
SimICS/sun4m: A VIRTUAL WORKSTATION

Peter S. Magnusson1, Fredrik Dahlgren2, Håkan Grahn3, Magnus Karlsson2, Fredrik Larsson1,
Fredrik Lundholm2, Andreas Moestedt1, Jim Nilsson2, Per Stenström2, Bengt Werner1

1{psm,fla,am,werner}@sics.se

Swedish Institute of Computer Science
Box 1263, SE-164 28 Kista

SWEDEN

2{dahlgren,karlsson,dol,j,pers}@
ce.chalmers.se

Department of Computer Engineering
Chalmers University of Technology

SE-412 96 Göteborg
SWEDEN

3Hakan.Grahn@ide.hk-r.se

Department of Computer Science
University of Karlskrona/Ronneby

SE-372 25 Ronneby
SWEDEN

Abstract
System level simulators allow computer architects and
system software designers to recreate an accurate and
complete replica of the program behavior of a target
system, regardless of the availability, existence, or in-
strumentation support of such a system. Applications
include evaluation of architectural design alternatives as
well as software engineering tasks such as traditional
debugging and performance tuning.

We present an implementation of a simulator acting as
a virtual workstation fully compatible with the sun4m
architecture from Sun Microsystems. Built using the
system-level SPARC V8 simulator SimICS,
SimICS/sun4m models one or more SPARC V8 proces-
sors, supports user-developed modules for data cache
and instruction cache simulation and execution pro-
filing of all code, and provides a symbolic and
performance debugging environment for operating
systems.

SimICS/sun4m can boot unmodified operating systems,
including Linux 2.0.30 and Solaris 2.6, directly from
snapshots of disk partitions. To support essentially
arbitrary code, we implemented binary-compatible
simulators for several devices, including SCSI, console,
interrupt, timers, EEPROM, and Ethernet. The Ethernet
simulation hooks into the host and allows the virtual
workstation to appear on the local network with full
services available (NFS, NIS, rsh, etc). Ethernet and
console traffic can be recorded for future playback.

The performance of SimICS/sun4m is sufficient to run
realistic workloads, such as the database benchmark
TPC-D, scaling factor 1/100, or an interactive network
application such as Mozilla. The slowdown in relation
to native hardware is in the range of 25 to 75 (measured
using SPECint95). We also demonstrate some applica-
tions, including modeling an 8-processor sun4m version
(which does not exist), modeling future memory
hierarchies, and debugging an operating system.

1. Introduction
A target computer system typically runs a mixture of
operating system and application code, which interact
in a complex, fine-grained manner to solve the tasks at
hand. This interaction between operating system and
application, and between operating system and the
underlying hardware, today constitutes a difficult
domain in computer science and engineering. The over-
all performance of a system is largely determined by
this interaction, and it is required to function correctly
to provide a stable platform.

To explore this interaction in any detail is difficult,
especially since designers are frequently interested in
not just understanding an existing system, but to
explore alternatives. A fully simulation-based approach
has the advantage of essentially being able to model
any architecture and gather any statistic. Since we are
concerned with the software level in general, and in the
interaction between software and key hardware
resources in particular, the principal approach is that of
instruction set simulation.

Running operating system code on simulators has long
been a common practice in the computer manufacturing
industry. Little of this work has been done in academia,
and consequently general tools of this character have
not been available to a broader community. Also, the
techniques used have, to our knowledge, often been
inefficient, with a focus on hardware development
rather than making available a practical tool for oper-
ating system designers. Thus they would at most
support small benchmarks, require expensive custom
hardware, or require impractical running times or
resources for usage. For similar reasons, the tools have
had little, if any, support for performance tuning (such
as profiling).

Foremost among published work is g88 (Bedichek
1990), which combined threaded code (Bell 1973, Klint
1981) with simulation of simplified devices. g88 could

boot and run the Unix kernel using device drivers for
these simplified device models. g88 could support
debugging but not performance tuning, and had only
limited support for computer architecture work.

To address these limitations we have designed a simu-
lation platform on top of which it is possible to execute
and analyze unmodified complex application and oper-
ating system software with a decent performance. This
paper describes the simulation platform and demon-
strates its efficiency by analyzing the performance of a
database application that is run on a 4-CPU
multiprocessor simulator that models the sun4m
architecture.

The contributions of this paper are twofold. First, we
implement a full system model built on the SimICS
simulator, allowing the advanced debugging and pro-
filing features of SimICS to be applicable to operating
system work. Second, we implement a system level
simulator that runs completely unmodified operating
system binaries, actually booting from dumps of the
partitions that would boot a target machine. As far as
we are aware, this has never been described in the open
literature.

The rest of this paper is organized as follows. In
Section 2, we present instruction set simulation as a
general technique. In Section 3 we present SimICS, our
simulator kernel, which constitutes a flexible platform
on which a complete target system simulator can be
built. The sun4m architecture is such a target, and in
Section 4 we describe the principal components, that
together with SimICS forms a full simulator. We de-
scribe a few example uses of the simulator in Section 5
and discuss its performance in Section 6. We discuss
previous and related work in Section 7, with a particular
emphasis on SimOS, a system level simulator with
similar capabilities and goals as SimICS. We conclude
in Section 8.

2. System level instruction set simulation
Instruction set simulators run a program by simulating
the effects of each instruction on a target machine, one
instruction at a time. Instruction set simulators are
attractive for their flexibility: they can, in principle,
model any computer, gather any statistic, and run any
program that the target architecture would run, includ-
ing the operating system. They easily serve as back-
ends to traditional debuggers as well as architecture
design tools such as cache simulators.

For their flexibility, instruction set simulators have long
been popular in computer architecture research. There
they help designers understand the tradeoffs involved in

architectural decisions by simulating the effects on user
programs.

Naturally, this flexibility comes at a cost—instruction
set simulators are often slow, easily over 3 orders of
magnitude slower than native execution. Such poor
performance severely hampers their practicality, limit-
ing them to toy benchmarks or very patient users. This
has prompted several efforts to improve the perform-
ance of traditional simulation or to find alternate
methods. This work has met with some success: several
fast instruction set simulators have been developed over
the last several years (Bedichek 1990 and 1995,
Veenstra 1994, Cmelik and Keppel 1993, Witchel and
Rosenblum 1996).

