
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2006; 36:1563–1583
Published online 22 June 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.732

The application kernel
approach—a novel approach for
adding SMP support to
uniprocessor operating systems

Simon Kågström∗,†, Håkan Grahn and Lars Lundberg

Department of Systems and Software Engineering, School of Engineering,
Blekinge Institute of Technology, P.O. Box 520, SE-372 25 Ronneby, Sweden

SUMMARY

The current trend of using multiprocessor computers for server applications requires operating system
adaptations to take advantage of more powerful hardware. However, modifying large bodies of software is
very costly and time consuming, and the cost of porting an operating system to a multiprocessor might not
be motivated by the potential performance benefits. In this paper we present a novel method, the application
kernel approach, for adaption of an existing uniprocessor kernel to multiprocessor hardware. Our approach
considers the existing uniprocessor kernel as a ‘black box’, to which no or very small changes are made.
Instead, the original kernel runs operating system services unmodified on one processor whereas the other
processors execute applications on top of a small custom kernel. We have implemented the application
kernel for the Linux operating system, which illustrates that the approach can be realized with fairly small
resources. We also present an evaluation of the performance and complexity of our approach, where we
show that it is possible to achieve good performance while at the same time keeping the implementation
complexity low. Copyright c© 2006 John Wiley & Sons, Ltd.

Received 20 December 2004; Revised 28 June 2005; Accepted 11 November 2005

KEY WORDS: operating systems; performance; implementation complexity; multiprocessor port

1. INTRODUCTION

For performance reasons, uniprocessor computers are now being replaced with small multiprocessors.
Moreover, modern processor chips from major processor manufacturers often contain more
than one CPU core, either logically through Symmetric MultiThreading [1] or physically as

∗Correspondence to: Simon Kågström, Department of Systems and Software Engineering, School of Engineering, Blekinge
Institute of Technology, P.O. Box 520, SE-372 25 Ronneby, Sweden.
†E-mail: ska@bth.se

Contract/grant sponsor: The Knowledge Foundation

Copyright c© 2006 John Wiley & Sons, Ltd.



1564 S. KÅGSTRÖM, H. GRAHN AND L. LUNDBERG

a Chip MultiProcessor [2]. For instance, current Intel Pentium 4 and Xeon processors contain two
logical processors [3] and several other manufacturers are in the process of introducing on-chip
multiprocessors [4,5]. With multiprocessors becoming prevalent, good operating system support is
crucial to benefit from the increased computing capacity.

We are currently working on a project together with a major developer of industrial systems.
The company has over the last 10 years been developing an operating system kernel for clusters of
uniprocessor IA-32 computers. The operating system has interesting properties such as fault tolerance
and high performance (mainly in terms of throughput). In order to take advantage of new shared-
memory multiprocessors, a multiprocessor version of the kernel is being developed [6]. However,
we were faced with the problem that it was very difficult and costly to make the required modifications
because of the size of the code, the long time during which the code had been developed (this has led
to a code structure that is hard to grasp) and the intricate nature of operating system kernels.

The situation described above illustrates the fact that making changes to large software bodies can
be very costly and time consuming, and there has also been a recent surge of interest in alternative
methods. For example, as an alternative to altering operating system code, Arpaci-Dusseau et al. [7]
propose a method where ‘gray-box’ knowledge about algorithms and the behavior of an operating
system are used to acquire control and information over the operating system without explicit interfaces
or operating system modification. There has also been some work where the kernel is changed to
provide quality of service guarantees to large unmodified applications [8].

For the kernel of our industrial partner, it turned out that the software engineering problems that
occur when adding multiprocessor support were extremely difficult and time consuming to address
using a traditional approach. Coupled to the fact that the target hardware would not scale to a very
large number of processors during the foreseeable future (we expect systems in the range of two
to eight processors), this led us to think of another approach. In our approach, we treat the existing
kernel as a black box and build the multiprocessor adaptations beside it. A custom kernel called the
application kernel, of which the original kernel is unaware, is constructed to run on the other processors
in the system while the original kernel continues to run on the boot processor. Applications execute on
the other processors while system calls, page faults, etc. are redirected by the application kernel to the
uniprocessor kernel. We expect the application kernel approach to substantially lower the development
and maintenance costs compared with a traditional multiprocessor port.

