be solved and I!O will behave more or less as any
other lock. The key difference between ordinary locks and the I!O synchronization
is, however, that it is hard for the Simulator to know if the file is empty or not at
the beginning of execution of the program.
The extended critical path analysis has been addressed for SMPs in this paper.

The technique can be modified for message passing applications on distributed
memory machines as well. The algorithm must then be modified to manage that a
message will take some time to reach its destination. The recording will be local on
each node and after execution is done the recorded material will be merged together
for all nodes in order to apply the extended critical path algorithm. Message pass-
ing applications often use one process�thread per processor and thus the work by
Hollingsworth [3] will be appropriate. However, there is an ongoing trend in the
message passing community to include thread primitives in the message passing
libraries. Then, the situation may occur that there are more threads on one single
node than the number of processors on that node, and the technique by
Hollingsworth will not be appropriate any longer. Our technique will manage that.
For NUMA machines (nonuniform memory architecture) the extended critical path
algorithm does not need any modification at all. However, the simulated execution
that the algorithm makes use of must be made according to the memory delays for
the specific machine. When considering distributed applications, the problem is the
same as for a message passing application, but it may be harder to keep a syn-
chronized clock for the distributed machines. A synchronized clock is needed when
merging the local log files before applying the extended critical path algorithm.
The extended critical path algorithm can be applied to languages other than

C!C++ with Solaris threads. For instance, Java could be used as well. Java includes
primitives for critical regions and monitors. Critical regions and monitors can be
implemented with the Solaris thread primitives mutex and condition variables. Thus,
it is feasible to use the extended critical path analysis for Java as well. It is worth not-
ing that the specification of the Java virtual machine, described in [6] by Lindholm
and Yellin, does not say if the Java threads can actually make use of more than one
processor. Threads that cannot make use of more than one processor are called
green threads, whereas threads that can use more than one processor are called red
threads (or native threads). It is the Java virtual machine that decides if a Java
thread will be green or red; this cannot be decided in the programming language.
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6. RELATED WORK

The critical path analysis is a well-known technique [3, 8, 18]. However, all
these approaches originate from the message passing area where the common case
is one thread (process) per processor. The works in [3, 8, 18] are based on a PAG
(program activity graph) where the critical path is defined as ``the longest, time-
weighted sequence of events from start of the program to its termination.'' This
means that analysis is done with no limitation on the number of processors
available and shows only the points at 16 processors in Fig. 11. However, it is not
unusual to have several threads competing for a lesser number of processors in a
multithreaded application. In [18] this issue is addressed briefly by using a CPU-
based timer when measuring the length of the edges in the PAG. Even if a process
is scheduled off the process, the time will be counted to the corresponding edge in
the PAG. Thus, when doing the critical path analysis on the PAG the scheduling
will be included. The drawback to this solution is that the critical path will not
include the process that executed instead. An example with two processes, where
process 1 calculates for 12 time units and process 2 acts as a watchdog executing
five times for 1 time unit every second time unit, demonstrates this. The example
is illustrated in Fig. 20 when executing on a single processor. Given the solution by
Yang and Miller in [18] process 1 will have the total length of 17 and thus will be
the longest path and be called the critical path. However, optimizing process 2 will
also yield a reduced completion time in this example. The critical path by Yang and
Miller in [18] will not identify that. Our extended critical path algorithm handles
situations like the one in Fig. 20.
In [8], interest is also focused on the second longest path, etc., in the application.

This is because if the critical path is optimized to the extent that it will no longer
be the longest path, then the second longest path will be the critical path. This
technique will not be appropriate for a multithreaded application with more
threads executable than processors since the optimization of one function may
affect how the application will be scheduled by the operating system.
Other optimization tools for multiprocessors only identify the critical path on

one processor. The Solaris program tha [15] is designed to work as prof [14]
with the difference that the information collected is on a per thread basis. Tha
collects prof information per thread and yields correct information per thread.
However, there is no information about the execution flow and dependencies
between the threads. Simply adding all threads' accumulated execution times for a
given function would yield the same information as in Quantify [13]. While tha
supports better information, it also has some major drawbacks described in [15];
e.g., it is not possible to use the standard C++ I!O primitives.

FIG. 20. Two processes executing on one processor.
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Another way of presenting the performance problems of multithreaded programs
is based on contention, as in Tmon [5]. The contention is based on locks and con-
text switching overhead. Tmon use two single processor workstations, one to
execute the multithreaded program and the other to gather the recorded data. The
data are analyzed, to some extent, in real time. This setup requires a fast intercon-
nection between the single processors. The applicability of Tmon on multipro-
cessors is not addressed in [5].
There are other tools that support simulation of a parallel program behavior and

then visualize the result [9�12, 17]. However, they do not support (extended)
critical path analysis.

7. FUTURE WORK

The extended critical path is shown in the VPPB tool as thicker lines in the Gant
diagram. The information about different functions is simply a list of metrics per
function. The use of a function call graph found in many conventional profiling
tools, e.g., Quantify [13], is not directly applicable, since the extended critical path
may move from one thread to another due to synchronizations. The synchroniza-
tions may be placed deep down in the functions and thus the extended critical path
jumps from a function called deep down in one thread to another function deep
down in another thread. The simple call graph will not cope with this kind of jump.
An issue for future work is, therefore, to improve the visualization and representa-
tion of the extended critical path for the developer.
The simple approach for including I!O in the extended critical path analysis dis-

cussed in Section 5 could also be addressed as future work. However, full support
for I!O will require further investigations and could be, as such, a future develop-
ment of the extended critical path analysis.
Another thing that would be appropriate for future work is to identify by how

much a function can be optimized before another function will become the function
that the most time is spent in. On a single processor it is possible to optimize a
function until the total execution time for that function is less than some other func-
tion. It is not that simple on a multiprocessor executing more threads than pro-
cessors, since optimizing one function may alter the scheduling order and another
segment may become a part of the extended critical path. Also along those lines,
support for elaborating with different optimizations of functions directly in the tool
would be interesting. Then it would be possible to allow the developer to specify
how much a certain function can be optimized (based on an estimation) and rerun
the simulation with the ``pseudo-optimized'' function. After that, the extended
critical path analysis can be applied on the rerun simulation.

8. CONCLUSION

Traditional performance optimization is done when the program is written. The
main goal is to increase the performance of the application. The existence of a
number of commercial profiling tools [13�15] shows the importance of the
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optimization task. Multiprocessors are used for the same reason, i.e., to increase the
performance. Performance optimization for programs designed for multiprocessors
is at least as important as optimization of sequential programs, because high perfor-
mance requirements are often a major reason for using multiprocessors in the first
place.
In the case of a multithreaded program executing on a multiprocessor it is not

certain that all executed code segments will add to the completion time. A simple
example is a watchdog, which in the single processor case will be a part of the com-
pletion time. However, on a multiprocessor, the watchdog may execute on its own
processor. The watchdog will then not affect the completion time of the program.
Traditional profilers, such as Quantify [13] and tha [15], give misleading infor-

mation about where in the code to concentrate the optimization efforts. In some
cases Quantify will actually give the worst possible indications. The reason these
kind of tools give misleading information is that they assume that all executed code
segments contribute to the completion time.
To implement efficient performance optimization we must concentrate the efforts

on the critical path. The critical path as it is addressed in [3, 8, 18] will not fit our
need when more threads are able to execute than there are processors available.
Our extended critical path analysis is dependent on the synchronization behavior
in the multithreaded program and the number of processors. In this paper an algo-
rithm to find the extended critical path has been presented. The algorithm manages
not only an ideal situation when there are as many threads as processors, but also
when there are fewer processors than threads.
The possibility for the developer to connect the extended critical path to those

functions that are part of the extended critical path is important. We have presented
an algorithm that does so on a multiprocessor. The algorithm also shows the
amount of time spent in the functions during the extended critical path.
These methods have been implemented in a performance optimization tool called

VPPB [1, 2]. The tool pinpoints what parts of the code to optimize without the
need of a multiprocessor. The current platform for the tool is the Solaris 2.X
operating system; thus, the tool is applicable to a large number of industrial
applications.
The usefulness of the method has been demonstrated by using the tool on three

parallel programs. The correctness of the predictions was verified on an eight-
processor SMP.
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Abstract
The cluster systems used today usually prohibit that a running process on one node is reallo-
cated to another node. A parallel program developer thus has to decide how processes should
be allocated to the nodes in the cluster. Finding an allocation that results in minimal comple-
tion time is NP-hard and (non-optimal) heuristic algorithms have to be used. One major draw-
back with heuristics is that we do not know if the result is close to optimal or not.

In this paper we present a method for finding a guaranteed minimal completion time for a
given program. The method can be used as a bound that helps the user to determine when it is
worth-while to continue the heuristic search. Based on some parameters derived from the pro-
gram, as well as some parameters describing the hardware platform, the method produces the
minimal completion time bound. The method includes an aggressive branch-and-bound algo-
rithm that has been shown to reduce the search space to 0.0004%. A practical demonstration
of the method is presented using a tool that automatically derives the necessary program
parameters and produces the bound without the need for a multiprocessor. This makes the
method accessible for practitioners.

Key words: analytical bounds, minimal completion time, parallel programs, multiprocessors,
clusters, processor allocation, branch-and-bound, development tool

1. Introduction

Multiprocessors are often used to increase performance. In order to do this, the program processes
have to be distributed over several processors. Finding an efficient allocation of processes to proc-
essors can be difficult. Clusters of computers use communication networks to send messages
between the processes. In almost all cases it is impossible to (efficiently) move a process from one
computer to another, and static allocation of processes is thus essential and an unavoidable aspect
of such systems.

Even if we consider shared memory multiprocessors, which are often built using a distributed
memory approach, we have to consider the allocation issues. Although the network connecting
the processors is of high capacity the time for accessing remote memory is 3 to 10 times longer
than accessing local memory [21]. In order to avoid that a process is scheduled on different nodes,
and thus make the working set for the process into remote memory accesses, one would like to
statically bind/allocate the process to a node in the system. The synchronizations between proc-
esses will still be performed remotely.

Finding an allocation of processes to processors that results in minimal completion time is a
classic allocation problem that is known to be NP-hard [7]. Therefore, heuristic algorithms have
to be used, and this results in solutions that may not be optimal. A major problem with the heuris-
tic algorithms is that we do not know if the result is near or far from optimum, i.e. we do not know
if it is worth-while to continue the heuristic search for better allocations.
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In this paper we present a method for finding a completion time that, given a certain program,
can be achieved. The method can be used as an indicator for the completion time that a good heu-
ristic ought to obtain. The method produces the minimal completion time given some parameters
derived from the program as well as some parameters describing the hardware platform. The pro-
duced performance bound is optimally tight given the information that we have available about
the parallel program and the target multiprocessor.

The result presented here is an extension of previous work [17][18]. The main difference
between this result and the previous result is that we now can take network communication time
and program granularity into consideration. A practical demonstration of the method is presented
at the end of the paper.

2. Definitions and main result

A parallel program consists of a set of sequential processes. The execution of a process is control-
led by two synchronization primitives: Wait(Event) and Activate(Event), where Event couples a
certain Activate to a certain Wait. When a process executes an Activate on an event, we say that
the event has occurred. It may, however, take some time for the event to travel from one processor
to another. We call that time the synchronization latency . If a process executes a Wait on an
event which has not yet occurred, that process becomes blocked until another process executes an
Activate on the same event and the time has elapsed. However, if both processes are on the same
processor, we assume time for the event to travel to be zero, i.e. zero synchronization latency. A
process executing a Wait on an event which has occurred more than time units before does not
become blocked. However, if the event occurred less than time units ago the process executing a
Wait on the event has to block for the remaining part of , unless both processes reside on the
same processor (we assume time for the event to travel to be zero within a processor).

Each process can be represented as a list of sequential segments, which are separated by a
Wait or an Activate (see Figure 1). We assume that, for each process, the length and order of the
sequential segments are independent of the way processes are scheduled. All processes are cre-
ated at the start of the execution. Some processes may, however, be initially blocked by a Wait,
thus imitating the behaviour that one process creates another process. Under these conditions, the
minimal completion time for a program P, using a system with processors, a latency of and a

specific allocation denoted , is . We further find the minimal completion time for a

program P, using a system with  processors, a latency of , as .