Besides the issue of performance, a full implementation
is also complicated by the difficulty of recreating the
execution environment. To run a given program, either
we can emulate the underlying operating system faith-
fully, or we can bypass this difficulty entirely by
running the operating system directly.

Unfortunately, the execution environment of modern
systems is large. Running the operating system as an
“application” is the obvious alternative, but is
challenging since this requires faithful emulation of the
system-level architecture. Earlier work along these lines
therefore replaced complex devices with pseudo
devices—devices with simple behavior (Bedichek
1990, Magnusson 1993a, Rosenblum et al 1995,
Werner et al 1997).

There are several problems with not implementing
proper device simulators. Firstly, they are frequently
significant to overall system performance. Especially in
the light of ever improving microprocessor speeds, I/O
performance is important and becoming more so every
day. Since our purpose is to improve the overall per-
formance of systems, we cannot exclude these devices.

Secondly, an important use of this class of tools is to
support the development and tuning of hardware
dependent components of the operating system, and this
of course requires an accurate emulation.

Finally, from a practical standpoint of distributing and
supporting a simulator, reliance on pseudo devices adds
the complication of needing to distribute a modified
operating system. This may require source code access
and/or special licenses for the user, which can be
difficult for the research community. In addition, it is a
task that needs to be repeated for each operating system
that is intended to run on the simulator.

3. SimICS
SimICS is an instruction-set simulator developed at the
Swedish Institute of Computer Science (SICS). It
simulates one or more SPARC V8 processors, and
supports multiple physical address spaces, system-level
code, and emulation of the SunOS 5.x ABI for direct
analysis of user-level programs. The performance of
SimICS is acceptable even for large problems, with a
slowdown of around 25-75 per simulated processor.
SimICS itself is sequential, allowing it to be fully
deterministic, a crucial feature for an instrument.

SimICS allows a program to be studied interactively,
both for debugging and for profiling. Of primary
interest, SimICS can profile data and instruction cache
misses, translation look-aside buffer misses, and
instruction counts. These figures can be weighted,
sorted, and related to source code lines, allowing the
programmer to quickly zoom in on the portions of code
that consume resources.

SimICS has evolved over 7 years, and has absorbed
almost 20 man-years of effort.

3.1. SimICS interpreter
The core of SimICS is a variation of threaded code
(Bell 1973). Interpreters execute programs by running a
central fetch-decode-execute loop. Some simple design
ideas improve performance. Firstly, the target program,
in object code format, is translated to an intermediate
format, which is in turn interpreted. Whereas the target
instruction set is designed for interpretation by
hardware, the intermediate format is designed to be
easy for software. During execution, this intermediate
code is then cached. A variety of data structures keeps
track of when to regenerate intermediate code.

For each intermediate format instruction there is a small
segment of code, called a service routine, that emulates
the effects of that instruction, as well as performing any
administrative tasks for the simulation, such as event
queues, instruction pipeline, etc.

There are several ways of dispatching these service
routines; Figure 1 shows the four most common. These
are: subroutines called from an inner loop, a large
“switch” statement, directly addressable labels, and
function calls relying on tail call optimization. SimICS
primarily uses addressable labels using GCC (Stallman
1992), but can also run using tail recursion.

The process of implementing, and supporting, an
industrial-grade complete instruction set simulator is a
significant task. An instruction set will typically require
several hundred different service routines. The core
interpreter of SimICS is therefore implemented using a
metatool, SIMGEN, which automates a range of tasks
related to interpreter design (Larsson et al 1997).
SIMGEN works from a simulation-oriented specification
of the target instruction set, see Figure 2. Currently, it
will design the intermediate format, and then generate a
decoder, disassembler, encoder, and set of service
routines. Metatools such as SIMGEN have been in use
for some time, the contribution of SIMGEN is that it can
generate faster interpreters than is practical to do
manually. One way it accomplishes this is by
generating versions of the interpreter that gathers
service routine usage statistics, which it can then take as
input to regenerate a faster interpreter.

SIMGEN essentially solves two porting issues. Firstly,
the support of new instruction sets is greatly simplified,
since SIMGEN works from a high-level specification.
An earlier, handwritten SPARC V8 interpreter
(Samuelsson 1994) consisted of some 10,000 lines of C
macros, and was reimplemented using only 2,000 lines
of specification. SIMGEN has also been used to generateFigure 1 – Interpreter models

Figure 2 - SIM GEN Overview

Specification

Disassembler User ModulesDecoder

Database

Encoder

Source Code

User

Service Routines

Statistics

Intermediate Format

Data

Application

Human

SimGen

Compiler

Specification.N

SimulatorSelf-Prof. Simulator

Simulator Components

epilogue

epilogue

epilogue

Gotos

C. Labels

epilogue

epilogue

epilogue

epilogue

epilogue

epilogue

epilogue

A. Subroutines B. Switch

Tail calls

D. Tail Calls

interpreters for different versions of the APZ212, a
proprietary embedded CISC processor (Egeland 1995).
The result is now a component in Ericsson’s test
environment, a product used by several thousand
software developers.

Secondly, it can generate different interpreter cores
from the same specification. For example, SIMGEN can
generate interpreter cores corresponding to any of the
alternatives shown in Figure 1. The performance for the
various alternatives varies with processor/compiler
combination, as well as varying over time. Also,
different compilers support different combinations. For
example, GCC 2.7 does not support tail call
elimination, and directly addressable labels cannot be
expressed in ISO C.

Most service routines are simple, typically 10-30 host
processor instructions. This sets an upper limit on
performance for this technique of about 20 times slower
than native execution. To obtain significantly better
performance, optimized runtime code generation
techniques can be used, and several prototype versions
of SimICS have supported them (Magnusson 1993b,
Christensson 1997). In practice, such techniques are not
yet superior to the interpreter design in SimICS. A full
discussion of this interesting, but parenthetical, issue is
beyond the scope of this paper.