In this paper, we describe the application kernel approach and evaluate an implementation for
the Linux kernel. With this implementation, we demonstrate that it is possible to implement our
approach without changing the kernel source code and at the same time running unmodified Linux
applications. We evaluate our approach both in terms of performance and implementation complexity.
The evaluation results show that the implementation complexity is low in terms of lines of code and
cyclomatic complexity for functions, requiring only seven weeks to implement. Performance-wise,
our implementation performance levels are comparable to Linux for compute-bound applications.

The application kernel implementation for Linux is available as free software licensed under the
GNU General Public License (GPL) at http://www.ipd.bth.se/ska/application kernel.html. This paper
builds on our previous work where we implemented the application kernel approach for a small
in-house kernel [9].

The rest of the paper is structured as follows. We begin with discussing related work in
Section 2. In Section 3 we describe the ideas behind our approach and Section 4 then discusses our
implementation for the Linux kernel. We describe our evaluation framework in Section 5, and then

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



THE APPLICATION KERNEL APPROACH 1565

evaluate the implementation complexity and performance of the application kernel in Section 6. Finally,
we conclude and discuss future extensions to the approach in Section 7.

2. RELATED WORK

The implementation of a multiprocessor operating system kernel can be structured in a number of
ways. In this section, we present the traditional approaches to multiprocessor porting as well as some
alternative methods and discuss their relation to our approach.

2.1. Monolithic kernels

Many multiprocessor operating systems have evolved from monolithic uniprocessor kernels.
These uniprocessor kernels (for example, Linux and BSD UNIX) contain large parts of the actual
operating system, making multiprocessor adaptation a complex task. In-kernel data structures need to
be protected from concurrent access from multiple processors and this requires locking. The granularity
of the locks, i.e. the scope of the code or data structures a lock protects, is an important component
for the performance and complexity of the operating system. Early multiprocessor operating systems
often used coarse-grained locking, for example the semaphore-based multiprocessor version of UNIX
described by Bach and Buroff [10]. These systems employ a locking scheme where only one processor
runs in the kernel (or in a kernel subsystem) at a time [11]. The main advantage with the coarse-
grained method is that most data structures of the kernel can remain unprotected, and this simplifies
the multiprocessor implementation. In the most extreme case, a single ‘giant’ lock protects the entire
kernel.

The time spent in waiting for the kernel locks can be substantial for systems dominated by in-kernel
execution, and in many cases it is actually unnecessary since the processors might use different paths
through the kernel. The obvious alternative is then to relax the locking scheme and use a more fine-
grained locking scheme to allow several processors to execute in the kernel concurrently. Fine-grained
systems allow for better scalability since processes can run with less blocking on-kernel access.
However, they also require more careful implementation, since more places in the kernel must be
locked. The FreeBSD SMP implementation, which originally used coarse-grained locking, has shifted
toward a fine-grained method [12] and mature UNIX systems such as AIX and Solaris implement
multiprocessor support with fine-grained locking [13,14], as do current versions of Linux [15].

2.2. Microkernel-based systems

Another approach is to run the operating system on top of a microkernel. Microkernel-based systems
potentially provide better system security by isolating operating system components and also better
portability since much of the hardware dependencies can be abstracted away by the microkernel.
There are a number of operating systems based on microkernels, for example L4Linux [16], a modified
Linux kernel which runs on top of the L4 microkernel [17]. The Mach microkernel has been used as
the base for many operating systems, for example DEC OSF/1 [18] and MkLinux [19]. Furthermore,
QNX [20] is a widely adopted microkernel-based multiprocessor operating system for real-time tasks.
However, although the microkernel implements lower-level handling in the system, a ported monolithic
kernel still needs to provide locks around critical areas of the system.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



1566 S. KÅGSTRÖM, H. GRAHN AND L. LUNDBERG

An alternative approach is used in multi-server operating systems [21,22]. Multi-server systems
organize the system as multiple separated servers on a microkernel. These servers rely on microkernel
abstractions such as threads and address spaces, which can in principle be backed by multiple
processors transparently to the operating system servers. However, adapting an existing kernel to run
as a multi-server system [23,24] requires major refactoring of the kernel. Designing a system from
scratch is a major undertaking, so in most cases it is more feasible to port an existing kernel.

