
Some Initial Performance Characteristics of Three Architectural Styles

Håkan Grahn and Jan Bosch
Department of Computer Science, University of Karlskrona/Ronneby

Soft Center, S-372 25 Ronneby, Sweden
[Hakan.Grahn|Jan.Bosch]@ide.hk-r.se, http://www.ide.hk-r.se/[~nesse|~bosch]

1. Introduction
The design of the software architecture [1, 4] of a software

system is concerned with the careful balancing of, possibly con-
flicting, quality attributes such as performance, maintainability,
reliability, and flexibility. One design decision is the selection of
an appropriate architectural style [2, 4], since each style provides
different levels of support for quality attributes. However, under-
standing of the characteristics of different styles is still largely
qualitative and little quantitative data exists. This paper presents
an initial evaluation of the performance characteristics of three
architectural styles, i.e., the pipes & filters, the layered, and the
blackboard style. The evaluation was performed using simula-
tions and includes both analysis for each style as well as a com-
parative analysis between the styles.

2. Software Architecture and Styles
The design of software systems has traditionally been centred

around the functional requirements. Notable exceptions to this are
the research communities that focus on a single quality attribute,
e.g., the real-time and the reusable software communities. How-
ever, the balancing of several quality attributes has been only little
addressed by software engineering research.

Software architecture [2, 3, 4] has emerged as an important
research area, since the architecture of a software system con-
strains the quality attributes. Thus, architectures have theoretical
and practical limits for quality attributes that may cause the qual-
ity requirements not to be fulfilled. Further, the architecture of a
software system is fundamental to its structure and cannot be
changed without affecting virtually all components, which may
require considerable effort for a system already implemented.

An architectural style [2, 4] defines a family of systems in
terms of a pattern of organization, i.e., the types of components
and connectors, and the constraints. Styles can be organized into
five categories [1], independent components, data-flow, data-cen-
tred, virtual machine, and call-and-return. Each category contains
a number of styles. The styles considered in this paper are pipes &
filters, layered, and blackboard, that are members of the data-
flow, call-and-return, and data-centred categories, respectively.

In the pipes & filter style, each component has one or more
inputs and one or more outputs. Streams of data are read from the
inputs, processed, and streams of data are produced on the out-
puts. Since, generally, the component starts generating output
before all input data is received, the components are generally
referred to as filters. The connectors are often referred to as pipes.

Layered systems are organized hierarchically with each layer
providing services to the higher layer and using services of the
layer below it. Ideally, each layer in the system provides a level of

abstraction exposing only those aspects relevant on this level of
abstraction. Some layered systems, so called non-pure, break the
rules and allow layers to call any lower, or even a higher, layer.

The blackboard style defines two types of components, i.e., a
central data structure that maintains the public part of the system
state and a set of independent components (clients) that operate
on the central data structure. The components generally have no
or limited interaction between each other, but use the data struc-
ture as a means for interaction.

3. Characterisation Methodology
Architectural design is concerned with the balancing of qual-

ity requirements. Unfortunately, little knowledge exists about the
precise characteristics of each architectural style and how these
characteristics vary when variables of the style are changed. To
address this, we try to answer the following questions:

• For each studied architectural style, what are the variables
of the style that influence the performance and what are the
performance characteristics?

• How do the performance characteristics of the studied
architectural styles relate to each other?

Our intention is to present relative performance characteris-
tics, that allow the software architect to compare different archi-
tectural styles and variations within a style, e.g., changing the
number of components or the way they interact.

We first define the parameters (or variables) that influence the
performance characteristics of an architecture based on the archi-
tectural style. The general, i.e., style independent, parameters that
we use in our evaluation are: Number of components; Computa-
tion vs. communication ratio; and Use of blocking or non-block-
ing communication.

In addition to the general parameters, some style specific
parameters are identified as well. Several sub-styles to the pipes
& filters style exists [1, 4], which differ in the way filters are con-
nected, e.g., one-to-one or one-to-many, and the organisation of
the computation, i.e., batch-sequential vs. concurrent. The pri-
mary variation of the layered style is whether the architecture is
purely layered or not. A second aspect is the number of layer
stacks in the system. One of the aspects of the blackboard style is
how the control flow is implemented. In general, some compo-
nent updates the blackboard, which causes the blackboard to
notify all affected components. The number of updated compo-
nents is an important parameter related to performance.

When evaluating the performance, we make use of four per-
formance indicators: Throughput, System response time, Queue
time for events, and Queue length for components. The through-
put and the system response time indicate the overall performance
of the system, while the other two metrics provide information

about the internal behaviour of the system, e.g., contention, possi-
ble performance bottlenecks, and starvation.

Our approach to characterising the performance of the archi-
tectural styles is simulation of abstract software architectures
based on the each style. An architecture is described as a set of
components that send directed events to each other.