3.2. Accuracy vs. efficiency
SimICS is primarily a functional simulator, meaning
that it does not model timing at a detailed level such as
CPU pipelines. A simulator such as SimICS can,
however, complement a cycle-accurate model by
providing subtraces consisting of a sequence of
hardware events that derive from coarse elements in the
target system (caches, CPUs, TLBs, etc). In other work,
we’ve demonstrated the efficacy of this division of
labor (Werner and Magnusson 1997). It requires that a
simulator such as SimICS efficiently keep track of non-
volatile state, i.e. processor state that changes slowly,
such as cache contents. The objective of SimICS itself
is thus primarily (a) to model the target system
sufficiently accurately to run any software and (b) to
efficiently model non-volatile state with high
granularity.

3.3. Memory simulation
A crucial component of a system level simulator is the
simulation of memory. Memory operations are difficult
to handle, since not only are they both frequent and
complex, but in a simulator we also wish to gather
additional information. A significant portion of the
design effort and complexity in SimICS lies in how it
simulates memory (Magnusson and Werner 1997).

Briefly, SimICS collapses a range of operations into a
common (optimistic) path using a Simulator Translation
Cache (STC). Figure 3 illustrates the principle. The
service routine for the memory operation will perform
an inlined lookup in the STC. If it “hits” in this data
structure, it can proceed directly. The inlined lookup is
carefully designed and consists of nine host (SPARC)
instructions. This implicitly or explicitly includes a
physical to logical translation, a TLB lookup, a
protection check, a watchpoint check, an alignment
check, a data cache lookup, location of the physical
storage in the simulator, and a profile count of the
target address.

Figure 3 - Memory Simulation

The instruction cache is supported in a similar manner,
but is expanded to handle a from-to jump cache, so as
to support not only cache modeling, but accurate
profiling, a variety of breakpoint types, and, in future,
support for various branch prediction models. Because
of it’s similarity to the STC, this design is called the I-
STC, and is described further in (Magnusson 1997).

3.4. SimICS as a Platform
Figure 4 shows a schematic overview of SimICS as a
platform. SimICS itself consists of an interpreter core
which can be extended in a variety of directions using
published programming interfaces. We take advantage
of dynamically loadable modules to run-time extend
SimICS in this manner.

These extensions are primarily of two types. First,
devices can be added to build a full system. Such
device modules load themselves as generic device
objects, and the user can instantiate them at the
command line (SimICS has a simple command line
interface). Devices are memory-mapped, i.e. once
instantiated SimICS will redirect any memory accesses
to the requested physical memory region to that device.
Devices include Ethernet, to communicate with a real
network, a console, for interactive serial terminal
sessions, and disk subsystems. The principal devices
needed for the sun4m architecture that we implemented

STC TLB

Interpreter

Memory
Manager

Physical
Memory

Simulator
location in
memory

D-Cache

I-Cache

Watchpoints

decreasing performance criticality

are described in Section 4. The second important
extension type is memory hierarchy modules, allowing
the user to add new cache models.

For software engineering tasks, SimICS can run as a
backend to a symbolic debugger. We use a modified
version of GDB 4.16 as our preferred interface. In this
mode, SimICS will fake stack contents, manage
multiple address spaces, etc.

SimICS

cache

debugger
trace gen.

extensions

MMU

other
devices

Ethernet

SCSI

interrupt

TTY

Operating
System

Workload

real network

Figure 4 - SimICS Platform

3.5. Profiling support in SimICS
The essential benefit of running within a simulator is
that the complete state is available for inspection. The
design of SimICS has largely focused on techniques for
gathering detailed information on the execution.
Probably the most useful feature is profilers.

A profiler gathers and presents statistics that are related
to a (physical) memory address range. A simple
example is an execution profiler, which counts how
many times an instruction at a particular address has
been executed.

Profiler values are shown whenever the user lists source
code. The profilers currently supported by SimICS
include those listed in Figure 5. Profilers support
building various generic analysis tools on top of them.
For example, the prof-weight command produces
the output in Figure 6. Each profiler has an associated
weight, such as $SIM_TLB_MISS_WEIGHT. The user
can interactively change weight values. This allows the
user to explore a very large set of data and focus on one
issue at a time. For example, in Figure 6, the TLB miss
weight has been set to 10 (“Column 4”).

The prof-weight command thus calculates a linear
sum over the entire memory, sorting and displaying the
largest values. In the figure, we have asked SimICS to
calculate the weights in address intervals of 32 bytes
and to display details for the top 20.

The example is from an analysis of the infamous
SPECint92 benchmark eqntott. By using SimICS in the
role of a traditional profiling tool, we improved the
performance of eqntott by a magnitude. The profile
information can also be related to code, as we will show
in Section 5.3.

(a) instruction cache misses
(b) write cache misses (data)
(c) read cache misses (data)
(d) translation look-aside buffer misses
(e) branches to the instruction
(f) branches from the instruction
(g) count of instruction execution
(h) flag for instruction execution
(i) reads from memory address
(j) writes to memory address

Figure 5 - SimICS profilers

(gdb-simics) prof-info
Active profilers, from 'left to right':
Column 1: Instruction cache misses caused by program line
 ($SIM_INSTR_MISS_WEIGHT = 10.000000)
Column 2: Cache misses (writes) caused by program line
 ($SIM_WRITE_MISS_WEIGHT = 1.000000)
Column 3: Cache misses (reads) caused by program line
 ($SIM_READ_MISS_WEIGHT = 8.000000)
Column 4: TLB misses passed on to Unix emulation
 ($SIM_TLB_MISS_WEIGHT = 10.000000)
Column 5: Number of (taken) branches *to* the code block
 ($SIM_TO_WEIGHT = 0.000000)
Column 6: Number of (taken) branches *from* the code block
 ($SIM_FROM_WEIGHT = 1.000000)
Column 7: Count of instruction execution (based on branch arcs)
 ($SIM_PC_WEIGHT = 1.000000)
Column 8: Number of addresses from which instr have been fetched
 ($SIM_INSTR_WEIGHT = 0.000000)