2.3. Asymmetric operating systems

As with systems that use coarse-grained locking, master-slave systems (refer to [11, ch. 9]) allow only
one processor in the kernel at a time. The difference is that in master–slave systems, one processor is
dedicated to handling kernel operations (the ‘master’ processor) whereas the other processors (‘slaves’)
run user-level applications. On system calls and other operations involving the kernel, master–slave
systems divert the execution to the master processor. Commonly, this is done through splitting the
ready queue into one slave queue and one master queue. Processes are then enqueued in the master
queue on kernel operations, and enqueued in the slave queue again when the kernel operation finishes.
Since all kernel access is handled by one processor, this method limits throughput for kernel-bound
applications.

The master–slave approach is rarely used in current multiprocessor operating systems, but was more
common in early multiprocessor implementations. For example, Goble and Marsh [25] describe an
early tightly coupled VAX multiprocessor system, which was organized as a master–slave system.
The dual VAX system does not split the ready queue, but instead lets the slave processor scan the ready
queue for processes not executing kernel code. Also, although both processors can be interrupted,
all interrupt handling (except timer interrupts) is performed on the master processor. Our approach
is a modern refinement of the master–slave approach, where the source code of the original system
(‘master’) remains unchanged.

An interesting variation of multiprocessor kernels was presented in [26]. Piglet [26] dedicates the
processors to specific operating system functionality. Piglet allocates processors to run a Lightweight
Device Kernel (LDK), which normally handles access to hardware devices but can also perform other
tasks. The LDK is not interrupt-driven, but instead polls devices and message buffers for incoming
work. A prototype of Piglet has been implemented to run beside Linux 2.0.30, where the network
subsystem (including device handling) has been off-loaded to the LDK, and the Linux kernel and user-
space processes communicate through lock-free message buffers with the LDK. A similar approach
has also recently been used to offload the TCP/IP stack [27]. These approaches are beneficial if
I/O-handling dominates the operating systems workload, whereas it is a disadvantage in systems with
much computational work when the processors would serve better as computational processors. It can
also require substantial modification of the original kernel, including a full multiprocessor adaption
when more than one processor is running applications.

2.4. Cluster-based approaches

Several approaches based on virtualized clusters have also been presented. One example is the Adeos
nanokernel [28] where a multiprocessor acts as a cluster with each processor running a modified version
of the Linux kernel. The kernels cooperate in a virtual high-speed and low-latency network. The Linux
kernel in turn runs on top of a bare-bones kernel (the Adeos nanokernel) and most features of Linux

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



THE APPLICATION KERNEL APPROACH 1567

have been kept unchanged, including scheduling, virtual memory, etc. This approach has also been
used in Xen [29], which virtualizes Linux or NetBSD systems.

Another cluster-based method is Cellular Disco [30], where virtualization is used to partition
a large NUMA multiprocessor into a virtual cluster that also provides fault-containment between
the virtualized operating systems. The virtualized systems provide characteristics similar to our
approach in that they avoid the complexity issues associated with a traditional parallelization approach.
However, they also require a different programming model than single-computer systems for parallel
applications. Cluster-based approaches are also best suited for large-scale systems where scalability
and fault tolerance are hard to achieve using traditional approaches.

MOSIX [31] is a single-system image distributed system that redirects system calls to the ‘unique
home node’ of the process, thereby utilizing the central idea behind master–slave systems. MOSIX
can distribute unmodified Linux applications throughout a cluster of asymmetric hardware. MOSIX is
similar to our approach in that it redirects system calls, but has a different goal (providing a single-
system image distributed system).