The left part of Figure 1 shows a parallel program consisting of three processes (P1, P2, and
P3). Sequential processing is represented by a procedure Work, i.e. Work(x) denotes sequential
processing for time units. Process P1 cannot start its execution before P2 has started. This
dependency is represented with a Wait on event 1 in P1. The right part shows a graphical repre-
sentation of and two schedules resulting in minimum completion time for a computer with

three ( ) and two processors ( ), respectively. We assume that each parallel pro-
gram has a well defined start and end, i.e., that there is some code that is always executed first and
some other code that is always executed last. The thin slices in the beginning and end of P2 repre-
sent such a well defined start and end of the program, no actual execution is performed since there
is no corresponding Work. The left part of Figure 1 (two processors) shows local scheduling,
which means that two or more processes share the same processor. The local schedule, i.e., the
order in which processes allocated to the same processor are scheduled affects the completion
time of the program. We assume optimal local scheduling when calculating .

t

t

t
t
t

k t

A T P k t A, , ,( )
k t T P k t, ,( ) minAT P k t A, , ,( )=

x

P

T P 3 t, ,( ) T P 2 t, ,( )

T P k t, ,( )
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For each program with processes there is a parallel profile vector of length . Entry
in ( ) contains the fraction of the completion time during which there are active proc-
esses, using a schedule with one process per processor and no synchronization latency. The com-
pletion time for a program with processes, using a schedule with one process per processor
and no synchronization latency is denoted . is fairly easy to calculate. In
Figure 1, the completion time for the parallel program, using a schedule with one process per
processor and no synchronization latency is 3 time units, i.e. . During time unit
one there are two active processes (P1 and P3), during time unit two there are three active proc-
esses (P1, P2, and P3), and during time unit three there is one process (P2), i.e.

. Different parallel programs may, obviously, yield the same parallel pro-
file vector.

For each program there is a granularity, denoted , that represents the program’s synchroni-
zation frequency. By adding the work time of all processes in program , disregarding synchroni-
zation, we obtain the total work time of that program. The number of synchronization signals in
program is divided by the total work time for a program in order to get the granularity, . In the
example in Figure 1 the granularity equals .

The completion time is affected by the way processes are allocated to processors. Finding an
allocation which results in minimal completion time is NP-hard. However, in this paper we will
show that a function can be calculated such that for any program with proc-

esses, granularity , and a parallel profile vector :

. The function is

optimal in the sense that for at least some program , with processes, granularity , and a par-

allel profile vector : . Conse-

quently, for all programs with processes, granularity , and a parallel profile vector :

.

The outline for this paper is found in Figure 2. In Section 3 we will show some transformation
techniques that allow us to split the program into two parts. The first part includes all the execu-
tion time and the other consists of synchronizations only. Then the two parts will be examined
resulting in an analytical model for each part in Section 4 and Section 5, respectively. In Section 6
we combine the results from the two parts into a single result that covers the whole program. Fol-
lowing that there is a section where we practically demonstrate the use of this method using a
tool. Towards the end we have some discussion and related work. Finally, we have the conclu-
sions.

process P1 process P2 process P3
begin begin begin

Wait(Event_1); Activate(Event_1); Wait(Event_2);
Work(1); Activate(Event_2); Work(2);
Activate(Event_3); Wait(Event_3); Activate(Event_5);
Work(1); Work(2); end P3;
Activate(Event_4); Wait(Event_4);

end P1; Wait(Event_5);
end P2;

P1 }

Figure 1: Program P with synchronization signals.
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Figure 2: The outline of this paper.
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3. Splitting the program into one thick part and one thin part

In this section we will look at techniques, that transform a program into two parts, one thin part
only consisting of synchronizations, and the other part consisting of all the execution time. We
will then discuss the thick and thin parts separately in Section 4 and Section 5, respectively.

3.1. Obtaining P’ as m identical copies of program P

We construct a program  that is  copies of program .

Lemma 1: .

Proof: Having ( ) copies of program , means that we multiply both and
 by : .

�

Figure 3 shows the transformation of the program into copies of this program, denote as
. Program  (left part in the figure) consists of execution time and synchronization signals.

3.2. Replacing four copies of a program with three new programs

We prolong each time unit of each process in program by and get program .
Program is then transformed into in the same way, i.e. after the transformation each time
unit  is prolonged with .

In the case with one process per processor and no communication cost the difference of the
completion time of  = T(P,n,0)/x.

The situation with synchronization latency is more difficult. Since the synchronization cost in
this case is not zero, the differences after prolongation are not always equal, because we do not
prolong the synchronizations themselves. Let denote the difference in length between and

. If we denote the length of program with , the length of will be . In the
same way we create with a difference between and called . The length of will
then be the length of  (see Figure 4).

P

P' m P

T P k t, ,( ) T P n 0, ,( )⁄ T P' k t, ,( ) T P' n 0, ,( )⁄=

m m 1> P P k t, ,( )
T P n 0, ,( ) m T P k t, ,( ) T P n 0, ,( )⁄ mT P k t, ,( ) mT P n 0, ,( )⁄ T P' k t, ,( ) T P' n 0, ,( )⁄= =

P m
P' P

Figure 3: Transformation P into P’.

   Program P’

  Program P

m copies

x x 0>, P ∆x P'
P' P''
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T P'' n 0, ,( ) T P' n 0, ,( )– T P' n 0, ,( ) T P n 0, ,( )–= ∆x

∆L P
P' P L P' L' L ∆L+=

P'' P' P'' ∆L' P''
L'' L ∆L+( ) ∆L'+=
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In order to discuss the effects of local scheduling separately, we will assume that there is only
one process per processor. We will relax this restriction at the end of this section (Section 3.2).
The critical path is defined as the longest path from the start to the end of the program following
the synchronizations. In the case when two (or more) paths are the longest, the path with the min-
imum number of arrows (synchronizations) is the critical path.

Let be a number of arrows in the critical path in the program , and be the
number of arrows in the critical path in  (i.e.  after the prolongation).

Lemma 2: .

Proof: Suppose that and that it in program there is another path that con-
sists of more than arrows. Because we prolong the processes, the path with more arrows (and
thus less execution) increases slower than the critical path. Consequently, the path with more
arrows never can be longer than the critical path.

�

Then of course: .

When we prolong a program the critical path may change its way (see Figure 5). This happens
when path two is longer than path one, and path two has less execution (and thus more synchroni-
zations) than path one. As a consequence of the prolongation, path one will grow faster than path
two. At a prolongation of a given the resulting program with the paths one and two will
have the same length. Adding yet a  will yield program  where path one is the longest path.

Program P Program P’ Program P’’

 L
L’=L+∆L

L’’=(L+∆L)+∆L’

Figure 4: The transformation of the program P by prolongation of the processes.

}x }x+∆x }x+2∆x

arr P( ) P arr P'( )
P' P

arr P( ) arr P'( )≥

arr P( ) x x 0≥( ),= P
x

arr P'( ) arr P''( )≥

∆x P'
∆x P''

Figure 5: Path p1 grows faster than p2 when we add .∆x

Program P Program P’’Program P’

∆L

∆L’
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Theorem 1: .

Proof: Let be the length of path one, where is the sum of the lengths of

the segments in path one, is the number of arrows with the communication cost . Let

be the corresponding length for path two. Further, let and path two

be the critical path, i.e. . Then let and

. Let also and

. There are three possible alternatives (provided that there are only

these two paths in the system):
•  and . In this case , the critical path does not change.

• and . In this case , since path one grows faster than path two

when we add .

• and . In this case , since path one grows faster than path two

when we add .
If there are more than two paths in the program, we may have another path (besides path one and
two) that becomes the critical path in P’’. In this case we get , since the new path must
contain more processing (and less synchronizations) and thus grow faster than paths one and two
when we add .

�

According to Theorem 1 we have:

Theorem 2: .

Proof: .
�

This means that the length of two copies of is less than or equal to the length of plus the
length of .

We will now look at the case where there can be more than one process on each processor. Let
programs P, P’ and P’’ be programs where there are more than one process on some processors; P,
P’ and P’’ are identical except that each work-time in P’’ is twice the corresponding work-time in
P’, and all work-times are zero in P. Consider an execution of P’’ using allocation A and optimal
local scheduling. Let Q’’ be a program where we have merged all processes executing on the same
processor into one process. Figure 6 shows how processes P2’’ and P3’’ are merged into process
Q2’’. Let Q’ be the program which is identical to Q’’ with the exception that each work-time is
divided by two. Let Q be the program which is identical to Q’’ and Q’ except that all work-times
are zero.
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E2 y2 arr E2( )t+= y1 y2>

E1 E2< E1' y1
x ∆x+

x
--------------- arr E1( )t+=

E2' y2
x ∆x+

x
--------------- arr E2( )t+= E1'' y1

x 2∆x+
x

------------------- arr E1( )t+=

E2'' y2
x 2∆x+

x
------------------- arr E2( )t+=

E1' E2'< E1'' E2''< ∆L ∆L'=

E1' E2'< E1'' E2''≥ ∆L ∆L'<

∆x

E1' E2'≥ E1'' E2''> ∆L ∆L'<

∆x

∆L ∆L'<

∆x

2L' L L''+≤

2L' L ∆L L ∆L+ + + L ∆L L ∆L'+ + +≤ L L ∆L ∆L'+ +( )+ L L''+= = =

P' P
P''
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From Theorem 2 we know that . We use the
same allocation A for both P’’ and Q’’. However, since there are less processes in Q’’ we ignore
the allocation of non-existing processes in Q’’, i.e. each process in Q’’ is allocated to a processor
of its own. From the definition of Q’’ we know that T(P’’, k, t, A) = T(Q’’, k, t, A). Since the opti-
mal order in which the processes allocated to the same processor (i.e. the optimal local schedule)
may not be the same for P’ and P’’ we know that , since Q’ by defi-
nition is created with the optimal local scheduling of P’’.

Consider now a program R, such that the number of processes in R is equal to the number of
processes in P, and such that R also has zero work-time (i.e. R contains only synchronizations, just
like P). The number of synchronizations between processes Ri and Rj in program R is twice the
number of synchronizations between Pi and Pj in program P, i.e. there is always an even number
of synchronizations between any pair of processes in R. All synchronizations in R must be exe-
cuted in sequence (see Figure 7). We know that it is always possible to form such a sequence,
since there is an even number of synchronizations between any pair of processes.

Sequential execution of synchronizations obviously represents the worst case, and local
scheduling does not affect the execution time of a sequential program. We thus know that

 and .
Consequently,

.

2T Q' k t A, , ,( ) T Q k t A, , ,( ) T Q'' k t A, , ,( )+≤

T P' k t A, , ,( ) T Q' k t A, , ,( )≤

P1’’ }
Time

2 time
units

P2’’

P3’’

Figure 6: Transforming a program P’’, allocated to two processors, into a program Q’’ with one process per
processor.

process Q1’’ processQ2‘’
begin begin

Wait(Event_1); Activate(Event_1);
Work(1); Activate(Event_2);
Activate(Event_3); Wait(Event_2);
Work(1); Work(1+t);
Activate(Event_4); Wait(Event_3);

end Q1’’; Work(2);
Work(1-t);
Activate(Event_5);
Wait(Event_4);
Wait(Event_5);

end Q2’’;

process P1’’ process P2’’ process P3’’
begin begin begin

Wait(Event_1); Activate(Event_1); Wait(Event_2);
Work(1); Activate(Event_2); Work(2);
Activate(Event_3); Wait(Event_3); Activate(Event_5);
Work(1); Work(2); end P3’’;
Activate(Event_4); Wait(Event_4);

end P1’’; Wait(Event_5);
end P2’’;

=>

2T P k t A, , ,( ) T R k t A, , ,( )≤ 2T Q k t A, , ,( ) T R k t A, , ,( )≤

4T P' k t A, , ,( ) 4T Q' k t A, , ,( ) 2T Q'' k t A, , ,( )≤ 2T Q k t A, , ,( ) 2T P'' k t A, , ,( ) T R k t A, , ,( )+≤+≤
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3.3. Transforming program P into a program with a thick and a thin section

In this section we describe how to transform an arbitrary program into a program with one part
consisting of synchronization only and the other part with all the execution time. We start with an

arbitrary program P’. First we create m copies of P’, where , for some integer x ( ).
We then combine the m copies in groups of four and transform the four copies of P’ to two pro-
grams P’’ and one program R. From the discussion above we know that

for any allocation A, i.e.