(gdb-simics) prof-weight 32 20
Weighted profiling results:
 Physical Virtual (source)
 0x00005c20 0x00011c20 (pid 1001) 518199272.00
 0x00005c40 0x00011c40 (pid 1001) 366859495.00
 0x00005c60 0x00011c60 (pid 1001) 335490415.00
 0x00005c00 0x00011c00 (pid 1001) 38342452.00
 0x00005d20 0x00011d20 (pid 1001) 33332216.00
 0x000084a0 0x000144a0 (pid 1001) 21651844.00
 0x00005d40 0x00011d40 (pid 1001) 20545152.00
 0x00005c80 0x00011c80 (pid 1001) 9771702.00
 0x000084c0 0x000144c0 (pid 1001) 7240831.00
 0x00005be0 0x00011be0 (pid 1001) 5890173.00
 0x00006460 0x00012460 (pid 1001) 5768754.00
 0x00005ca0 0x00011ca0 (pid 1001) 4945636.00
 0x00008480 0x00014480 (pid 1001) 4405064.00
 0x000084e0 0x000144e0 (pid 1001) 4155135.00
 0x000064e0 0x000124e0 (pid 1001) 4059607.00
 0x00017b20 0x00023b20 (pid 1001) 3921297.00
 0x00008900 0x00014900 (pid 1001) 3569070.00
 0x00005ba0 0x00011ba0 (pid 1001) 3353840.00
 0x00008c60 0x00014c60 (pid 1001) 3244719.00
 0x00008500 0x00014500 (pid 1001) 3215813.00
Sum: 1397962487.00 (90%)
Not shown: 160930057.00 (10%)
System total: 1558892544.00

Figure 6 - prof-weight listing

3.6. Scripting interface
Work is currently in progress with extending SimICS to
support various scripting languages. We use SWIG
(Simplified Wrapper Interface Generator) to generate
the glue code between the script interpreter and
SimICS, making it easy for us to experiment with more
than one language. Python and Tcl are the ones that
SimICS currently support. With a script language, users
can write their own commands, for example to traverse
data structures in the source of a program being run.
Figure 7 shows an example of a Python function that
lists all processes in Solaris, printing their pid, MMU-
context and name. In the example, sym is a module that
handles symbolic information. The two functions val
and str in this module return the value and the string,
respectively, for a specified symbol.

3.7. Validation
As a tool, SimICS has a variety of uses. The methods of
validation differ with application. For example, for
coarse grain characterization of a workload, internal
cross-checks occur in SimICS that can be consulted by
the end user. These give a reasonable assurance that
aspects such as instruction count is accurate. Each
cache model used offers a new validation problem. If
the cache model corresponds to an existing system, we
can validate by comparing with hardware traces, as has
been done with such applications (Werner and
Magnusson 1997). If the cache model is of a future
design, then SimICS does not offer a silver bullet. The
principal method employed is to compare a specialized
cache model with a generic (parameterized) model,
leveraging off the fact that SimICS, being completely
deterministic, can exactly duplicate the workload.

4. Modeling the sun4m system
In this section, we describe the most significant
components of the simulated sun4m architecture,
namely disk (SCSI) and network (Ethernet), as well as a
mechanism for recording and playing back I/O traffic.

We emphasize that all devices were developed to the
point of fidelity where both of our target operating
systems, Linux 2.0.30 and Solaris 2.6, would boot and
run completely unmodified.

Currently, we short-circuit the first phase of the boot
process, namely the boot PROM, which we have
reverse-engineered and written from scratch, rather than
dump PROM contents to a binary as we did in earlier
work (Magnusson 1993a). There were two principal
reasons for this: we wish to be able to distribute the
whole environment, and the PROM is copyrighted; and
we are not interested in the error checking and
initialization aspect of device fidelity that is exercised
by the PROM. Our fake PROM works in a simulator-
“aware” fashion, with support for parsing a target
architecture description, thus simplifying handling of
target variations.

SimICS exports an interface for adding new devices.
Devices are loaded and instantiated dynamically. There
is also a variety of facilities for debugging either a
device driver, a device simulator, or both. This includes
separate, dynamic history buffers for all devices, where
the device simulator can log a descriptor of the effects
of the command.

4.1. SCSI and connected disks
We modelled the FAS100 chip prescribed by the sun4m
architecture. SCSI is relatively tricky to model properly
since it is highly asynchronous. Disk transactions are
handled in multiple steps, and several different tasks
can be outstanding at any time. As a consequence, the
SCSI simulator is by far the most complex device,
requiring 4,500 lines of C.

Disk contents are modeled by taking dumps of real
partitions. These dumps are naturally rather large, and
are treated as read-only input to the simulator. Changes
resulting from SCSI writes are kept internally in the
simulator in a delta structure, which can be read or
written to a file. This allows multiple simulator sessions
to use the same set of original dump files. It also
simplifies configuration management: to set up a
particular session, you boot the operating system on the
simulator, log in, do system administration or install
software using ’ftp’ or similar, shut down the simulated
operating system in an orderly manner, and then save
the delta file. This new delta file can then subsequently
be used for new runs.

proc = sym.val("practive")
 while proc != 0:
 pr_str = "((proc_t *)0x%x)" % proc
 pid = sym.val("%s->p_pidp->pid_id" % pr_str)
 cmd = sym.str("%s->p_user->u_comm" % pr_str)
 ctx = sym.val("((srmmu_t *)%s->p_as->a_hat
 ->hat_data[0])->s_ctx" % pr_str)
 print "pid = %3d (ctx = %3d) %s" % (pid, ctx, cmd)
 proc = sym.val("%s->p_next" % pr_str)

pid = 234 (ctx = 20) "mozilla"
pid = 233 (ctx = 19) "mozilla"
pid = 231 (ctx = 3) "csh"
pid = 227 (ctx = 22) "ttymon"
pid = 225 (ctx = 16) "sh"
pid = 224 (ctx = 2) "sac"
pid = 199 (ctx = 13) "utmpd"
pid = 189 (ctx = 18) "sendmail"
pid = 184 (ctx = 14) "nscd"
pid = 178 (ctx = 15) "cron"
pid = 165 (ctx = 4) "syslogd"
pid = 161 (ctx = 12) "automountd"
pid = 146 (ctx = 9) "lockd"
pid = 144 (ctx = 7) "statd"
pid = 139 (ctx = 10) "inetd"
pid = 110 (ctx = 11) "ypbind"
pid = 99 (ctx = 8) "keyserv"
pid = 97 (ctx = 5) "rpcbind"
pid = 26 (ctx = 6) "dhcpagent"
pid = 3 (ctx = 0) "fsflush"
pid = 2 (ctx = 0) "pageout"
pid = 1 (ctx = 1) "init"
pid = 0 (ctx = 0) "sched"

