Some Initial Performance Characteristics of Three Architectural Styles

Håkan Grahn and Jan Bosch
Dept. of Computer Science
University of Karlskrona/Ronneby
Sweden

Outline

- Software architecture
- Architectural style
- Characterization methodology
- Preliminary results
- Conclusions
Software Architecture

- Top level description/design of the system
- Identification of core abstractions
- Early in the design process
- Functional requirements
- Quality attributes
 - development Q.A.s, e.g., maintenance and reuse
 - operational Q.A.s, e.g., robustness, reliability, and performance
- Quality attributes are often constrained by the architecture

Architectural design is concerned with the balancing of quality attributes!

Architectural Style

- Defines a family of systems in terms of pattern of organization
- We have studied
 - pipes&filters
 - layered
 - blackboard
- Try to answer the following questions:
 - For each studied architectural style, what are the variables of the style that influence the performance and what are the performance characteristics?
 - How do the performance characteristics of the studied architectural styles relate to each other?
Characterization Methodology

- Event-driven simulation
 - Set of components
 - Connection between the components
 - Events and event handlers

- Performance indicators
 - Throughput
 - System response time
 - Queue time for events
 - Queue length for components

Our intention is to present relative performance characteristics

Architectural Parameters

- General, i.e., style independent parameters
 - Number of components
 - Computation-to-communication ratio
 - Blocking vs. non-blocking communication

- Style specific parameters
 - Pipes&filters: one-to-one, one-to-many, many-to-one (branching)
 - Layered: pure or non-pure style
 - Blackboard: number of components affected by an update (not done yet)
Pipes & Filters Style

- The system response time increases to the square of the number of components.
- The average queue time increases proportionally to the number of components.

Pipes & Filters Style -- Branching System Response Time

The normalised system response times:
- Increase for small branching factors (B=2 and B=3) when the number of components is small (<10).
- Decrease for branching factors larger than 3 or more than 10 components when the number of components increases.
Pipes & Filters Style -- Branching
Queue Time

The normalised average queue time
- increases when \(B \) is small (2 or 3) and there is only a small number of components
- decreases when the number of components is larger than five as the number of components increases.

Layered Style

- The system response time increases to the square of the number of components
- The average queue time increases proportionally to the number of components
Layered Style -- Blocking vs. Non-blocking Communication

- The system response time increases to the square of the number of components for non-blocking communication, whereas it increases linearly for blocking communication.
- The average queue time increases linearly when the number of components increases in the case of non-blocking communication, but it is constant for blocking communication.

Layered Style -- Pure vs. Non-pure

- The system response time is lower for the non-pure architecture and increases almost linearly with the number of components, whereas the response time develops relative to the square of the number of components for pure architectures.
- The queue time increases proportionally to the number of components for both pure and non-pure architectures.
Blackboard Style

- The average system response time increases proportionally to the number of components.
- The average queue time increases proportionally to the number of components.

Concluding Remarks

- Presented some initial performance characteristics of three architectural styles based on event-driven simulations.
- System response time increases
 - to the square of the number of components for P&F and L
 - proportionally to the number components for BB
- The average queue time grows proportionally to the number of components (#components >= 30)
- Need validation against real applications