. Note that , and

that the parameters n, V and z are invariant in this transformation. We now end up with pro-

grams P’’. Again we combine these P’’ programs in groups of four and use the same tech-

nique and end up with programs P’’’ (with twice the execution time compared to P’’) and

one program R. We repeat this technique until there are thin R programs and two very
thick programs (i.e. all the execution time is concentrated to two copies of the original program).
By selecting a large enough , we can neglect the synchronization times in these two copies.

This is illustrated in Figure 8, where we demonstrate it for . Note that the execution time

using  processors may increase due to this transformation, whereas  is unaffected.
Thus, we are able to transform a program into two parts: a thin part consisting only of syn-

chronizations, and the other part consisting of all the execution time. We will then discuss the
thick and thin parts separately in Section 4 and Section 5, respectively.

process R1 process R2 process R3
begin begin begin

Wait(Event_1); Activate(Event_1); Wait(Event_7);
Activate(Event_2); Wait(Event_2); Activate(Event_8);
Wait(Event_3); Activate(Event_3); Wait(Event_9);
Activate(Event_4); Wait(Event_4); Activate(Event_0);
Wait(Event_5); Activate(Event_5); end P3;
Activate(Event_6); Wait(Event_6);

end P1; Activate(Event_7);
Wait(Event_8);
Activate(Event_9);
Wait(Event_0);

end P2;

process P1 process P2 process P3
begin begin begin

Wait(Event_1); Activate(Event_1); Wait(Event_2);
Activate(Event_3); Activate(Event_2); Activate(Event_5);
Activate(Event_4); Wait(Event_3); end P3;

end P1; Wait(Event_4);
Wait(Event_5);

end P2;

P1 P2 P3

R1 R2 R3

Figure 7: Transforming program P into program R.

m 2
x

= x 2≥

4T P' k t A, , ,( ) 2T P'' k t A, , ,( ) T R k t A, , ,( )+≤
4T P' k t, ,( ) 2T P'' k t, ,( ) T R k t, ,( )+≤ 4T P' n 0, ,( ) 2T P'' n 0, ,( ) T R n 0, ,( )+=

2
x 1–

2
x 1–

2
x 2–

2
x 1–

1–

m

m 4=

k T P n 0, ,( )
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4. The thick part

In this section we will deal with the thick part of the program. The thick part has the nice property
that we can assume that the synchronization time ( ) is arbitrarily small, i.e. we can assume

. We can do this since selecting a large enough in Section 3 will cause the synchroniza-
tion time in the thick part to be negligible because virtually all synchronizations will be in the thin
part. We are thus also free to introduce a constant number of new synchronizations without any
problems.

These properties of the thick part will allow us to first transform the thick part into a matrix
consisting of zeros and ones. Using this matrix representation we can then find the worst possible
program of all programs with processes and a parallel profile . Finally, we will show a for-
mula that we can use when calculating the execution time of this worst case program given an
allocation. More elaborate proof and discussion concerning the transformations in this section can
be found in [11] and [12].

4.1. Transforming P into Q

We consider . This execution is partitioned into equally sized time slots in such a
way that process synchronizations always occur at the end of a time slot. In order to obtain we
add new synchronizations at the end of each time slot. These synchronizations guarantee that no
processing done in slot , can be done unless all processing in slot , has been
completed. The net effect of this is that a barrier synchronization is introduced at the end of each
time slot. Figure 9 shows how a program is transformed into a new program by this tech-
nique.

Program P’

m copies

Four copies of program P’

Figure 8: The transformation of m copies of the program P into a thick and a thin part. The transformation
guarantees that .T P' k t, ,( ) T P' n 0, ,( )⁄ T S k t, ,( ) T S n 0, ,( )⁄ T S' k t, ,( ) T S' n 0, ,( )⁄≤=

Program R, the thin part

Two copies of program P’’,
the thick part

Transformation

Program S Program S’

t
t 0= m

n V

T P n 0, ,( ) m
Q

r 1 r m≤<( ), r 1–

P Q
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The synchronizations in form a superset of the synchronizations in , i.e.
(in the thick part of the program we assume that t = 0). Consequently,

. It is important to note that we obtain the same par-
allel profile vector for both  and .

In order to simplify the discussion we introduce an equivalent representation of , called the
vector representation (see Figure 9). In this representation, each process is represented as a binary
vector of length , where is the number of time slots in , i.e. a parallel program is repre-
sented as binary vectors. In some situations we treat these vectors as one binary matrix,
where each column corresponds to a vector and each row to a time slot.

From now on we assume unit time slot length, i.e. . However, ,
because if the number of active processes exceeds the number of processors on some processor
during some time slot, the execution of that time slot will take more than one time unit.

With we denote the set of all programs with processes and a parallel profile . From

the definition of the parallel profile vector, , we know that if , then must be

a multiple of a certain minimal value , i.e. where ,

for some positive integer x.
Programs in for which are referred to as minimal programs. For

instance, the program in Figure 1 is a minimal program for the parallel profile vector
.

We are now able to handle programs as a binary matrix. Each column in the matrix represent
one process, and the rows are independent of each others.

4.2. Transforming Q into Q’

We start by creating copies of . The vectors in each copy are reordered in such a way that

each copy corresponds to one of the possible permutations of the vectors. Vector number

in copy number is concatenated with vector number in copy ,

thus forming a new program with vectors of length . The execution time from slot

to cannot be less than , using processors. Conse-

quently, cannot be less than . Since, , we know that

. It is

important to note that we obtain the same parallel profile for both  and .

The vectors in can be considered as columns in a matrix. Reordering the rows

in this matrix affects neither nor . The rows in can be reordered into
groups, where all rows in the same group contain the same number of ones (some groups may be
empty). Figure 10 shows how program  is transformed into a new program .

Figure 9: The transformation of program P
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Due to the definition of minimal programs, we know that all minimal program result in the

same program . In Figure 10 we have a situation where . If ( ) is a

program for which , then the corresponding program is identical

with , except that each row in is duplicated times. Creating identical copies of each

row does not affect the ration . Consequently, all programs in can

be mapped onto the same . We have now found the worst possible program

( ).

4.3. Allocation properties of the thick part

The completion time of is not affected by the identity of the processes allocated to differ-

ent processors, because if vector is allocated to processor A and vector is allocated to

processor B, then moving to B and to A is equivalent to reordering the rows in . Obvi-

ously, reordering the rows does not affect the completion time. Consequently, the completion time
of  is affected only by the number of vectors allocated to the different processors.

Theorem 3: If there are vectors allocated to processor A and vectors to processor B and

, the completion time cannot increase if we move one vector from processor B to proces-

sor A.

Figure 10: The transformation of vector representation of program Q into Q’.
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Proof: We order the vectors in in such a way the vectors to are allocated to processor A

and vectors to are allocated to processor B, then we prove that moving vector

 to processor A does not increase the completion time.

If vector has a zero in slot ( ), the contribution to the completion time

from row will not be affected by moving vector from processor B to processor A. Con-

sequently, we have only to consider rows for which the corresponding slot is one in vector .

Moreover, if the number of ones in positions to is smaller than the number of ones in posi-

tions  to , the contribution to the completion time from row  does not increase.

contains all permutations. Consequently, for each row such that position con-

tains a one, and there are at least as many ones in positions to as in positions to

, there exists an -permutation . An -permutation of a row is obtained

by switching items  and  ( ), see Figure 11.

If the contribution to the completion time from row increases from to when we

move vector from processor B to processor A, there must be ones in position to in

row . In that case we know that the symmetry of the -permutation guarantees that there

are at least ones in positions to in row . Therefore, the contribution to the

completion time from will decrease with one when moving vector from processor B to

processor A. Consequently, the completion time of cannot increase if we move one vector

from processor B to processor A.
�

As a consequence, an allocation of results in shorter completion time the more evenly the

processes are spread out on the processors. Also the identity of the processes is of no importance,
and we can thus order the vectors in some arbitrary order. In fact, the minimal completion time

is obtained by allocating vector number  to processor  ( ).

4.4. Calculating the thick section

The most obvious way of calculating the thick part is to generate the matrix containing

all permutations. This is however extremely inefficient. We will in this section show how to calcu-
late the thick part in an analytical and generic way for any allocation of processes to processors.

Qm' 1 n1

n1 1+ n1 n2+

n1 1+

n1 1+ r 1 r n!mv≤ ≤

r n1 1+

n1 1+

1 n1

n1 1+ n1 n2+ r

Qm' r n1 1+

1 n1 n1 1+

n1 n2+ n1 n2,( ) r' n1 n2,( )

i n1 n2 1 i–+ + 1 i n1≤ ≤
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Figure 11: One (2,4)-permutation and one (2,3)-permutation of the same row.
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The actual allocation is specified using an ordered set. The notation used for an ordered set is

that the number of elements in the ordered set is , thus . Also, the i:th element of the

ordered set is denoted , thus .

First we will show how we handle the case when the number of processes executing simulta-
neously changes during run-time. Then we will look at how to calculate the execution time of the
case with a fixed number of processes executing simultaneously. In order to perform those calcu-
lation we use another function. At the end of this section we will demonstrate the most fundamen-
tal parts of the functions below using a small example.

4.4.1 s(A, V)
This function is used to handle the case when the number of processes executing simultaneously
changes during run-time, indicated by the parallel profile . This is illustrated by in
Figure 10. In this figure we have a parallel profile

. For each entry in this vector we count the ones

(using function described in Section 4.4.2) and use the parallel profile ( ) as weight when add-

ing them together. As found in the previous section the allocation is independent of the process

identity, thus the allocation only shows the number of processes allocated to each processor,

where is decreasing, i.e. for . Note that we have the parameters and

implicit in the vectors,  and .

The binary matrix in Figure 10 can be divided into n parts such that the number of ones in
each row is the same for each part. The relative proportion between the different parts is deter-
mined by the parallel profile vector. The function s(A,V) is then obtained as the weighted sum of

these parts, i.e., .

4.4.2 f(A, q, l)

This function calculates how long it takes to execute a program with processes and rows

where processes, and only , are executing simultaneously using an allocation , compared to
executing the program using one processor for each process. This is done by counting the maxi-
mum number of ones for each processor for all rows. The function is recursively defined and

divides the allocation into smaller sets, where each set is handled during one (recursive) call of

the function. The function uses another function later found in Section 4.4.3. The function will
be discussed in detail in Section 4.4.4 using an example.

uses for the number of ones in a row. The denotes the maximum number of

ones in any previous set in the recursion. Note that we have the parameters and implicit in the

vector, and . From the start . We also have ,

(  and ) and .
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If  then , otherwise:

.

4.4.3 (k, w, q, l)
[11] is a help function to and denotes the number of permutations of ones in

slots, which are divided into sets with slots in each, such that the set with maximum number

of ones has exactly ones. if or if , otherwise if then

, otherwise it is given by:

.

Here, the sum is taken over all sequences of non negative integers , which are

decreasing, i.e. for all , and for which and

. The functions  and  are defined in the following way:

 = the number of occurrences of the j:th distinct integer in .

 = the number of distinct integers in .

More detailed proofs and discussions for how the functions in this subsection (Section 4.4.3)
are obtained can be found in [11] and [12].

4.4.4  A guide through the most fundamental formula in the thick part
In this section we will focus on the function , since function is quite simple and the function
is already described in [11] and [12]. The example we will use have the following parameters

and . This means that we have five processes of which three, and only three,
are running simultaneously. We also have three processors, two which are assigned two processes
each, and one processor with one process assigned to it. All possible permutations of this system
is found in Table 4, where a one indicates that the process is running and a zero that the process is
blocked, thus we have the vector representation found in Figure 9. What is more included in the
table is the execution time required to execute each row (the left-most column). This column is
calculated by finding the processor with the largest number of ones. For example, in row 1 proces-
sor A has to execute both process 1 and 2, which means that it will spend 2 time units of execu-
tion. Processor B has only process 3 to execute (process 4 has a zero), thus it will spend 1 time
unit. Thus the time for executing this row is two time units and is determined by processor A.
Another case is row 5, where all three processors only have a single one each, thus the time for
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executing that row is one time unit. The total time for executing the program is given by adding
the execution time per each row, resulting in 16 time units.