Figure 7 - Scripting example

4.2. Network Support
The sun4m model in SimICS supports connectivity to a
real network on the Ethernet level. The model contains
a simulated Ethernet device mapped into the memory
space of the simulated machine. The simulated device
is given the same Ethernet address as the real interface
on the host machine. To separate packets destined for
the target and the host OS, the IP address is checked.
When started, the code for the Ethernet device spawns
two processes running as root. One is used for reading
and one for writing raw Ethernet frames through the
network interface on the host machine. The read
process filters out all packets for the simulated
machine, i.e. IP packets and ARP requests containing
the simulated IP address. The host OS also receives
these packets, but throws them away since the IP
address does not match. The write process simply sends
frames to the network. We use the Packet Capture
library (libpcap) from LBNL to send and receive
Ethernet frames from within user processes. Figure 8
shows the architecture of the network connection.

Figure 8 - Network Support Overview

We can also use DHCP, which allows us to create boot
disk snapshots that are independent of the local
network, and thus transportable across domains.

We have run a variety of network applications on the
simulated machine with success: rlogin, ftp, automount,
X11, etc. By using X11 we can run applications with
graphical interfaces, without having to simulate a
display device. Also, ftp and nfs are two simple ways to
get program files into the simulated environment.

4.3. Handling Asynchronous Input
All asynchronous input for the simulated machine can
be saved for later playback. This currently includes tty
(keyboard) and network data. By saving and replaying
input, the same simulation session can be repeated with
identical behavior.

All external sources of input are polled by SimICS and
the data is sent to a special device, called the recorder.

The recorder works in either recording or playback
mode. In recording mode, the recorder saves the data to
a file together with a timestamp before passing it on to
the appropriate device. In playback mode the polling
functionality is disabled, instead the recorder reads data
from a file, and then passes it on as normal.

Using this recording facility, sessions with
asynchronous events can easily be debugged. First, they
are run with live input that is recorded. Then, in
playback mode, code can be single-stepped and the
simulation can be interrupted for inspection of state
without disturbing the simulated session.

5. Examples of Usage
SimICS/sun4m is currently being used to support a
range of activities. In this section, we present some
example uses.

5.1. Simulating with Large Workloads
To demonstrate the capability of SimICS/sun4m in
handling large working loads, we made a few simple
measurements on booting and running Solaris 2.6. In
the first example we ran for 26 billion simulated
instructions, which took roughly 3 hours of simulation
time on a 250 MHz UltraSparc.

In Table 1 we see the result from this first run, an
interactive session consisting of four phases. First, the
operating system booted on a single processor system.
Next, we run the graphics program ‘xv’, doing a simple
image manipulation. In the third phase, the system is
idling, with only system processes running, and last we
run ‘ftp’ reading several megabytes of data, followed
by a Netscape Communicator session. The numbers
give a coarse characterization of what is happening in
the machine. We also note that the simulated mips
figure falls with an increased load, as exceptions and
memory writes become more frequent, events that are
expensive both on the target machine and the simulator.

In the second run, shown in Table 2, we booted the
Solaris 2.6 operating system on a 4-processor sun4m
system. As we can see from the number of writes as
well as the exception count, the work appears well-
balanced over all processors. CPU 0 does some more
memory operations, which can be expected since it is
the processor running the initial boot sequence. We
reach a multi-user login prompt after 1,03 billion
instructions, compared to 1,40 billion in the single
processor case, indicating some parallel work during
the boot process.

Target OS

Ta rget ethernet
devic e S hared M emory B uffer

Host ethernet device

Read
P roc ess

W rite
P roc ess S im ICS s un4m

P roc ess

Host O S

Operating S ystem

P roc ess

(S im ulated) Hardware

Data s truc ture

Real Network

5.2. Multiprocessor Architecture Studies
One important application of the SimICS/sun4m
platform is to use it for evaluating design alternatives
for multiprocessors. As a case study, we have
evaluated the memory hierarchy of a shared-memory
multiprocessor running a database application. The
multiprocessor has four nodes, each containing a
processor with a two-level cache hierarchy, a memory
module, and a network interface. The memory modules
of all nodes constitute the global, shared physical
memory space, so that any processor can access any
memory module.

On a cache miss, a block of memory is requested from
the memory module where it is allocated. The ideal
case would be if all data accessed by the processor is
allocated in the memory module within the same node,
instead of having to be sent over the network. While
this can be the case for code and private data (such as
the stack), it is near impossible for data shared between
multiple nodes. One technique to reduce the amount of
requests to memory in other nodes would be to add a
remote cache (Zhang and Torrelas 1997), i.e. an
additional level of cache entirely used to cache data
from other nodes.

When using the SimICS/sun4m platform to evaluate the
effectiveness of adding remote caches as a complement
to the ordinary two-level cache hierarchy, a memory
system simulator of the target system is developed as a
separate module using a predefined interface to
SimICS. When SimICS is run, the memory system
simulator is loaded, and the memory references will
now become visible to it. In addition, the memory
system simulator will also be able to control the
execution of each processor, so that a correct processor
stall time will be modeled according to the latencies of
the memory system.

Using this methodology, we have evaluated a four-node
multiprocessor with and without remote caches. The
simulated multiprocessor executes the same operating

system and database handler binaries as we are running
on our real workstations. In the experiments, we used
Linux 2.0.30, which supports up to four processors, and
the PostgreSQL v.6.1 client-server database handler
from Berkeley (Stonebraker et al 1990).

The application of the database handler was query #6 of
TPC-D with the scaling factor of 1/100 (20 MB of
database tables). The multiprocessor was used as a
database server, executing the same query on all
processors individually in parallel. The database data is
originally on disk, and the pages are allocated when
accessed so that they will be distributed among the
nodes. The sizes of the L1 and L2 caches were 16 KB
(direct-mapped) and 512 KB (4-way set-associative),
respectively.