Each component in the architecture has a type. The component
type specifies the interface and the required acquaintances of its
instances. The interface consists of a set of interface elements,
called event handlers. Each handler defines the behaviour of the
component in response to the receipt of an event. For each arriv-
ing event, the corresponding event handler is executed. The ‘exe-
cution’ consists of events sent to other components and a fixed
amount of execution time. Events are divided into a before-set,
i.e., the events that are sent before the operation is ‘executed’, and
an after-set, i.e., the events that are sent afterwards.

Since event handlers send events to other components, the
component type defines a set of acquaintances that act as place-
holders for the actual components. Thus, the events in the before-
and after-set refer to acquaintances instead of actual components.
Upon component instantiation, the acquaintances are bound to
concrete components.

4. Initial Simulation Results
In our simulations, we have execute 100000 events in the sys-

tem, and then we have interrupted the execution and calculated
our performance metrics. New events arrive to the system as fast
as possible, i.e., as fast as the initial (or input) component can
process them.

We have varied the number of components for each style:
between 5 and 100 filters for the pipes & filters style; 10, 20, 30,
40, and 50 layers for the layered style; and 10, 20, 30, 40, and 50
independent (client) components for the blackboard style. In addi-
tion, we have simulated computation to communication ratios of
1:1 (C=1), 10:1 (C=10), and 100:1 (C=100). Due to the page lim-
itation we only briefly discuss our results, primarily focusing on
the system response time.

We start our evaluation with the pipes & filters style. We find
that the normalised system response time increases proportionally
to the number of components, i.e., the system response time
increases to the square of the number of components. We have
also observed that there seems to be a constant factor of two
between the normalised system response time for C=1 as com-
pared to for C=10 and C=100, i.e., when C>=10 the normalised
system response time seems to be less dependent on C.

As for the layered style, we have seen the following. The nor-
malised system response time is proportional to the number of
components, i.e., the system response time grows relative to the
square of the number of components. For C=10 and C=100 the
curves for the normalised system response time follow each other
closely. We speculate that when C>=10, the communication and
queue times have low impact on the system response time, and
thus the computation time dominates. Since we normalise the
response time with respect to the computation time, the curves
will be similar for large computation to communication ratios.

Finally, for the blackboard style we reach the following con-
clusions. The normalised system response time seems to be inde-
pendent of the number of clients, i.e., the system response time

grows linearly to the number of clients. There is also a constant
factor that differs depending on the computation to communica-
tion ratio. For C=1 the constant seems be about 4, and for C=10
and C=100 the constant seems to be about 2. For large ratios
(C>=10) the curves for the normalised average system response
time follow each other closely, similarly to the layered style.

By comparing the performance characteristics of the three
architectural styles we have found both differences and similari-
ties. For both the pipes & filters and the layered styles, the nor-
malised system response time increases proportionally to the
number of components, i.e., the system response time grows to
the square of the number of components. By contrast, for the
blackboard style the system response time seems to only grow lin-
early to the number of components.

We have observed several performance similarities between
the different architectural styles. First, the normalised queue time
approaches an asymptotic value when the number of components
is larger than 20-30, i.e., the average queue time grows linearly to
the number of components in the system. Second, there seems to
be a constant factor of two in the normalised system response
time between C=1, and C=10 and C=100, independent of the
number of components in the system. Further, when C>=10, the
normalised system response time seems to be almost independent
of the exact computation to communication ratio.

5. Concluding Remarks
In this paper we try to characterise the performance of three

architectural styles. In order to get performance data we have
taken an event-driven simulation approach. The architecture is
described in terms of components and directed interconnections
where events are sent.

There are several aspects that we have been forced to exclude
from this paper, e.g., the impact of blocking communication and
non-pure layered styles. These aspects will be reported in another
paper. We also currently working on implementation of real appli-
cations using different architectural styles and plan to compare
their performance to the predictions provided by our simulations.

This early prototype of our simulation toolkit has some limita-
tions. For example, we can only predict the performance of archi-
tectures executing on a uni-processor, i.e., parallel and distributed
systems are not modelled. Further, we assume infinite communi-
cation bandwidth and a fixed latency.

In our future work we plan to incorporate the possibility to
evaluate other quality attributes as well, e.g., maintainability and
flexibility. The long term goal is to have a tool that can evaluate
several quality attributes, especially contradicting ones such as
performance and flexibility.

References

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Prac-
tice, Addison-Wesley, 1998.

[2] F. Buschmann, C. Jäkel, R. Meunier, H. Rohnert, and M.Stahl, Pat-
tern-Oriented Software Architecture - A System of Patterns, John
Wiley & Sons, 1996.

[3] D.E. Perry and A.L.Wolf, ‘Foundations for the Study of Software
Architecture,’ Software Engineering Notes, 17(4):40-52, Oct. 1992.

[4] M. Shaw and D. Garlan, Software Architecture - Perspectives on an
Emerging Discipline, Prentice Hall, 1996.