We will now briefly describe the basic structure of function . The allocation ( )
is split into sets of processors with equal number of processes assigned to them. Remember that

is decreasing. In our example we have the sets of and . Each such set fits into the

function and will be handled separately through the recursion. The variable is the length of

such a set and is the number of processes in each element in the set, thus is the number of

processes in the set. The variable is the number of processes in the remaining part of the alloca-
tion, thus representing the maximum number of ones that possibly can be fit into the remaining
part of the allocation. The variable iterates over all possible number of ones that can fit in each

processor. Also the variable iterates over all possible number of ones that can be contained in

the whole set. The variable holds the maximum number of through the recursion and all the

sets. The variable is set to zero for the first call to function for the only reason that it will not

be larger than any of the  in the sets.

In the following sections we will go through the simple example starting in Section 4.4.5 with
the first call to function  with the initial parameters.

4.4.5 f(A=(2, 2, 1), q=3, l=0)
From the incoming parameters we can conclude that , , , and . Since

the second part of the function is used. Further the variable . For each iteration

over  we have:

• : The variable , thus we have the call to function

and the (recursive) call to (see Section 4.4.6 for how this is calculated).

The resulting value is then .

Table 4: The permutations of the system and .

Row
number

Processor A Processor B Processor C Execution
time per rowProcess 1 Process 2 Process 3 Process 4 Process 5

1 1 1 1 0 0 2

2 1 1 0 1 0 2

3 1 1 0 0 1 2

4 1 0 1 1 0 2

5 1 0 1 0 1 1

6 1 0 0 1 1 1

7 0 1 1 1 0 2

8 0 1 1 0 1 1

9 0 1 0 1 1 1

10 0 0 1 1 1 2

A 2 2 1, ,( )= q 3=

f A 2 2 1, ,( )=

A 2 2,( ) 1( )
π d

w dw

b
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i

l l1

l f

l1
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• : The variable , for each iteration over  we have:

- : The call to function and the (recursive) call to

(see Section 4.4.7 for how this is calculated). The resulting value of

this iteration is then .

- : The call to function and the (recursive) call to

(see Section 4.4.7 for how this is calculated). The resulting value of

this iteration is then .

In total . This is what we concluded by hand in Table 4.

4.4.6 f(A=(1), q=1, l=1)
From the incoming parameters we can conclude that , , , and . Since

the first part of the function is used. Further the variable . For we have

the call to function and . The resulting value of

this iteration is then . In total .

4.4.7 f(A=(1), q=1, l=2)
From the incoming parameters we can conclude that , , , and . Since

the first part of the function is used. Further the variable . For we have

the call to function and . The resulting value of

this iteration is then . In total .

5. The thin part

From Section 3 we know that the thin part of a program for which the ratio
is maximized consists of a sequence of synchronizations, i.e. program R in

Section 3. From Section 4 we know that the identity of the processes allocated to a certain proces-
sor does not affect the execution time of the thick part. In the thin part we would like to allocate
processes that communicate frequently to the same processor.

Let yi be a vector of length i-1. Entry j in this vector indicates the number of synchronizations
between processes i and j. Consider an allocation A such that the number of processes allocated to
processor x is ax. The optimal way of binding processes to processors under these condition is a
binding that maximizes the number of synchronizations within the same processor.

Consider also a copy of the thin part of the program where we have swapped the communica-
tion frequency such that process j now has the same communication frequency as process i had
previously and process i has the same communication frequency as process j had previously. In
Figure 12 the original communication vector for P3 is (6,2), meaning that there are six synchroni-
zations between P3 and P1 and two synchronizations between P2 and P3. In the copy we have
swapped the communication frequencies of P2 and P3 and we thus have six synchronizations
between P2 and P1 and two synchronizations between P2 and P3.

It is clear that the minimum execution time of the copy is the same as the minimum execution
time of the original version. The mapping of processes to processors that achieves this execution
time may however, not be the same. For instance, if we have two processors and an allocation A =
(2,1), we obtain minimum completion time for the original version when P1 and P3 are allocated
to the same processor, whereas the minimum for the copy is obtained when P1 and P2 share the
same processor.

l1 2= i 2…3= i

i 2= π 2 2 2 2, , ,( ) 2=

f 1( ) 1 2, ,( ) 2=

2 2⋅ 4=

i 3= π 2 2 3 2, , ,( ) 4=

f 1( ) 1 2, ,( ) 2=

4 2⋅ 8=

f 2 2 1, ,( ) 3 0, ,( ) 4 4 8+ + 16= =

n 1= w 1= d 1= b 0=

b 0= l1 1…1= l1 1=

π 1 1 1 1, , ,( ) 1= max l1 l,( ) max 1 1,( ) 1= =

1 1⋅ 1= f 1( ) 1 1, ,( ) 1=

n 1= w 1= d 1= b 0=

b 0= l1 1…1= l1 1=
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1 2⋅ 2= f 1( ) 1 2, ,( ) 2=
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If we concatenate the original (which we can call P) and the copy (which we can call Q) we
get a new program P’ such that for any allocation A
(all thin programs take zero execution time using a system with one process per processor and no
communication delay). By generalizing this argument we obtain the kind of permutation as we
had for the thick part (see Figure 10).

These transformations show that the worst case for the thin part occurs when all synchroniza-
tion signals are sent from all processes times - each time to a different process. All possi-

ble synchronization signals for processes equals and all possible synchronization

signals between the processes allocated to processor i equals . Because some processes

are executed on the same processor, the communication cost for them equals zero. That means
that the number of synchronization signals in the worst-case of program (regarding communica-

tion cost) is equal to .

Note that we have the parameters and implicit in the vectors, and

.

If  then , otherwise .

6. Combining the thick and thin sections

Combining the thick and the thin section is done by adding the function and ,

weighted by the granularity, . Thus, we end up with a function

. It should be noted that the allocation implicitly

includes the parameters and . As we can see in the formula we use

the granularity, , as a weight between the thick part and the thin part. In a program with high
granularity, i.e. high synchronization frequency, the thin part has larger impact than in a program
with low granularity.

As previously shown the thick section is optimal when evenly distributed over the processors,
whereas the thin section is optimal when all processes reside on the same processor. The algo-
rithm for finding the minimum allocation is based on the knowledge about the optimal alloca-
tion for the thick and thin part respectively.

P1 P2 P3 P1 P2 P3

Figure 12: Making a copy where we have swapped the communication frequencies of processes P2 and P3.
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6.1. Finding the optimal allocation using allocation classes

The basic idea is to create classes of allocations and evaluate them. An allocation class con-
sists of three parts:

• A common allocation for both the thick and thin parts, the allocation here shows the number
of assigned processes for the first processors. The allocation must be decreasing, i.e. the

number of assigned processes to processor must be greater than or equal to the number of

assigned processes to processor .
• The allocations for the remaining processors for the thick part, the allocations are evenly dis-

tributed. The highest number of processes assigned to a processor must be equal or less than
the least number of assigned processes for any processor in the common assignment.

• The allocations for the remaining processors for the thin part, the allocations make use of as
few of the remaining processors as possible and with as many processes as possible on each
processor. The highest number of processes assigned to a processor must be equal or less
than the least number of assigned processes for any processor in the common assignment.

An example of an allocation class with the common part consisting of one processor,

and , is shown in Figure 13(a) where the first part is the common allocation, the upper part
is the thick allocation for the remaining 3 processors and the lower part is the thin allocation for
the remaining 3 processors. In Figure 13(b) we have the first allocation, with no common alloca-
tion at all. In fact this first allocation consider the thick part only and, thus is quite inaccurate. In
Figure 13(c) are all the possible allocation classes for this example. By calculating the thick part
using the common and thick allocation and the thin part using the common and thin allocation we
will get a result that is better than (or equal to) any allocation within that class. This is because we
will get an over-optimal result, due to the fact that we have different allocations for the thick and
the thin part, which in practice is impossible. Then we take the minimum value of all the classes
in Figure 13(c) for the over-optimal allocation.

6.2. Branch-and-bound algorithm

The algorithm for finding an optimal allocation is a classical branch-and-bound algorithm [1].
The allocations can then be further divided, by choosing the class that gave the minimum value
and add one processor in the common allocation, lets say in this example (in Figure 13) the class
with 5 processors in the common allocation was the minimum. The subclasses are shown in
Figure 13(d). All the subclasses will have a higher (or equal) value than the previous class. The
classes are organized as a tree structure and the minimum is now calculated over the leaves in the
tree and a value closer to the optimal is given. By repeatedly selecting the leaf with minimum
value and create its subclasses we will reach a situation where the minimum leaf no longer has
any subclasses, then we know that we have found the optimal allocation. If we assume that the
classes in Figure 13(e) and (f) gives the minimum values we have reached an optimal allocation.
When calculating a class we use the common allocation concatenated with the thick allocation as
input for the function and , where is the common allocation

concatenated with the thick allocation and is the common allocation concatenated with the

thin allocation. By adding the results (weighted by ) from the two functions we get the value of

that leaf ( ).

n
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6.3. Lazy evaluation

We can further reduce the number of calculations by adopting a lazy evaluation approach.
This approach is based on the observation that the value for the thick part (function ) in
Figure 13(c) increases as we calculate it for more and more processes on the first processor. This
is also shown in Figure 14 for an application with . We also know that the value
of the thin part is decreasing as we increase the number of processes on the first processor, also
shown in Figure 14. The value of an allocation class is, as stated above, the sum of the thick part
and the thin part weighted by , which is shown in Figure 14 for some .

The lazy evaluation is based on the fact that the thick part is increasing and the thin part is
decreasing. We can conclude from Figure 14 that the minimum of the thick and thin curve is at
eight processes on the first processor, thus when we reach 31 processes on the first processor we
note that the thick part alone is larger than the minimum at 8 processes. We then know that this
allocation (and further) can never be the minimum (since the thick part is increasing) regardless
how much the thin part decreases. In this case the thin part may become zero since the allocation

yields a thin part of zero. We mark all allocations with more than 31 processes on the first
processor to have the value of at least the value of the thick part of 31 processors on the first proc-
essor and the thin part of allocation (which is zero). If we now apply the same technique in
the subclasses found in Figure 13(d), we know that the least value of the thin part is found in the
allocation . This means that the thin part is never lower than in this allocation class, thus we
can stop evaluating when the value of the thick part of the current allocation and the thin part of
allocation (the allocation with the least thin part) reaches above the minimum. We then
mark the remaining allocations with the value of at least the thin part of the current allocation and
the thin part of allocation .
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When we continue (in Figure 14) to make the allocation subclasses to the class with eight
processes on the first processor the minimum may increase. At some point the minimum may
increase above the value of the thick part at 31 processes on the first processor, then we have to
continue to calculate the case with 32 processes and so on until we once again find a thick part
that is larger than the minimum. The benefit with this lazy evaluation is that we will not always
have to evaluate all allocation classes as later shown in Section 7.2.

The drawback with this algorithm is that it (theoretically) can search through all possible
nodes in the tree before finding the optimal solution. However, our practical experience shows
that only very few nodes needs to be investigated until the optimal leaf is found, see Section 7.2.

7. Method demonstration

In this section we will demonstrate how the method in this paper can be used in a practical case.
Previously we have developed a tool for monitoring multithreaded programs on a uni-processor
workstation and then, by simulation, predict the execution of the program on a multiprocessor
with any number of processors. The tool is called VPPB (Visualization of Parallel Program
Behaviour) [2, 3]. We have modified this tool to extract the program parameters required by our
method ( , , and ). The tool can be given information about the hardware in order to simulate
synchronization latency ( ) between the (simulated) processors. We use that ability to compare
the results from our method with the simulations.

7.1. Overview of the Tool

The VPPB tool enables the developer to monitor the execution of a parallel program on a uni-
processor workstation, and then predicts and visualizes the program behaviour on a simulated
multiprocessor with an arbitrary number of processors.