We measured the total number of requests over the
network for different sizes of the remote cache. The
number of network messages was reduced by only
1.0% for a remote cache of 1 MB, and 1.2% for a
remote cache of 2 MB. Experiments using scientific
benchmark applications have indicated a much larger
gain from using remote caches, so we decided to
analyze the effects in more detail. The amount of data
accessed by each node is 17 MB. By analyzing the
temporal locality of the data, i.e. how much the data is
re-used after it has been accessed by the node for the
first time, we discovered that 88% of the memory
blocks are not reused after they have been replaced
from the L1 cache. We traced these references back to
their sources and found that 95% of them originated
from only 16 instructions in memcpy() in the kernel.
Most of them were used by a sequential scan operation
in the database application.

The sun4m architecture is only defined for up to four
processors, which is an assumption explicitly used in
the source code of Linux. In order to do architectural
evaluations of systems with more than four processors
using the Linux OS, we used the SimICS/sun4m
platform to extend both Linux and the sun4m
architecture to be able to support up to 16 processors. In

Phase Time (sec) Instructions mips Instr/exception Instr/read Instr/write

Boot 2,100 1,403,150,579 0.67 566 5.36 12.4

xv 1,560 5,708,931,035 3.66 6,547 4.12 140.1

Idle 420 2,057,365,964 4.89 13,048 4.03 261.2

Ftp, NS 7,080 16,583,003,191 2.34 2,856 4.14 68.5

Table 1 - Large Unipro Workload

CPU 0 CPU 1 CPU 2 CPU 3

Reads 221,240,785 200,868,331 202,759,327 203,967,084

Writes 88,717,788 59,773,968 64,189,093 63,220,767

Exceptions 25,201 30,774 34,610 30,693

Instructions 1,028,765,700 1,028,765,700 1,028,765,700 1,028,765,700
Table 2 - Parallel Boot of Solaris 2.6

terms of Linux, it could be efficiently debugged using
the SimICS platform. As a result, we were able to
execute the same database system binaries (PostgreSQL
running TPC-D) on a 16-node multiprocessor, and
evaluate effects of novel memory system designs for
the new architecture as well as the effects on the
modified operating system such as lock contention.

As the above examples show, the SimICS/sun4m
platform is capable of evaluating different design
alternatives as well as explore novel architectural
features and organizations for existing operating
systems and applications. Moreover, it is also an
efficient platform for modifying programs as well as
operating systems and evaluate the effects of such
modifications. Since the platform can execute any
binary available for the Solaris 2.6 or Linux 2.x for the
sun4m architecture, we are also able to evaluate
commercial applications for which we do not have the
source code. However, when the source code is
available as in the above example, we are able to trace
effects in the hardware/software interaction back to the
source code of the application program as well as
system software.

5.3. Mozilla on Solaris
To demonstrate the combination of user and system
mode debugging, we have begun evaluating Mozilla
running on Solaris, all on top of SimICS. We use
Mozilla 5.0b1, a binary that when statically linked with
debug information is over 60 MB. The support for
symbolic debugging in SimICS handles multiple
memory contexts, allowing the user to debug several
programs, including the operating system, at the same
time. In the following example we did measurements
on Mozilla, starting at a push on the reload button and
ending when the page (http://www.sics.se) was fetched
from a real server and fully rendered in a window on
another machine.

The reload needed a total of 214 million SPARC
instructions to complete. Figure 9 shows a list of pages
with the highest count of executed instructions, and the
fraction of the total number. As the list shows, 50% of
all instructions executed can be found on only two
pages, the rest are spread over 1059 other pages. A
reverse memory translation (SimICS command
srmmu-reverse) finds the first page in context 0,
mapped by the kernel, and the second page in context
19, mapped by Mozilla. Zooming in on these pages
reveals the idle() function in Solaris and the function
il_quantize_fs_dither() doing Floyd-Steinberg dithering
in Mozilla. Figure 10 shows some lines from the
source, with profiling information, for the latter
function. The profiling values shown are, from left to
right: (a) I-cache misses, (b) D-cache write misses, (c)
D-cache read misses, (d) branches to the block, (e)
branches from the block, (f) count of instructions
executed, and (g) a count of assembler instructions in
the block. The cache statistics reflect a 16D/20I first-
level cache configuration, 4-way and 5-way
respectively with 32-byte cache lines. Note that this is
only an example. To find out where Mozilla actually
spends most of the time for a task, the command
prof-weight should be used, taking into account the
time for misses in caches and the TLB. Also, the binary
should be compiled with more optimization that in this
example.

Phys page Instr. Of total
0x2043000 53833494 0.251324
0x0e89000 53052056 0.247676
0x3188000 13675682 0.0638455
0x2046000 12303672 0.0574402
0x288f000 7453213 0.0347956
0x2001000 7047036 0.0328994
0x158c000 6494650 0.0303205
0x2034000 4365093 0.0203786
0x2112000 4327131 0.0202014
0x2006000 3245785 0.0151531
...

Figure 9 - Top page usage by Mozilla

 (a) (b) (c) (d) (e) (f) (g)
244 179 0 0 282 0 564 2 dir = 1;
245 /* => entry before first column */
246 272 0 0 0 0 1974 7 r_errorptr = cquantize->fserrors[0] + x_offset;
247 0 0 0 0 0 1974 7 g_errorptr = cquantize->fserrors[1] + x_offset;
248 70 0 0 0 0 1974 7 b_errorptr = cquantize->fserrors[2] + x_offset;
249 }
250
251 /* Preset error values: no error propagated to first pixel ...
252 54 0 0 281 0 1689 3 r_cur = g_cur = b_cur = 0;
253
254 /* and no error propagated to row below yet */
255 0 13 0 0 0 1689 3 r_belowerr = g_belowerr = b_belowerr = 0;
256 0 0 0 0 0 1689 3 r_bpreverr = g_bpreverr = b_bpreverr = 0;
257
258 325 0 0 270261 270803 1085464 8 for (col = width; col > 0; col--) {
...
...
267 1 0 3900 270283 0 2432160 9 r_cur = RIGHT_SHIFT(r_cur + r_errorptr[dir] + 8, 4);
268 43 0 7987 60 0 2432160 9 g_cur = RIGHT_SHIFT(g_cur + g_errorptr[dir] + 8, 4);
269 1 0 2841 55 0 2432160 9 b_cur = RIGHT_SHIFT(b_cur + b_errorptr[dir] + 8, 4);

Figure 10 – Lines from the il_quantize_fs_dither() function with profiling data

6. Performance of SimICS/sun4m
The performance of a simulator is critical to its
practicality. Measuring system level performance is
difficult since it requires duplicating the workload. Let
us first begin with an uncomplicated performance
measurement, namely running in user mode on the
simulator and comparing the execution time of
SPECint95 programs on target and host, using the train
data set. In user mode, SimICS emulates SunOS 5.x
system calls using a compatibility layer.