3. THE APPLICATION KERNEL APPROACH

All of the approaches presented in the last section require, to various degrees, extensive knowledge
and modifications of the original kernel. We therefore suggest a different approach, the application
kernel approach, which allows the addition of multiprocessor support with minimal effort and only
a basic knowledge about the original kernel. In this section we describe the general ideas behind the
application kernel approach and an overview of how it works.

3.1. Terminology and assumptions

Throughout the paper, we assume that the implementation platform is the Intel IA-32, although the
approach is applicable to other architectures as well. We will follow the Intel terminology when
describing processors, i.e. the processor booting the computer will be called the bootstrap processor
while the other processors in the system are called application processors.

Also, we use a similar naming scheme for the two kernels: the original uniprocessor kernel is called
the bootstrap kernel, i.e. the Linux kernel in the implementation described in this paper, whereas the
second kernel is called the application kernel. Furthermore, in order to not complicate the presentation,
we will assume single-threaded processes in the discussion, although multi-threaded processes are also
supported using the same technique.

3.2. Overview

The basic idea in our approach is to run the original uniprocessor kernel as it is on the bootstrap
processor while all other processors run the application kernel. Applications execute on both kernels,
with the application kernel handling the user-level part and the bootstrap kernel handling kernel-level
operations. One way of describing the overall approach is that the part of the application that needs to
communicate with the kernel is executed on a single bootstrap processor while the user-level part of the
program is distributed among the other processors in the system, i.e. similar to master–slave kernels.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



1568 S. KÅGSTRÖM, H. GRAHN AND L. LUNDBERG

Application
processors

OS kernel

Processes

Application kernel

Traps/system calls

Interrupt/
system call
entry points

Bootstrap thread Application
thread

Shared area

 Bootstrap
 processor

Figure 1. Overview of the application kernel approach.

Figure 1 shows an overview of the application kernel approach. The upper boxes represent user
processes and the lower shows the bootstrap kernel and the application kernel. Each process has two
threads, a bootstrap thread and an application thread. The bootstrap thread executes on the bootstrap
kernel, i.e. Linux, while the application threads are handled by the application kernel. An application
thread runs the actual program code whereas the bootstrap thread serves as a proxy, forwarding kernel
calls to the bootstrap kernel. Note that the application kernel and the bootstrap kernel use unique
interrupt and trap handlers to enable the application kernel to catch traps and faults caused by the
application.

The two threads in the process communicate through a shared area in the process address space.
The bootstrap monitors the shared area to detect new system calls etc. Applications run as before,
except when performing operations involving the kernel. On such events, the application thread traps
into the application kernel, which then enters a message in the communication area. The actual event
will be handled at a later stage by the bootstrap thread, which performs the corresponding operation.
We will describe trap handling in detail in Section 3.4.

With the application kernel approach, we can add multiprocessor support to an existing operating
system without either performing doing modifications to the original operating system kernel or making
any changes to the applications (not even recompiling them). There are a few special cases that might
require kernel source changes, but those were not needed for our research prototype. Section 4.1
describes these special cases.

Compared to the other porting methods, our approach tries to minimize the effort needed to
implement a multiprocessor port of a uniprocessor operating system. The focus is therefore different
from traditional porting methods. Master–slave kernels, which are arguably most similar to our

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



THE APPLICATION KERNEL APPROACH 1569

approach, place most of the additional complexity in the original kernel whereas we put it into two
separate entities (the application kernel and the bootstrap thread). In a sense, our approach can be seen
as a more general revitalization of the master–slave idea. The Cache Kernel [32,33] employs a scheme
similar to ours on redirecting system calls and page faults, but requires a complete reimplementation
of the original kernel to adapt it to the cache kernel. We can also compare it to the MOSIX system [31]
that also redirects system calls, although MOSIX is used in a cluster context and has different goals to
the application kernel.

3.3. Hardware and software requirements

The application kernel approach places some restrictions (often easy to fulfill) on the processor
architecture and the bootstrap kernel. The architecture must at least support the following:

(1) binding of external interrupts to a specific processor and at the same time allowing CPU-local
timer interrupts;

(2) retrieving the physical page table address of the currently running process;
(3) interrupt and trap handlers must be CPU-local.