The VPPB consists of three major parts, the Recorder, the Simulator, and the Visualizer. The
workflow when using the VPPB tool is shown in Figure 15. The developer writes the multi-
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threaded program (a) in Figure 15, compiles it and an executable binary file is obtained. After
that, the program is executed on a single processor workstation. When starting the monitored exe-
cution (b), the Recorder is automatically inserted between the program and the standard thread
library. Each time the program uses the routines in the thread library, the call passes through the
Recorder (c) which records information about the call, i.e., the identity of the calling thread, the
name of the called routine, the time the call was made, and other parameters. The Recorder then
calls the original routine in the thread library. When the execution of the program finishes all the
collected information is stored in a file, the recorded information (d). The recording is done with-
out recompilation or relinking of the application, making our approach very flexible.

The Simulator simulates a multiprocessor execution. The main input for the simulator is the
recorded information (d) in Figure 15. The simulator also takes the configuration (e) as input,
such as the target number of processors, etc. The output from the simulator is information describ-
ing the predicted execution (f). In the simulator we can count the number of threads in the pro-
gram, the parameter . We can also count the number of synchronizations in the recorded
information, as well as accumulate all execution times recorded in order to get the execution time
when using one processor. The later is used together with the number of synchronizations to get
the granularity, parameter . Also the parallel profile vector, parameter , can be obtained using
the simulator. The simulator simulates the recorded information using as many processors as there
are threads, then the simulator is able to calculate the parallel profile vector. The simulator was
already able to simulate more loosely coupled systems, thus, to set a latency time for the synchro-
nizations between processors [3]. This functionality can be used when comparing a real allocation
(predicted by the simulator) with the values given from the function .

Using the Visualizer the predicted parallel execution of the program can be inspected (g). The
Visualizer uses the simulated execution (f) as input. The main view of the (predicted) execution is
a Gantt diagram. When visualizing a simulation, it is possible for the developer to use the mouse
to click on a certain interesting event, get the source code displayed, and the line making the call
that generated the event highlighted. The result from the algorithm is shown as a vertical bar, indi-
cating that this is longest time the program has to run if appropriately allocated. With these facili-
ties the developer may detect problems in the program and can modify the source code (a) or
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change the allocation. Then the developer can re-run the execution to inspect the performance
change.

The VPPB system is designed to work for C or C++ programs that uses the built-in thread
package [9] and/or POSIX threads [6] on the Solaris 2.X operating system.

7.2. Example - prime number generator

We will demonstrate the described technique (including the tool described in Section 7.1) by
bounding the speed-up of a parallel C-program (with Solaris threads) for generating all prime
numbers smaller than or equal to a number X. The algorithm generates the primes numbers in
increasing order starting with prime number 2 and ending with the largest prime number smaller
than or equal to X. A number Y is a prime number if it is not divisible by any prime number
smaller than Y. Such divisibility tests are carried out by filter threads; each filter thread has a
prime number assigned to it. This is shown in Figure 16. In the front (the first process) there is a
number generator feeding the chain with numbers. When a filter receives a number it will test it
for divisibility with the filter’s prime number. If the number is divisible it will be thrown away. If
the number is not divisible it will be sent to the next filter. In the case that there is no next filter, a
new filter is created with the number as the new filter’s prime number.

The demonstration was performed with a number generator that stops by generating number
397, which is the 78th prime number. This means the program will contain 79 threads (including
the number generator). The VPPB tool uses the thread programming model which means that the
target environment is a (distributed) shared memory machine. The program’s speed-up has been
evaluated using three kinds of networks; fast network with no extra time for a (remote) synchroni-
zation, ordinary network with a synchronization time of four microseconds, and a slow network
with eight microseconds latency. The value of the ordinary network has been defined by the
remote memory latency found in three distributed shared memory machines: SGI’s Origin 2000
[10], Sequent’s NUMA-Q [14], and Sun’s WildFire [8]. The remote memory latency varies
between 1.3 to 2.5 micro seconds [21] and a synchronization must at least include two memory
accesses (the thread releasing the thread issues a write and the receiving threads issues a read).
The slow network is simply twice the ordinary network. The results are compared to the predic-
tions of the tool in Section 7.1 when applying the corresponding cost for synchronization. The
allocation algorithm used in the simulated case is simple. The first processes (process one is
the number generator, process two is the first filter, and so on) are allocated to the first processor,
the next processes to the second processor and so on. In the case when is not divisible with

, the first modulus processors are allocated processes and the remaining processors
are allocated processors. This is a common way to allocate chain-structured programs [4].

As can be seen in Figure 17 (zero latency) the simple allocation scheme performs worse than
function , and we can thus conclude that we for sure are able to find a better allocation. In
Figure 18 (latency is four micro seconds) the simple allocation scheme performs worse than func-
tion for less than eight processors, and we can thus conclude that we for sure are able to find a
better allocation when we have less than eight processors. In the case with eight processors or
more we can not conclude if there is a better allocation or not. However, it is important to know
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that the fact that we are above the bound does not guarantee that the simple allocation is the opti-
mal. In Figure 19 (latency is eight micro seconds) the simple allocation scheme performs worse
than function for four (or less) processors, and we can thus conclude that we for sure are able to
find a better allocation when we have less than five processors. In the case with five processors or
more we can not conclude if there is a better allocation or not.

p

Figure 17: The speed-up for the prime number program on a fast network (latency = 0 s).µ
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Figure 18: The speed-up for the prime number program on an ordinary network (latency = 4 s).µ
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If we keep the number of processors constant, say at eight, we see how the functions and allo-
cations are affected by the network latency time, shown in Figure 20. The speed-up will decrease
as the latency increases. This is clearly shown for function . The simple allocation is latency tol-
erant and the speed-up decreases, although hard to see. This is due to allocating the first processes
(which also communicated the most) to the same processor, and so on.

Figure 19: The speed-up for the prime number program on a slow network (latency = 8 s).µ
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Figure 20: The speed-up for the prime number program on eight processors with various networks latencies.
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As indicated earlier, the function p gives a bound. The intended usage of this bound is to indi-
cate that there is a better allocation strategy if the current allocation strategy gives results below
the bound, as in the case in Figure 17 (the prime program with no latency). We now look at other
allocation strategies and tries a round robin strategy that assigns (on a multiprocessor with k proc-
essors) thread number i to processor (i mod k)+1. In Figure 21 we see that the round robin strat-
egy gives better result than the bound. However, a better result than the bound does not
automatically means that we have found an optimal result.

In Figure 22 the previous graphs are summarized. The figure shows the function for a
latency between 0 and 8 micro seconds and the number of processors between 1 and 16.

It took in average 102 seconds to calculate a data point in the graph in Figure 22 on a 300
MHz Sun Ultra 10 workstation. The reason for finding the optimal solution so fast is the use of
allocation classes and the branch-and-bound algorithm combined with the lazy evaluation,
described in Section 6. One might think that if we desire to find the optimal solution, all the calcu-
lations with allocation classes will be waisted since they are all (except the last) unrealistic alloca-
tions (different allocations for the thin and thick part). On the contrary, by traversing the tree from
the top we are able very efficiently ignore several branches. The reason for this is that an alloca-
tion class will always have worse (or equal) results in its sub-classes. We are thus able reduce the
search dramatically. We are able to reduce some of the calculation costs as well. The major calcu-
lation cost is for the thick part and in Figure 13(d) we can see that the top allocation class has the
same thick part allocation as the previous allocation class in Figure 13(c). Then we can re-use the
already calculated value of the thick part, however the two remaining allocations in Figure 13(d)
have to be calculated. Note that we always calculate the thin part, since it is very fast to calculate.
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In order to illustrate the benefits of our algorithm we consider the prime number program on
16 processors. In total we can find 6,158,681 unique allocations of the 79 processes on 16 proces-
sors. The number of allocations that needs to be evaluated using our approach is very small, in
Figure 23 the fraction of allocations calculated using branch-and-bound compared to extensive
search is shown. As can be seen, roughly only one allocation out of 80,000 needs to be evaluated
even without the lazy evaluation. If we add the lazy evaluation we have to evaluate roughly one
allocation out of 270,000. The time to calculate the optimal allocation for the prime number pro-
gram ( s) is five minutes on a 300MHz Ultra 10. Without the allocation classes,
branch-and-bound technique and lazy evaluation the same calculation would require two and a
half year.

8. Discussion and Related Work

The parameters used by the method do not require such an advanced tool as the one used in Sec-
tion 7. However, in order to get the programs parameters we still need some kind of tool. In order
to calculate the granularity, , we need the programs total execution time (on one processor)
which can be obtained by executing the program on a single processor workstation and some
time-command to measure the time. The number of synchronizations must, however, be measured
in some other way. One way could be to use the (unsupported) tool from Sun called tnfview [22]
which graphically shows all threads and synchronizations. Although possible to calculate the
number of synchronizations by hand a short script would do the work. The tnfview also shows the
number of threads, i.e. the parameter .
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The remaining parameter, the parallel profile vector , is somewhat harder to obtain than
and . Here we need to find the amount of parallelism in the program when there are one proces-
sor for each process. For many systems the number of processors in a multiprocessor is less than
the number of threads in the program. We can use tnfview (with some limitations as discussed and
solved for our tool in [2]) in order to capture the synchronizations between threads and calculate
the sequential work time between the synchronizations. With this information we can build a
weighted directed graph where each node is a sequential segment (with the work time as weight)
and where an edge is a synchronization. With this graph we can obtain the parallel profile vector

. The length of the longest path in the graph will represent .
Further development of the method could be to adjust the formulas to include that several

processors may be situated on the same node, sharing the same physical memory, thus the latency
is then between processors on different nodes and not between processor on the same node. Proc-
esses may also be dynamically scheduled from one processor to another within the same node.

The basic approach in the current work is to obtain a performance bound, which we know is
possible to achieve. This approach has been used for a long time in real time systems, where it is
well known that a set of n tasks is schedulable if the sum of processor utilization is less than
n(2(1/n) - 1) [5], similar results also exist for real-time process sets which operates under what is
called an age constraint [19][20].

The proof techniques described in Section 4 in this paper has previously been used for obtain-
ing performance bounds in a number of application areas besides multiprocessor scheduling, e.g.
cache memory systems [13], parallel accesses to multiprocessor memory systems [16], and mes-
sage scheduling on a number of communication links [15].

Figure 23: The fraction of allocations calculated using allocation classes and branch-and-bound with and
without the lazy evaluation compared to extensive search, expressed in ppm (parts per million).
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9. Conclusion

Cluster systems do not usually allow processes to dynamically migrate from one node to another.
It is thus essential to find an efficient allocation of processes to processors. Even in the case of
machines with distributed shared memory such allocations can be beneficial. Unfortunately, find-
ing the optimal allocation is NP-hard and we have to resort to heuristic algorithms to find a good
allocation. One problem with heuristic algorithms is that we do not know whether the result is
close to optimal or if it is worth-while to continue the search for a better result.

In this paper we find a way to analytically calculate a bound on the minimal completion time
for a given parallel program. The program is specified by the parameters (the number of proc-
esses), (the parallel profile vector), and (the synchronization frequency); different programs
may yield the same , , and . Further, the hardware is specified by the parameters (number
of processors) and (the synchronization latency). The bound on the minimal completion time is
optimally tight. This means that there exists a program (with the given parameters , , and )
for which the minimal completion time is equal to the bound. The parameters and give a more
realistic model than previous work [17][18]. The bound makes it possible for the user to deter-
mine when it is worth-while to continue the heuristic search, or perhaps apply another heuristic
algorithm. Analytical performance bounds, like the one presented here, have successfully been
used when engineering real-time systems, and techniques similar to the one described here has
been used for network and memory systems. Our method includes an aggressive branch-and-
bound algorithm that, together with lazy evaluation, has been shown to reduce the search space to
only 0.0004% for finding the optimal bound.

The method has been implemented in a practical tool. The tool is able to automatically obtain
the values of , , and for a program and calculate the minimal completion bound with the
given hardware parameters. Based on this practical tool we have demonstrated the usability of the
method. One feature of the tool is that it can be totally operated on a single processor workstation.
This is of practical importance since no multiprocessor is then needed when applying the method.
Finally, the tool makes the presented analytical bound on the minimal completion time easily
accessible for practitioners.
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Abstract
The use of multiprocessors is an important way to increase the performance of a supercom-
puting program. This means that the program has to be parallelized to make use of the multi-
ple processors. The parallelization is unfortunately not an easy task. Development tools
supporting parallel programs are important. Further, it is the customer that decides the number
of processors in the target machine, and as a result the developer has to make sure that the pro-
gram runs efficiently on any number of processors.