Table 3 shows the resulting relative performance of
SimICS over native execution. The timings were
performed on an Ultra Enterprise, with the median of
five time measurements shown (we’ve omitted
compress since its native execution time was too small).
The table shows a range of 26-75 in performance for
two configurations of SimICS.

The first configuration, Sim 1, is with infinite data and
instruction caches. In the second configuration we
simulate a small, on-chip cache with 16kbyte 4-way set
associative data cache and a separate, 20kbyte 5-way
set associative instruction cache, corresponding to the
SuperSPARC processor’s on-chip caches, and a 64-
entry unified TLB. All simulation runs generated full
profiling (listed in Figure 5).

As the caches get smaller, the frequency of expensive
events increases causes our slowdown to deteriorate.
The baseline performance with minimum activity is
close to the expected peak performance of the
interpreter technique that we use, approximately 20.
The performance loss for more realistic resource
restrictions remains reasonable, within a factor of three
of peak.

The mips numbers in Table 3 can be compared with the
numbers given earlier in Table 1. We see that the
ranges in raw interpreter performance is similar, leading
us to conclude that the slowdown range of 26-75 is also
representative for the full sun4m simulation
environment.

7. Previous and Related Work
System level simulation for performance modeling is a
longstanding tradition in industry. See, for example,
(Canon et al 1979) for some early work. The first
corresponding work in academia that we know of is the
implementation of g88, which partly originated in
industry. It was subsequently placed in the public
domain and the design details published (Bedichek
1990). g88 modeled a uniprocessor M88100-based
system with a mixture of real and pseudo devices, and
could boot an operating system (Unix). gsim, the
predecessor to SimICS, extended g88 to include support
for multiple processors with shared physical memory
(Magnusson 1992 and 1993a).

SimICS is a rewrite of gsim, primarily to model the
SPARC architecture, but also to implement a faster,
more portable interpreter core, as well as provide a
more structured environment for system level
simulation research in general.

A more recent tool, SimOS, models a MIPS-based
multiprocessor (Rosenblum et al 1995 and 1997,
Witchel et al 1996). SimOS can boot and run Irix.
Newer versions of SimOS model other processors, such
as the Alpha (Barroso et al 1998).

Both SimOS and SimICS have pursued similar goals
and have thus, inevitably, arrived at similar solutions on
many issues. For instance, both tools allow adding end-
user memory hierarchy models, support copy-on-write
disk images, can run off a local network as a virtual
workstation, and provide tools and hooks for non-
intrusively studying the behavior of the workload.

However, SimOS and SimICS have emphasized
different aspects of simulation in pursuing performance.
Both SimICS and SimOS are designed with hybrid
techniques in mind, i.e. the intention is to model
different sections of an execution at different levels of
accuracy, thus gaining in performance but, using
various sampling techniques, losing only marginally in
accuracy. SimOS might thus have three CPU
simulators, where the first focuses on quickly booting
the OS, the second on warming the caches, and the third

caches go m88ksim gcc li ijpeg perl vortex

Native execution (sec) N/A 3.2 0.5 8.1 1.0 8.3 14.5 13.0

Native MIPS 160 260 150 190 240 160 190

Sim 1 (sec) Infinite 84.5 19.2 267.7 33.0 216.8 574.5 491.8

 MIPS 6.0 6.9 4.6 5.6 9.2 4.1 4.9

 Slowdown x26 x38 x33 x32 x26 x40 x38

Sim 2 (sec) 16k/20k 123.9 23.9 545.9 52.9 257.6 810.1 980.8

 MIPS 4.1 5.5 2.3 3.5 7.7 2.9 2.5

 Slowdown x39 x48 x67 x52 x31 x56 x75

Table 3 - SimICS Performance

on modeling processor pipelines, etc (Rosenblum et al
1995). The middle stage is needed since warming
caches requires long traces. SimICS assumes that this
middle stage will be the principal bottleneck in using
the tool, and has thus focused on fast modeling of cache
hierarchies (Magnusson et al 1995), which can
complement a more detailed processor model (Werner
et al 1997).

The performance goal of SimICS is to be fast when
gathering detailed information on common hardware
events. Today this includes a full profile of TLB, data
cache, and instruction cache misses as well as
instruction execution count, all at the granularity of
single instructions. This information gathering is all
subsumed in the 31-75 slowdown range (median 52)
given earlier (“Sim 2”). The closest level of granularity
and speed combination reported for SimOS would
indicate a slowdown of around 130 (Herrod 1998a) for
similar work.1 This SimOS performance figure is for a
large (1 Mb) second level cache, which stresses the
simulator significantly less than the 16K/20K D/I
caches used for the SimICS measurement. This level is
more comparable to the “Sim 1” level above, with a
slowdown of 26-40. In addition, SimOS does not
maintain an execution profile. So despite providing
both more detail and under a higher pressure of event
frequency, SimICS is approximately 3 times faster than
SimOS.

The SimOS instrumentation, on the other hand, is
implemented in a more general manner. For example,
SimOS supports general annotations allowing arbitrary
script routines to be triggered by a variety of hardware
events. This is a powerful tool for exploring program
behavior. It allows the user to introduce problem-
specific semantics for classifying hardware events.
Thus, the performance advantage of SimICS over
SimOS is largely an effect of a specialized approach
beating a general approach. We are in the process of
adding similar functionality to SimICS, and believe that
this will not hamper the current specialized tools.

1 Note that this performance is different from what is reported in
(Witchel and Rosenblum 1996). The SimOS group found it worth
trading off some of Embra’s speed for maintainability, ease of
debugging, and improved functionality (Herrod 1998b). This estimate
is thus based on current SimOS behavior, namely a slowdown of 38-
49 for “rough characterization mode” compounded by an overhead of
284% for classifying the hardware events.