The first requirement must be fulfilled since only the bootstrap kernel handles all external interrupts
except for timer interrupts. Timer interrupts need to be CPU-local for scheduling to take place on
the application kernel. On the IA-32 this is possible to implement with the Advanced Programmable
Interrupt Controller (APIC), which has a per-processor timer. MIPS uses a timer in the coprocessor 0
on the processor chip [34] and PowerPC has a decrementer register [35] that can be used to issue
interrupts. The interrupt handlers must be private for different processors, which is directly possible on
IA-32 processors through the Interrupt Descriptor Table (IDT). For architectures where the interrupt
handlers reside on fixed addresses, for example MIPS, the instrumentation of the interrupt handlers is
required.

Our approach also places two requirements on the bootstrap kernel. First, it must be possible to
extend the kernel with code running in supervisor mode. This requirement is satisfied in most operating
systems, for example, through loadable modules in Linux. Second, the bootstrap kernel must not
change or remove any page mappings from the application kernel. The application kernel memory
needs to be mapped to physical memory at all times, since revoking a page and handing it out to a
process (or another location in the kernel) would cause the application kernel to overwrite data for the
bootstrap kernel or processes.

3.4. Application kernel interaction

Figure 2 shows how the kernel interaction works in the application kernel approach. Kernel interaction
requires eight steps, which are illustrated in the figure. In the discussion, we assume that the operation
is a system call, although page faults and other operations are handled in the same way.

(1) The application (i.e. the application thread running on one of the application processors) issues
a system call and traps down to the application kernel. This is handled by the CPU-local trap
vector.

(2) The application kernel enters information about the call into the shared area and thereafter
schedules another thread for execution.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



1570 S. KÅGSTRÖM, H. GRAHN AND L. LUNDBERG

OS kernel

Application kernel

Bootstrap thread Application
thread

processor 
Application
processors

12

3

45 6

7

8

Shared area

Bootstrap

Figure 2. System call/trap handling in the application kernel approach.

(3) At a later point, the bootstrap thread wakes up and finds a message in the shared area.
(4) The bootstrap thread then parses the message and performs the corresponding operation

(i.e. issuing the same system call in this case).
(5) The bootstrap kernel will thereafter handle the system call from the bootstrap thread and return

control to the bootstrap thread.
(6) After this, the bootstrap thread must tell the application kernel that the application thread can

be scheduled again. Since the application kernel runs as a loadable module within the bootstrap
kernel, it must do this through the driver interface of the bootstrap kernel, issuing the application
kernel apkern activate thread call.

(7) The application kernel driver, running on the bootstrap processor, enters the application thread
into the ready queue again.

(8) Finally, the application thread is scheduled at a later point in time on one of the application
processors.

The clone and fork system calls are handled slightly different to other calls, and are described in
detail in Section 4.2. Furthermore, the exit system call and exceptions that cause process termination
(for example illegal instructions) are different to page faults and other system calls. This is because the
bootstrap kernel is unaware of the application thread and will terminate the process without notifying
the application kernel. If this is not handled, the application kernel will later schedule a thread that runs
in a non-existing address space. For this case, Step 2 of the algorithm above is modified to clean up the
application thread (i.e. free the memory used by the thread control block and remove the thread from
any lists or queues).

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



THE APPLICATION KERNEL APPROACH 1571

Another special case is when the information flows the opposite way, i.e. when the kernel
asynchronously activates a process (for instance, in response to a signal in Linux). In this case, the
handler in the bootstrap thread will issue the apkern activate thread call directly, passing
information about the operation through the shared area. The application kernel will then issue the
same signal to the application thread, activating it asynchronously. Our current implementation does
not support asynchronous notifications, but it would be achieved by registering signal handlers during
the bootstrap thread startup phase.

3.5. Exported application programming interface

The application kernel Application Programming Interface (API) is only available via driver calls to
the bootstrap kernel. There is no way to call the application kernel directly via system calls in the
application thread since the trap handling matches that of the bootstrap kernel and only forwards the
events through the shared area. A straightforward way of allowing direct calls to the application kernel
would be to use a different trap vector to the Linux standard, which could, for example, be used to
control application kernel scheduling from applications. The exported interface consists of six calls:

• apkern init. This routine is called once on system startup, typically when the application
kernel device driver is loaded. It performs the following tasks.