Many simulation tools support the developer by simulating any number of processors and
predict the performance based on a uni-processor execution trace. This popular technique
gives reliable results in many cases. Based on our experience from developing such a tool, and
studying other (commercial) tools, we have identified three basic simulation models. Due to
the flexibility of general purpose programming languages and operating systems, like C/C++
and Sun Solaris, two of the models may cause deadlock in a deadlock-free program. Selecting
the appropriate model is difficult, since we in this paper also show that the three models have
significantly different accuracy when using real world programs. Based on the findings we
present a practical scheme when to use the three models.

Key words: Simulation models, trace-driven simulation, development tool, parallel computing,
performance prediction.

1. Introduction

The use of multiprocessors and distributed systems in supercomputing is very common. In order
to take advantage of multiprocessors the programs must be parallelized. However, it is often hard
to write efficient parallel programs for multiprocessors, since the software development tools for
multiprocessors are immature compared to those for sequential programs. As multiprocessors are
used more frequently, performance prediction and visualization of parallel programs become
more important, since the developer needs support tools to write high performance programs.

The developer must make sure that the program runs efficiently on multiprocessors with dif-
ferent numbers of processors, since it is often the customer who decides the size of the multiproc-
essor on the basis of the actual performance requirements and the price/performance ratio. In
some cases, developers want the program to scale-up beyond the number of processors available
in current multiprocessors in order to meet future needs. There is thus no single target environ-
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ment, and the development environment may not be the same as the target environment. Often the
development environment is the (uni-processor) workstation on the developer’s desk.

To predict and visualize the behaviour of parallel programs on the basis of a monitored uni-
processor execution is a commonly used technique as shown in, e.g. [1, 2, 3, 4, 7, 9, 12, 13, 14,
15, 19, 20]. The basic idea is to graphically visualize the execution flow of the parallel program on
a multiprocessor or distributed target system without actually having access to the target system.
In order to do this the parallel execution is simulated based on recorded information collected dur-
ing the monitored uni-processor execution. This technique has, for instance, been used in a com-
mercial tool for message passing systems [12] and research tools for, e.g. FORTRAN [20], Ada
[13], C/C++ [2, 3, 4], pC++ [14, 15, 19], PVM [1], MPI [7], and others [9].

For a number of years we have been working with a performance prediction and visualization
tool called VPPB which supports the development of parallel C/C++ programs consisting of a
number of Solaris threads and/or processes. We have found that the basic approach, i.e., simulat-
ing a multiprocessor execution based on information recorded during a uni-processor execution, is
very useful and generally results in very accurate predictions. However, we have also identified an
important problem with the approach, viz. that a simulation of a deadlock-free program may
result in a deadlock.

We have, based on experiences from real parallel programs, identified three simulation mod-
els, called Direct Model, Client-Server Model, and Strict Sequence Model. Measurements on a set
of benchmark applications show that Direct Model provides the best predictions on average; the
second best predictions are provided by Client-Server Model, whereas Strict Sequence Model has
the worst average predictions compared to a real multiprocessor execution. Strict Sequence Model
will never result in a deadlock, provided that the parallel program is deadlock-free; deadlocks
may occur in the Direct Model and the Client-Server Model. We also present an approach to auto-
matically choose the appropriate simulation model. The evaluation with the benchmark applica-
tions shows that there is no significant difference between the simulation times of the three
simulation models. The simulation times are significantly shorter than a real execution.

We go through the Direct, Client-Server, and Strict Sequence models in Sections 2, 3, and 4,
respectively. In Section 5 we present our experimental methodology. The experimental results for
a number of real world parallel programs predicted by the three models are found in Section 6. In
Section 7 we present a simple method for selecting the appropriate model. Discussion of some
related work is found in Section 8. Section 9 concludes the paper.
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2. Direct Simulation Model

Consider the parallel program in Figure 1 (we assume synchronous synchronization, i.e. a process
executing an Activate is blocked until the corresponding Wait_for has been executed). Work(k)
denotes sequential processing for k time units.

If this program is executed on a two-processor system where P1 and P2 are mapped to one
processor and P3 and P4 are mapped to the other processor, and Prio(P1) > Prio(P2) > Prio(P3) >
Prio(P4), we obtain the execution flow shown in Figure 2. Prio(X) is the priority of process X.

If we execute program P on a uni-processor and record all the synchronization events we get
the trace of recorded information shown in Table 1. We have previously shown that it is possible
to create the lists (one list per process) in Figure 1 based on the information in Table 1 [2, 3].
Based on the lists in Figure 1 it is trivial to simulate the behaviour shown in Figure 2, i.e. the
behaviour using two processors and the priorities and binding of processes to processors dis-
cussed above. This means that we will be able to simulate a multiprocessor execution of program
P based on a recorded uni-processor execution. We have previously validated the accuracy with
very good results [2, 3].

Process P1
Activate(P2)
Work(1)
Activate(P3)
Work(2)
Wait_for(X)
Work(1)
Activate(P4)
Work(1)
Wait_for(X)
Work(2)
Terminate

Process P2
Wait_for(X)
Work(2)
Activate(P1)
Work(1)
Terminate

Process P3
Wait_for(X)
Work(2)
Activate(P1)
Work(3)
Terminate

Process P4
Wait_for(X)
Work(3)
Terminate

Figure 1: A parallel program P.

P1
P2

P4
P3

Time0 5

Figure 2: Execution flow of program P using two processors.

Executing process

Activates

10

Process waiting for CPU
Processor 1

Processor 2

{
{
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The example above indicates no problems, and we have successfully used this Direct Model
on a number of parallel programs. However, there are unfortunately situations where our Direct
Model fails, e.g. the program Q in Figure 3.

Table 2 shows the information recorded during a uni-processor execution. Since we only
record the synchronization events, we do not have any knowledge about program structures such
as loops and if-statements. Consequently, if we, based on the recorded information in Table 2, try
to obtain sequential lists (like the ones in Figure 1) we will end up with a program Q’ shown in
Figure 4.

Table 1: Information recorded during a monitored uni-processor execution of program P.

Time Process Event

0 P1 Create P2
1 P1 Create P3
3 P1 Wait for event X
5 P2 Send event X to P1
6 P1 Create P4
7 P1 Wait for event X
8 P2 Terminate
10 P3 Send event X to P1
12 P1 Terminate
15 P3 Terminate
18 P4 Terminate

Figure 3: A parallel program Q.

 Process P1
Activate(P2)
Work(1)
Activate(P3)
Work(1)
for (i = 1, i <= 2, i++) {

Wait_for(X)
Work(2)
if X == P2

Activate(P2)
else

Activate(P3)
Work(1)

}
Terminate

Process P2
Wait_for(X)
Work(7)
Activate(P1)
Work(1)
Wait_for(X)
Work(1)
Terminate

Process P3
Wait_for(X)
Work(2)
Activate(P1)
Work(1)
Wait_for(X)
Work(1)
Terminate
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The recording in Table 2 is all the information we have about program Q. Based on this
recording we obtain a program Q’, i.e., we (erroneously) assume that Q’ is the program that gen-
erated the information in Table 2 (N.B. for program P we get the same program P’ based on the
trace in Table 1). If we simulate Q’ for a three-processor system where each process is mapped to
its own processor, we produce the execution flow shown in Figure 5.

Table 2: Information recorded during a monitored uni-processor execution of program Q given that
Prio(P1) > Prio(P2) > Prio(P3).

Time Process Event

0 P1 Create P2
1 P1 Create P3
2 P1 Wait for event X
9 P2 Send event X to P1
11 P1 Send event X to P2
12 P2 Wait for event X
13 P1 Wait for event X
14 P2 Terminate
16 P3 Send event X to P1
18 P1 Send event X to P3
19 P3 Wait for event X
20 P1 Terminate
21 P3 Terminate

Process P1
Activate(P2)
Work(1)
Activate(P3)
Work(1)
Wait_for(X)
Work(2)
Activate(P2)
Work(1)
Wait_for(X)
Work(2)
Activate(P3)
Work(1)
Terminate

Process P2
Wait_for(X)
Work(7)
Activate(P1)
Work(1)
Wait_for(X)
Work(1)
Terminate

Process P3
Wait_for(X)
Work(2)
Activate(P1)
Work(1)
Wait_for(X)
Work(1)
Terminate

Figure 4: A parallel program Q’.

P1
P2
P3

Time0 5

Figure 5: Execution flow of program Q’ when using one processor per process.

Executing process
Activates

DEAD
LOCK
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As can be seen, there is a deadlock situation when P1 at time 5 (erroneously) tries to activate
P2 instead of P3; P1 will block since P2 is not ready to receive a message. At time 7, P2 will send
to P1, but P1 is already blocked, and thus P2 will block. This results in a deadlock, i.e., our simu-
lation has produced a deadlock from a deadlock-free program (program Q will not deadlock on
three processors). Consequently, we cannot use the Direct Model for program Q.

3. Client-Server Simulation Model

Program Q above made it obvious that we need to consider also other models than the Direct
Model. Looking at program Q we see that in some cases we need to model also program loops; at
least the loops that contain synchronizations.

By looking at a number of real parallel programs we have defined a simulation model called
Client-Server Model (because it mimics the behaviour of a client-server application). A similar
model has been used in [8, 9]. The difference between the Direct Model and the Client-Server
Model is that each process is represented as a set of (short) lists in the Client-Server Model,
whereas each process was represented as one list in the Direct Model. Each Wait_for(X) is also
replaced by a Wait_for(PY), where PY can be P1, P2 or P3. The rule for replacing X with PY is
simply that each Wait_for statement will now wait exclusively for the process that issued the cor-
responding Activate during the monitored uni-processor execution.

The number of lists used for representing a process is determined by the number of Wait_for
statements that the process has executed during the monitored uni-processor execution. Each
Wait_for statement defines the start of a new list. In the case with lists that start with a Wait_for
for the same process PY the Wait_for statement is selected that corresponds to the Activate that
during the monitored uni-processor execution triggered the Wait_for. The termination of a process
is done when all the process’s lists have been executed. Figure 6 shows how the trace in Table 2
would be transformed into a program Q’’ using the Client-Server Model.

Process P1
Start

Activate(P2)
Work(1)
Activate(P3)
Work(1)

List A List B
Wait_for(P2) Wait_for(P3)
Work(2) Work(2)
Activate(P2) Activate(P3)
Work(1) Work(1)

Terminate

Process P2

List A List B
Wait_for(P1) Wait_for(P1)
Work(7) Work(1)
Activate(P1)
Work(1)

Terminate

Figure 6: A parallel program Q’’.

Process P3

List A List B
Wait_for(P1) Wait_for(P1)
Work(2) Work(1)
Activate(P1)
Work(1)

Terminate
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Figure 6 shows that processes P1, P2 and P3 consist of two lists each and that process P1 is
the start of the program and thus in addition has a start list that is executed first. Process P2 has
two lists that both wait for process P1 to activate. In order to determine which list to start when
processor P1 activates P2 we use the monitored uni-processor execution to find which instance of
P1’s Activate(P2) is related to which Wait_for(P1) in P2. The same reasoning is applied to the two
Wait_for in P3. The relations are shown in Figure 6 with the arrows.

The rules for simulating are such that the lists may be executed out of order and a process that
reaches a Wait_for statement may continue with a Wait_for statement in another list. However,
each Wait_for is now waiting exclusively for one particular Activate.

When simulating program Q’’ using one processor for each process we get the execution flow
shown in Figure 7. This is a correct simulation of program Q. One could note that a Client-Server
Model of program P would have resulted in a completion time of 11, i.e. an erroneously pessimis-
tic prediction.

Consequently, it seems that one should use the Client-Server Model when the Direct Model
does not work. However, our problems do not stop here since there are situations where the Cli-
ent-Server Model also results in deadlock for a deadlock-free program as in program R in Figure
8. In this figure the notion of Xi is used to represent an element in an array X at index i.

P1
P2
P3

0 5

Figure 7: Execution flow of program Q’’ when using one processor per process.

Executing process
Activates

Time10

Figure 8: A parallel program R.