8. Conclusions
We have presented a system level simulation
environment that mimics the sun4m architecture from
Sun Microsystems with sufficient fidelity to run full
operating system workloads directly from disk partition
dumps, including Linux 2.0.30 and Solaris 2.6. The
environment furthermore supports symbolic debugging,
performance tuning, and memory hierarchy evaluation
tasks. The overall performance is better than two
magnitudes slower than native execution, which is
sufficient to run realistic benchmarks, including
SPECint95 and TPC-D.

We expect SimICS/sun4m, and future environments
like it, to play a significant role in both computer
architecture and operating system design work.

9. Acknowledgements
Magnus Christensson got Linux 2.0.30 to boot on
SimICS at SICS, and also ported SimICS to Linux.
Björn Grönvall graciously gave of his time to explain a
variety of Unix esoterics. This work has been supported
by the SICS Framework Programme, Sun Micro-
systems, and Ericsson Infotech.

10. Availability
SimICS/sun4m is available for the research community
at “http://www.sics.se/simics”. The current distribution
includes Linux boot disk images. This package is also
included on the conference CD-ROM.

Bibliography
Anderson, J. M., L. M. Berc, J. Dean, S. Ghemawat, M. R.

Henzinger, S-T. A. Leung, R. L. Sites, M. T. Vandevoorde,
C. A. Waldspurger, and W. E. Weihl. 1997. Conitinuous
Profiling: Where Have All the Cycles Gone? Technical
Report, 1997-016a, Digital Systems Research Center,
September.

Barroso, L. A. and K. Gharachorloo. 1998. System Design
Considerations for a Commercial Application Environment
First Workshop on Computer Architecture Evaluation
Using Commercial Workloads. In conjunction with the
Fourth International Symposium on High Performance
Computer Architecture (HPCA-4), Las Vegas, Sunday Feb.
1, 1998.

Bedichek, R. C. 1990. Some efficient architecture simulation
techniques. In Proceedings of Winter '90 USENIX
Conference, pp 53-63.

———. 1995. Talisman: Fast and accurate multicomputer
simulator. In Proceedings of the '95 ACM SIGMETRICS
Conference, pp 14-24.

Bell, J. R. 1973. Threaded Code. Communication of the ACM,
16(6):370-372.

Canon, M. D., D. H. Fritz, J. H. Howard, T. D. Howell, M. E.
Mitoma, and J. Rodriquez-Rosell. 1979. A Virtual Machine

Emulator for Performance Evaluation. Seventh Symposium
on Operating System Principles, Pacific Grove, California,
Dec 10-12. As reprinted in Communications of the ACM 23,
no. 2 (Feb.): 71-80.

Christensson, M. 1997. Techniques for runtime code
generation in instrumented instruction set simulators.
Masters Thesis, Royal Institute of Technology, Department
of Teleinformatics.

Cmelik, R. F. and D. Keppel. 1993. Shade: A fast instruction-
set simulator for execution profiling. Technical Report
UWCSE 93-06-06.

Egeland, T. 1995. APZ 212 20 – The New High-end
Processor for AXE 10. Ericsson Review. 72(1):5-12.

Herrod, S. A. 1998a. Using Complete Machine Simulation to
Understand Computer System Behavior. February. PhD
Thesis, Department of Computer Science, Stanford
University.

———. 1998b. Personal communication, April 2nd, 1998.

Klint, P. 1981. Interpretation techniques. Software - Practice
and Experience, 11(9):963-973.

Larsson, F., P. S. Magnusson, and B. Werner. 1997. SimGen:
Development of Efficient Instruction Set Simulators. SICS
Research Report R97:03, November.

Magnusson, P. S. 1992. Efficient simulation of parallel
hardware. Masters thesis. Royal Institute of Technology
(KTH), Stockholm, Sweden.

———. 1993a. A design for efficient simulation of a
multiprocessor. In Proceedings of MASCOTS, pp 69-78.

———. 1993b. Partial Translation. SICS Technical Report
T93:05.

———. 1997. Efficient Instruction Cache Simulation and
Execution Profiling with a Threaded-Code Interpreter. In
Proceedings of the Winter Simulation Conference (WSC97).

Magnusson, P. S. and B. Werner. 1995. Efficient memory
simulation in SimICS. In Proceedings of the 28th Annual
Simulation Symposium, pp 62-73.

Rosenblum, M., S. Herrod, E. Witchell, and A. Gupta. 1995.
Complete computer system simulation: The SimOS
approach. IEEE Parallel and Distributed Technology, pp
34-43.

Rosenblum, M. S., E. Bugnion, S. Devine, and S. Herrod.
1997. Using the SimOS machine simulator to study
complex computer systems. ACM TOMACS Special Issue
on Computer Simulation.

Samuelsson, D. 1994. System Level Interpretation of the
SPARC V8 Instruction Set Architecture, SICS Research
Report R94:23.

Stallman, R. M. 1992. Using and Porting GNU CC, version
2.0 (15 February 1992). Free Software Foundation, Mass.,
USA.

Stonebraker, M., L.A. Rowe, and M. Hirohama. 1990. “The
implementation of POSTGRES,” in IEEE Transactions on
Knowledge and Data Engineering, March, vol.2,
(no.1):125-142.

Veenstra, J. E. and R. J. Fowler. 1994 MINT: A front end for
efficient simulation of shared memory multiprocessors. In
Proceedings of MASCOTS ‘94, 201-207. January.

Werner, B. and P. S. Magnusson. 1997. A hybrid simulation
approach enabling performance characterization of large
software systems. In Proceedings of MASCOTS 97, pp 73-
80.

Witchel, E. and M. Rosenblum. 1996. Embra: Fast and
flexible machine simulation. In Proceedings of the ‘96
SIGMETRICS Conference, 68-79. ACM Press.

Zhang, Z. and J. Torrellas. 1997. Reducing Remote Conflict
Misses: NUMA with Remote Cache versus COMA, in
Proceedings of the 3rd International Symposium on High-
Performance Computer Architecture, pp 272-281, February.