– It initializes data structures in the application kernel, for example, the ready-queue
structure and the thread lookup table.

– It starts the application processors in the system. On startup, each processor will initialize
the interrupt vector to support system calls and exceptions. The processor will also enable
paging and enter the idle thread waiting for timer interrupts.

• apkern thread create. This function is called from the bootstrap thread when the process
is started. The function creates a new thread on the application kernel. The thread does not enter
the ready queue until the apkern thread start call is invoked.

• apkern thread ex regs. Sometimes it is necessary to update the register contents of a
thread (for example copying the register contents from parent to child when forking a process)
and the application kernel therefore has a call to ‘exchange’ the register contents of a thread.

• apkern thread get regs. This function returns in the current register context of a thread
(also used with fork).

• apkern thread start. Place a thread in the ready queue.
• apkern thread activate. Thread activation is performed when the bootstrap thread

returns, for example, from a system call, to wake up the application thread again. The call will
enter the application thread back into the ready queue and change its state from blocked to ready.

4. IMPLEMENTATION

We implemented the application kernel as a loadable kernel module for Linux. The module can be
loaded at any time, i.e. the application kernel does not need to be started during boot but can be added
when it is needed. Since modules can be loaded on demand, the application kernel can also be started

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



1572 S. KÅGSTRÖM, H. GRAHN AND L. LUNDBERG

typedef struct {
volatile bool_t bootstrap_has_msg;
volatile apkern_comm_nr_t nr;
volatile addr_t pc;

union {
struct {

volatile addr_t addr;
volatile bool_t write;

} PACKED pagefault;

struct {
volatile uint_t nr;
volatile uint_t arg1;
...
volatile uint_t arg6;
volatile uint_t ret;

} PACKED syscall;
...

} u;
} apkern_comm_entry_t;

Figure 3. Shared area layout.

when the first process uses it. Furthermore, it is not necessary to recompile applications to run on
the application kernel, and applications running on the application kernel can coexist seamlessly with
applications running only on the bootstrap processor.

The layout of the shared memory area for the Linux implementation is shown in Figure 3. The shared
area data type, apkern comm entry t, has a union with the different types of messages, with page
faults and system calls shown in the figure and a variable (bootstrap has msg) that is used by
the application kernel to signal to the bootstrap thread. There is always a one-to-one mapping between
application threads and bootstrap threads, i.e. multi-threaded processes will have several bootstrap
threads. The bootstrap thread does not respond to system calls etc. through the shared area, but invokes
the application kernel driver instead. Since the shared area is a one-way communication channel,
it needs no explicit protection.

The application kernel is initialized, i.e. processors are booted etc. when the kernel module is loaded.
The application kernel is thereafter accessible through a normal Linux device file, and a process that
wants to run on the application kernel opens the device file on startup and closes it when it exits
(this can be done automatically and is described in Section 4.3). All interactions with the application
kernel, apart from open and close, are performed using ioctl calls, through which the exported
interface is available.

Figure 4 illustrates the application kernel driver (a char-type device) structure and an
apkern activate thread call. The call from the bootstrap thread enters through the Linux
system call handler, which then forwards it to the ioctl entry point for the device driver.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



THE APPLICATION KERNEL APPROACH 1573

OS kernel

Application kernel

Application kernel driver

ioctl
handler Enter into

ready queue

Figure 4. Application kernel device driver structure.

The ioctl handler in turn updates the thread control block for the activated thread, locks the
application kernel ready queue and enters the thread control block into the ready queue. In the rest
of this section, we will discuss details related to paging, forking and application startup from the Linux
implementation of the application kernel.

4.1. Paging

All page faults are handled in the bootstrap thread by setting the stack pointer to the address of the
page fault and touching that memory area. Although this seems like an unnecessary step instead of
just accessing the memory directly, it is needed as a workaround since Linux terminates the program if
stack access is performed below the current stack pointer.