Process P1
Activate(P2)
Work(1)
Activate(P3)
Work(1)
Activate(P4)
Work(1)
for (i = 1, i <= 2, i++) {

Wait_for(Xi)
Work(2)

}
Activate(X1)
Work(1)
Activate(X2)
Work(1)
Wait_for(X3)
Work(2)
Activate(X3)
Work(1)
Terminate

Process P2
Wait_for(X)
Work(12)
Activate(P1)
Work(1)
Wait_for(X)
Work(1)
Terminate

Process P3
Wait_for(X)
Work(7)
Activate(P1)
Work(1)
Wait_for(X)
Work(1)
Terminate

Process P4
Wait_for(X)
Work(2)
Activate(P1)
Work(1)
Wait_for(X)
Work(1)
Terminate
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Table 3 shows the information recorded during a uni-processor execution. In order not to
make this presentation too detailed we skip the program R’ (compare with programs P’ and Q’)
that would be produced in the Direct Model. If the reader does this exercise he/she will find that a
multiprocessor simulation of R’ using one process per processor will result in a deadlock. How-
ever, Figure 8 shows a deadlock-free program. Based on our experiences from the Q program
above we will now try the Client-Server Model, thus obtaining a program R’’ (compare to Q’’).
Figure 9 shows program R’’.

Table 3: Information recorded during a monitored uni-processor execution of Client-Server
program R given that Prio(P1) > Prio(P2) > Prio(P3) > Prio(P4).

Time Process Event

0 P1 Create P2
1 P1 Create P3
2 P1 Create P4
3 P1 Wait for event X
15 P2 Send event X to P1
17 P1 Wait for event X
18 P2 Wait for event X
25 P3 Send event X to P1
27 P1 Send event X to P2
28 P1 Send event X to P3
29 P2 Terminate
30 P3 Wait for event X
31 P1 Wait for event X
32 P3 Terminate
34 P4 Send event X to P1
36 P1 Send event X to P4
37 P4 Wait for event X
38 P1 Terminate
39 P4 Terminate
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If we simulate R’’ for a four-processor system where each process is mapped to a processor of
its own we achieve the execution flow shown in Figure 10. As can be seen, the result is a deadlock
situation. Process P1 sends to P2, which is not waiting for an event; P1 will thus block. P2 sends
to P1, which is blocked; P2 will thus also block.

4. Strict Sequence Simulation Model

In order to handle programs that result in deadlock for the Direct Model and the Client-Server
Model we have to resort to a pessimistic approach that we call Strict Sequence Model. The disad-
vantage with this model is that it can overestimate the multiprocessor completion time of some
parallel programs. The advantage is that this model will never result in a deadlock, provided that
the parallel program is deadlock-free. This model has been used in e.g. [12].

The difference between the Client-Server Model and Strict Sequence Model is that the (small)
lists representing a process in the Client-Server Model are merged into one list (as in the Direct
Model). The difference between the Strict Sequence Model and the Direct Model is how the
Wait_for is handled. In the Strict Sequence Model the Wait_for waits for the Activate from the

Process P2
List A List B

Wait_for(P1) Wait_for(P1)
Work(12) Work(1)
Activate(P1)
Work(1)

Terminate

Process P1
Start

Activate(P2)
Work(1)
Activate(P3)
Work(1)
Activate(P4)
Work(1)

List A List B List C
Wait_for(P2) Wait_for(P3) Wait_for(P4)
Work(2) Work(2) Work(2)

Activate(P2) Activate(P4)
Work(1) Work(1)
Activate(P3)
Work(1)

Terminate

Figure 9: A parallel program R’’.

Process P3
List A List B

Wait_for(P1) Wait_for(P1)
Work(7) Work(1)
Activate(P1)
Work(1)

Terminate

Process P4
List A List B

Wait_for(P1) Wait_for(P1)
Work(2) Work(1)
Activate(P1)
Work(1)

Terminate

P1
P2
P3

Time0 5

Figure 10: Execution flow of R’’.

Executing process
Activates

P4

DEAD
LOCK

10
151Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors



Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors
process that during the monitored uni-processor execution activated the Wait_for, whereas it will
accept an Activate from any process (on the same event of course) in the Direct Model. In the
Strict Sequence Model the trace shown in Table 3 would thus result in the lists shown in
Figure 11. We call the program obtained in the Strict Sequence Model for program R’’’.

Figure 12 shows the execution flow for program R’’’. There are obviously no deadlock prob-
lems using the Strict Sequence Model. The predicted execution time (21 time units) is, however,
pessimistic compared to the real completion time for R using one processor per process (15 time
units).

One could note that a Strict Sequence Model of program P would have resulted in a comple-
tion time of 12 and a Strict Sequence Model simulation of program Q would have resulted in 13
time units, i.e. too pessimistic predictions (the correct predictions can be seen in Figure 2 and Fig-
ure 7, respectively).

Process P2
Wait_for(P1)
Work(12)
Activate(P1)
Work(1)
Wait_for(P1)
Work(1)
Terminate

Process P3
Wait_for(P1)
Work(7)
Activate(P1)
Work(1)
Wait_for(P1)
Work(1)
Terminate

Process P4
Wait_for(P1)
Work(2)
Activate(P1)
Work(1)
Wait_for(P1)
Work(1)
Terminate

Process P1
Activate(P2)
Work(1)
Activate(P3)
Work(1)
Activate(P4)
Work(1)
Wait_for(P2)
Work(2)
Wait_for(P3)
Work(2)
Activate(P2)
Work(1)
Activate(P3)
Work(1)
Wait_for(P4)
Work(2)
Activate(P4)
Work(1)
Terminate

Figure 11: A parallel program R’’’.

P1
P2
P3

Time0 5

Figure 12: Execution flow of program R’’’.

P4

Executing process
Process waiting due

Activates

10 15

 to strict sequence

20
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5. Experimental Methodology

The small examples in Section 2, 3, and 4 indicate that the predictions become more and more
pessimistic as we go from Direct Model to Client-Server Model, and then to Strict Sequence
Model. We would now like to verify this observation by applying the different models on a bench-
mark suite of supercomputing applications. We first present the tool, VPPB [2, 3, 4], that we have
used in our experiments, and then we present the benchmark applications.

5.1. Overview of the VPPB Tool

The VPPB tool enables the developer to monitor the execution of a parallel program on a uni-
processor workstation, and then predicts and visualizes the program behaviour on a simulated
multiprocessor with an arbitrary number of processors. This is a previously used technique, e.g. in
[12].

The VPPB consists of three major parts, the Recorder, the Simulator, and the Visualizer. The
workflow when using the VPPB tool is shown in Figure 13. The developer writes the multi-
threaded program (a) in Figure 13, compiles it and an executable binary file is obtained. After
that, the program is executed on a uni-processor. When starting the monitored execution (b), the
Recorder is automatically inserted between the program and the standard thread library. Each time
the program uses the routines in the thread library, the call passes through the Recorder (c) which
records information about the call, i.e., the identity of the calling thread, the name of the called
routine, the time the call was made, and other parameters. The Recorder then calls the original
routine in the thread library. When the execution of the program finishes all the collected informa-
tion is stored in a file, the recorded information (d). The recording is done without recompilation
or relinking of the application, making our approach very flexible.

No of Processors
Binding of threads

C or C++ source code

Compiler

Binary file
Execution

Calls

Calls Returns

Returns
Recorder

(Instrumented

Thread Library)
 Encapsulating

Recorded
information

Simulator

Information describing

Visualizer

b

f

g

d

ea

c

Start

Figure 13: A schematic flowchart of the VPPB system.
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VPPB

Thread priorities
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The Simulator simulates a multiprocessor execution. The main input for the simulator is the
recorded information (d) in Figure 13. The simulator also takes the configuration (e) as input,
such as the target number of processors, etc. The output from the simulator is information describ-
ing the predicted execution (f). In the simulator we have implemented the three simulation models
earlier described, i.e. Direct Model, Client-Server Model, and Strict Sequence Model.

Using the Visualizer the predicted parallel execution of the program can be inspected (g). The
Visualizer uses the simulated execution (f) as input. The main view of the (predicted) execution is
a Gantt diagram. When visualizing a simulation, it is possible for the developer to use the mouse
to click on a certain interesting event, get the source code displayed, and the line making the call
that generated the event highlighted. With these facilities the developer may detect problems in
the program and can modify the source code (a). Then the developer can re-run the execution to
inspect the performance change.

The VPPB system is designed to work for C or C++ programs that uses the built-in thread
package [10] and POSIX threads [6] on the Solaris 2.X operating system.

5.2. Benchmark Applications

In order to evaluate the correctness of each of the three simulation models, we have used a subset
of the SPLASH-2 benchmark suite [22] running on the Solaris operating system with the Solaris
thread package. In Table 4, the programs that we use are listed together with the data set sizes
used. All SPLASH-2 applications are typical supercomputing applications. Since the SPLASH-2
applications are designed to create one thread per physical processor, one log file was generated
for each processor set-up. Spinning locks were replaced with blocking locks as described in [5]
since the trace tool does not handle spinning locks correctly.

The applications differ in the way the amount of work is distributed among the processors.
Some of the applications have a rather static distribution of data and work among the processors,
e.g. Water-Spatial, FFT, Radix, LU. For those applications, the data is distributed equally among

Table 4: The parallel SPLASH-2 applications together with the data set sizes we used.

Application Description Data set size/Input data

Ocean (contiguous) Simulate eddy currents in an ocean basin 514-by-514 grid

Water-Spatial Molecular dynamics simulation, O(N) algorithm 512 molecules, 30 time steps

FFT 1-D  Six-step Fast Fourier Transform 4M points

Radix Integer radix sort 16M keys, radix 1024

LU (contiguous) Blocked LU-decomposition of a dense matrix 768x768 matrix, 16x16 blocks

Raytrace Producing a raytraced picture teapot

Barnes Simulates interaction between a number of bodies
in three dimensions

2048 bodies

Cholesky Factors a sparse matrix into the product of a lower
triangular matrix and its transpose

tk29.0

Radiosity Producing a raytraced picture Default, batch mode, en 0.1

n
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the processors and often optimized for high locality in the computation and the data access pat-
tern.

Raytrace, Cholesky, and Radiosity use dynamic load balancing. For example, Radiosity has
highly irregular computation structure and data access pattern, and uses distributed task queues.

Ocean and Barnes fall in between the other two categories. The data partitioning in Ocean is
static but since a multigrid equation solver is used, the grid size is changed in order to make the
algorithm converge faster. As a result, the amount of work between the processors may differ.
Barnes uses a tree structure to distribute the work, which may result in different amount of work
between processors.

The size of the trace files along with the number of events, i.e. the number of calls to the
thread library, is found in Table 6. As the intention for the SPLASH-2 benchmarks is to have one
thread on each processor, there are four traces per benchmark representing one, two, four and
eight threads. These traces will be used for validation of the three simulation models in Section 6.
It could also be noted that all information used for the Direct Model is equivalent to the informa-
tion needed in two other models.

6. Experimental Results

In Table 6 the results of the simulations are shown as predicted speed-up. The results are com-
pared with the real speed-up, using a Sun Ultra Enterprise 4000 with eight processors. The error
in the table is defined as |((Real speed-up) - (Predicted speed-up))/(Real speed-up)|, where |-x| =
|x| = x, for all x > 0.

As can be seen in Table 6 there are some cases where the predictions are quite inaccurate, we
have highlighted errors larger than 20%, which we consider to be a large error. The Strict
Sequence Model has problems with four of the nine applications and the Client-Server Model has
problems with three applications. The Direct Model handle all applications with a maximum 9%
error as shown in Table 6 and thus has no problems with any application. In all cases with large
misprediction by the Client-Server Model and Strict Sequence Model the predictions are underes-

Table 5: Size of trace file in bytes for different number of threads on the different applications.