The paging implementation also illustrates the one case where the application kernel approach might
require kernel modifications. The problem (which is general and affects other approaches as well)
occurs in multi-threaded processes on page table updates, when the translation lookaside buffer (TLB)
contents for different processors running in the same address space will be inconsistent‡. For example,
if processor 0 and 1 execute threads in the same address space, and processor 0 revokes a page mapping,
the TLB of processor 1 will contain an incorrect cached translation. To solve this, an inter-processor
interrupt is invoked to invalidate the TLB of the other processors, which requires changes to the page
fault handling code. We ran our prototype without disk swap and the inter-processor interrupts are
therefore not needed and have not been implemented.

4.2. clone/fork system calls

The Linux clone and fork system calls require special handling in the application kernel. Both calls
start a new process that inherits the context of the invoking thread. The difference is that clone allows

‡On architectures with tagged TLBs, for example MIPS, this could occur even in single-threaded processes since the TLB is not
necessarily flushed on page table switches.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



1574 S. KÅGSTRÖM, H. GRAHN AND L. LUNDBERG

Application kernel

Bootstrap threads Application threads

Application
processors

1. clone is called

2. The bootstrap
thread is cloned

3. The cloned thread
creates a new
application thread

 Bootstrap
 processor

4. The application
kernel starts the
cloned thread

Figure 5. Handling of the clone system call.

for sharing the address space with the parent (creating a new thread), while fork always separate
the address spaces (creating a new process). Also, clone requires the invoker to specify a callback
function that will be executed by the cloned thread. In Linux, fork is simply a special case of clone,
although the implementation of fork predates clone.

We illustrate the steps needed in a clone or fork call in Figure 5. If we would just issue
the system call directly, the bootstrap thread would run the cloned thread itself. Therefore, we first
clone the bootstrap thread, then let the cloned bootstrap thread create a new application kernel thread
(i.e. handling the original clone) and finally enters a loop waiting for messages from the application
kernel. This effectively splits the clone call in two, creating a new thread pair. The fork call works
the same way, but has different return semantics, i.e. it returns ‘twice’ instead of using a callback.

4.3. Running applications

Our implementation allows running dynamically linked applications directly, without modifying or
even recompiling them. It is also possible to run a mixed system, with some applications running on
the application kernel whereas others are tied to the bootstrap processor.

We achieve this by applying some knowledge about application startup under Linux. In Linux,
applications are started by a short assembly stub that in turn calls libc start main. This function,
provided by GNU libc, starts the main function. The libc start main function is dynamically
linked into the executable and can therefore be overridden. We override libc start mainwith the
startup routine for the application kernel, which can be done as long as the application is dynamically

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



THE APPLICATION KERNEL APPROACH 1575

_start __libc_start_main main

override appkern_thread

Figure 6. Application startup. The dashed lines show the original execution while the solid lines
show the overridden execution path.

linked against libc. To run a process on the application kernel, we simply set the LD PRELOAD
environment variable to preload a library with the bootstrap thread implementation.

The overriding process is illustrated in Figure 6. The overridden libc start main will just
invoke the original libc start main, but with apkern thread instead of main as the starting
function. This function in turn will either, depending on whether the NOAPPKERN environment
variable is set, invoke the original main and thereby bypassing the application kernel or start the
bootstrap thread.

4.4. Experimental setup and methodology

We have conducted an evaluation of the application kernel approach where we evaluate both latency
and throughput. First, we measure single-process performance in order to estimate the extra latency
caused by the application kernel. Second, we measure scalability of multiprogramming and parallel
benchmarks. In the evaluation, we use standard UNIX tools, the SPLASH 2 [36] benchmarks and the
SPEC CPU2000 [37] benchmark suite. Furthermore, we have also evaluated the implementation size
and complexity of our approach, which was performed by counting the physical lines of code in the
application kernel and calculating the McCabe cyclomatic complexity [38] that gives the number of
independent code paths through a function. The code lines were counted with the sloccount tool [39]
and the cyclomatic complexity was measured by the pmccabe [40].