Application
1 thread 2 threads 4 threads 8 threads

Size # Events Size # Events Size # Events Size # Events

cholesky 21565 360 828596 14267 1698857 29270 3169733 54628

fft 2284 28 4302 57 7738 115 14583 230

lu 18166 304 36518 609 72679 1218 145082 2439

radix 6576 102 9426 147 16002 259 34695 578

barnes 1858783 32029 1863003 32096 1870900 32229  1887328 32507

ocean 177088 3010 353232 5978 704384 11914 1406661 23785

raytrace 8886972 153213 8893773 153327 8894029 153331 8892917 153311

radiosity 19984005 344518 20247398 349054 18410866 317388 18975282 327116

water 50617 853 95697 1614 185133 3136 362524 6180
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timating the speed-up, i.e. the execution time is pessimistically predicted. All the applications that
give large errors have dynamic behaviour, and thus the large errors could be expected.

The distinction between the models is also shown in the mean values of the errors; Direct
Model has 2.8% error, Client-Server Model has 15.9% and the Strict Sequence Model has 22.1%.
Also the median value of the errors shows that the Direct Model has the smallest error and the
Strict Sequence Model the largest error.

7. A Scheme to Automatically Choose the Appropriate Simulation Model

Based on the properties of the three simulation models we have constructed a scheme, which
demonstrates when to use a particular simulation model. This scheme is shown in Figure 14.

The rationale behind the scheme is to start with the most direct and uncomplicated model: the
Direct Model. We have also shown that this model results in the most reliable predictions for
many parallel programs. However, if the Direct Model results in a deadlock, then we must use

Table 6: Speed-up and error of the SPLASH-2 benchmark using the three simulation models.

Appli-
cation

2 processors 4 processors 8 processors

Real

Predicted speed-up (error %)

Real

Predicted speed-up (error %)

Real

Predicted speed-up (error %)

Direct
Model

Client-
Server

Strict
Sequence

Direct
Model

Client-
Server

Strict
Sequence

Direct
Model

Client-
Server

Strict
Sequence

cholesky 1.62 1.59 (1.9) 1.09 (32.7) 1.48 (8.6) 2.31 2.21 (4.3) 1.81 (21.6) 1.77 (23.4) 2.85 2.80 (1.8) 2.55 (10.5) 2.01 (28.2)

fft 1.55 1.52 (1.9) 1.52 (1.9) 1.52 (1.9) 2.14 2.06 (3.7) 2.06 (3.7) 2.06 (3.7) 2.62 2.57 (1.9) 2.57 (1.9) 2.57 (1.9)

lu 1.79 1.82 (1.7) 1.82 (1.7) 1.81 (1.1) 3.15 3.08 (2.2) 3.11 (1.3) 2.96 (6.0) 4.82 4.71 (2.3) 4.82 (0.0) 4.06 (15.8)

radix 2.00 1.99 (0.5) 1.99 (0.5) 1.99 (0.5) 3.99 3.98 (0.3) 3.98 (0.3) 3.98 (0.3) 7.79 7.91 (1.5) 7.91 (1.5) 7.90 (1.4)

barnes 1.97 1.97 (0.0) 1.99 (1.0) 1.90 (3.6) 3.38 3.57 (5.6) 3.72 (10.1) 3.28 (3.0) 5.33 5.81 (9.0) 5.83 (9.4) 5.07 (4.9)

ocean 1.97 1.95 (1.0) 1.95 (1.0) 1.70 (13.7) 3.87 3.72 (3.9) 3.67 (5.2) 2.22 (42.6) 6.65 6.47 (2.7) 6.08 (8.6) 2.19 (67.1)

raytrace 1.72 1.66 (3.5) 1.00 (41.9) 1.00 (41.9) 2.50 2.42 (3.2) 1.01 (59.6) 1.00 (60.0) 3.28 3.24 (1.2) 1.04 (68.3) 1.01 (69.2)

radiosity 1.86 1.91 (2.7) 1.39 (25.3) 1.07 (42.5) 3.75 3.62 (3.5) 1.91 (49.1) 1.31 (63.9) 6.31 5.96 (5.5) 2.40 (62.0) 1.45 (77.0)

water 1.99 1.97 (1.0) 1.97 (1.0) 1.97 (1.0) 3.95 3.85 (2.5) 3.87 (2.0) 3.79 (4.1) 7.67 7.24 (5.6) 7.05 (8.1) 6.90 (10.0)

Program P

Direct Deadlock?
Yes

OK

No

Client-Server Deadlock?
Yes

OK

No

Strict Sequence OK

Figure 14: Practical scheme showing how to use the three simulation models.
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another model. Since the Strict Sequence Model introduces a number of serialization constraints
as well as produces the largest error, we first try the Client-Server Model. The Strict Sequence
Model is only used as a last resort when the Client-Server Model also results in a deadlock. The
Strict Sequence Model will never result in a deadlock. There is no guarantee that a simulation that
has not deadlocked is a correct simulation. However, a deadlock indicates an incorrect simulation,
provided that the application is deadlock-free.

One might wonder if there are some practical problems concerning that an application trace
potentially might be simulated trice. Once again using the SPLASH-2 benchmarks we find that
the simulation time for the benchmarks varies between 1 millisecond and 3.3 seconds on a
300MHz Sun Ultra 10. The times for all simulations performed in this study is found in Table 7. It
should be noted that the times in Table 7 do not include the time required to read the trace file into
memory and store the resulting file on disk. This is because, when using the scheme the trace file
needs only to be read once and obviously the resulting file will also be written only once. As can
be seen in Table 7 there is no significant difference between the execution times of the three simu-
lation models. We can also conclude that the simulation time is very short. The simulation times
are significantly shorter than a real execution, ranging from less than half of the execution time in
worst case down to less than 1/50,000 in the best case. If we compare the simulation times in
Table 7 with the size of the trace files (or the number of events) in Table 5 we can see that the sim-
ulation time is depending on the size of the trace file.

None of the benchmarks in the SPLASH-2 benchmark suite caused any deadlock in any of the
three simulation models. Thus, applying the scheme on the SPLASH-2 benchmark suite would be
equivalent to applying the Direct Model since the other models would never be used.

Table 7: Simulation time in seconds for the applications using different number of processors and
simulation models on a 300MHz Sun Ultra 10.

Application
Direct Model Client-Server Model Strict Sequence Model

1 proc. 2 proc. 4 proc. 8 proc. 1 proc. 2 proc. 4 proc. 8 proc. 1 proc. 2 proc. 4 proc. 8 proc.

cholesky 0.001 0.057 0.167 0.511 0.002 0.083 0.220 0.587 0.001 0.066 0.191 0.453

fft 0.001 0.002 0.003 0.006 0.001 0.002 0.003 0.006 0.001 0.002 0.002 0.005

lu 0.001 0.003 0.010 0.036 0.002 0.004 0.010 0.027 0.001 0.003 0.009 0.021

radix 0.002 0.003 0.004 0.010 0.002 0.003 0.005 0.011 0.002 0.003 0.004 0.009

barnes 0.086 0.121 0.175 0.302 0.153 0.184 0.233 0.383 0.093 0.110 0.143 0.236

ocean 0.024 0.050 0.135 0.440 0.012 0.036 0.096 0.275 0.008 0.027 0.077 0.184

raytrace 0.418 0.559 0.793 1.331 0.679 0.768 0.873 1.140 0.467 0.507 0.610 0.841

radiosity 0.963 1.348 1.782 3.047 1.727 2.067 2.315 3.219 1.039 1.190 1.352 1.860

water 0.004 0.009 0.028 0.091 0.004 0.012 0.025 0.072 0.004 0.012 0.027 0.066

Average
0.167 0.239 0.344 0.642 0.287 0.351 0.420 0.636 0.180 0.213 0.268 0.408

0.348 0.423 0.267
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8. Discussion and Related Work

Trace-driven simulations have been used for some time, particularly for testing various aspects of
memory systems [21]. The main concern when assessing the validity of this technique is the trac-
ing perturbation [21] and whether traces generated from several executions will yield different
simulation results. These concerns have been studied and found to be insignificant [11], although
they are still present. However, in this paper, the issue is somewhat more fundamental.

A commercial simulation tool called Dimemas [12] with the corresponding tracing tool
MPIDtrace [17] is similar to VPPB. MPIDtrace produces event lists based on message-passing
communication events and intervening calculation regions measured in execution time only. This
is basically the same idea as in VPPB. MPI [16] has primitives that allow the application to
receive messages from any process as well as a particular specified process. However, tests per-
formed with MPI on Linux show that the MPIDtrace tool does not distinguish between the two
variants and the resulting trace file shows as if the primitives were specifying a particular process,
namely the process that sent the message during tracing. Another commercial tool, Vampirtrace
[18], produces traces for Dimemas on both Sun Solaris and Linux. We tested Vampirtrace and
found that it handles the receiving from any processor in the same way as MPIDtrace. The simula-
tor, Dimemas, has to use the Strict Sequence Model (due to the nature of the input) in all situa-
tions. This will in some cases result in artificial and unnecessary restrictions resulting in
pessimistic predictions. The work in [7] does only handle the point-to-point communication in
MPI. However, the same approach as in Dimemas is taken, resulting in the Strict Sequence
Model. The prediction tool for ADA [13] is also using the Strict Sequence Model. The PS [1] tool
for PVM programs does not address the issues brought up in this paper at all.

The Client-Server Model is similar to the message-driven approach in [9]. A special-purpose
programming language, called Dagger [8], is used to write programs that are entirely driven by
messages, i.e. each process has a number of entry-points that are explicitly triggered by defined
messages. This means that the out-of-order simulation that is performed in the Client-Server
Model is explicitly expressed in the programming language. With the help of information gener-
ated by the Dagger compiler on a specific class of programs the message-driven approach will
accurately handle the out-of-order simulations.

Some programming languages use a simple hierarchical fork-join structure. The parallel FOR-
TRAN simulator in [20] represent such a situation. With these restrictions the Strict Sequence
Model can successfully be used. Similar restrictions apply to the pC++ simulators in [14, 15, 19].

The scheme in Section 7 is based on the assumption that the user of the models (or a tool) is
not aware of what kind of program is being simulated, which is the case for general Sun Solaris
programs written in C or C++. Obviously, if the user knows that the program is written in a partic-
ular model, then that model should be used from the start for that particular program. An example
could be if we always use the receive primitives in MPI which specify the sender, we know that
the Strict Sequence Model is appropriate. It can also be possible to have certain parts of a program
modelled using one simulation model, and another part of the program using another simulation
model, e.g. by annotating the source code (with, e.g. annotations for entry-points, indicating the
Client-Server Model) and these annotations are reflected in the trace. Another possibility is to
start with the Direct Model for thread synchronization (which is usually cooperative [5]) and with
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the Client-Server Model for communication between processes (which are usually competitive
[5]).

9. Conclusions

We have identified three simulation models that can be used when simulating the multiprocessor
performance of parallel supercomputing programs. The basic technique, i.e. simulating multi-
processor performance based on a monitored uni-processor execution, has been used by a number
of commercial tools and research prototypes [1, 2, 3, 4, 7, 12, 13, 14, 15, 19, 20]. Each of the three
simulation models have been used previously. However, the choice of model in these previous
cases seems to have been more or less arbitrary and the authors of these papers do not seem to
have been aware of any other model than the one that they have selected for their particular study
or tool.

We have in this paper, evaluated the three models on a set of real world parallel programs
using a multiprocessor with eight processors. There is no significant difference between the simu-
lation times of the three simulation models. The simulation times are significantly shorter than a
real execution. The evaluation showed that the predictions based on the Direct Model were the
most accurate ones, the Client-Server Model had the second best predictions, and the Strict
Sequence Model resulted in the worst predictions. However, we have also demonstrated that the
Direct Model may (erroneously) result in a deadlock when simulating a deadlock-free program.
We have also shown that some of the programs that result in a deadlock using the Direct Model
are handled correctly by the Client-Server Model. Some programs may, however, result in (erro-
neous) deadlocks for both the Direct Model and the Client-Server Model. The Strict Sequence
Model will never result in a deadlock since the traced event order (which obviously did not cause
any deadlock) is kept in the simulation. The deadlock problem associated with the Direct Model
and Client-Server Model has, to the best of our knowledge, not been identified before.

Consequently, there is a trade-off between the accuracy in the predictions (where the Direct
Model is the best and the Strict Sequence Model the worst), and the capability of avoiding errone-
ous deadlocks (where the Strict Sequence Model is the best). Based on our findings, we have
defined a simple deadlock driven scheme for deciding when to use which model. Our scheme pro-
vides the best (average) predictions possible, while avoiding erroneous deadlocks.
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