5. EVALUATION ENVIRONMENT

We performed our performance evaluation using the Simics full system simulator [41] and real
hardware. We setup Simics to simulate a complete IA-32 system with one to eight processors.
Our hardware is a 200 MHz dual Pentium Pro with 8 KB first-level instruction and data caches,
and a 256 KB per-processor L2 cache. The Simics simulator allows us to use unmodified hard disk
images, containing the complete operating system. Compared to real hardware, our simulated setup
does not simulate caches in the system, and some other performance issues relevant in multiprocessor
systems [42], such as costs associated with data alignment, cross-processor cache access etc. are not
accounted for in our simulations. Our prototype also has known performance issues, for example
we have not optimized the memory layout for efficient use of the cache. However, the fundamental
limitation of the application kernel approach is that the bootstrap thread at some point will be a

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



1576 S. KÅGSTRÖM, H. GRAHN AND L. LUNDBERG

scalability bottleneck. We believe that the simulated measurements give a good indication of when
this bottleneck is reached for various usage patterns.

The execution on hardware serves to validate the correctness of our implementation in a real
setting and is also used to establish the latency for kernel operations with the application kernel.
We successfully ran all the benchmarks on our hardware as well as on the simulated system.

We benchmarked a uniprocessor Linux with the application kernel module against a multiprocessor
Linux, running the 2.4.26 version of the kernel, henceforth referred to as SMP Linux. Our experiments
report the time required to execute the benchmarks in terms of clock cycles on the bootstrap processor.
Our system was a minimal Debian GNU/Linux 3.1 (‘Sarge’)-based distribution, which ran nothing but
the benchmark applications.

5.1. Benchmarks

For the performance evaluation, we conducted three types of performance measurements. First, we ran
a number of single-process benchmarks to evaluate the overhead caused by the system call forwarding
used by the application kernel approach. These benchmarks run one single-threaded process at a time
and should therefore be unaffected by the number of processors. Second, we also ran a set of multi-
threaded parallel applications, which shows the scalability of compute-bound applications. Third,
we also evaluated a multi-programming workload. In the multi-programming benchmark, we ran a set
of programs concurrently and measured the duration until the last program finished. This benchmark
should be characteristic of a loaded multi-user system.

The programs we used are a subset of the SPEC CPU2000 benchmarks, a subset of the
Stanford SPLASH 2 benchmarks, and a set of standard UNIX tools. For SPEC CPU2000, we used
the Minnespec reduced workloads [43] to provide reasonable execution times in our simulated
environment. The SPLASH 2 benchmarks were compiled with a macro package that uses clone
for the threading implementation and pthread primitives for mutual exclusion. The SPLASH SPEC
benchmarks were compiled with GCC version 3.3.4 (with optimization -O2) and the UNIX applications
were unmodified Debian binaries. The benchmark applications are summarized in Table I.

6. EXPERIMENTAL RESULTS

In this Section, we describe the results obtained from our measurements. Table III and IV show the
speedup versus uniprocessor Linux for SMP Linux and the application kernel. For the parallel and
multi-programming benchmarks, the speedup is also shown in Figure 7. The results from the getpid
evaluation are shown in Table II.

6.1. Performance evaluation

On our hardware, issuing a getpid call takes around 970 cycles in Linux on average (the value
fluctuates between 850 and 1100 cycles) whereas the same call requires around 5700 cycles with
the application kernel as shown in Table II. In Simics, the cost of performing a getpid call is
74 cycles in Linux and around 860 cycles with the application kernel. Since getpid performs
very little in-kernel work, the cost for Linux is dominated by the two privilege level switches

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



THE APPLICATION KERNEL APPROACH 1577

Table I. The benchmarks used in the performance evaluation.

Benchmark Command Description

Single-process
find find / List all files in the system

(13 946 files and directories)
SPEC2000 gzip 164.gzip lgred.log Compression of a logfile,

computationally intensive
SPEC2000 gcc 176.gcc smred.c-iterate.i -o a.s SPEC 2000 C-compiler

Parallel
SPLASH2 RADIX RADIX -n 8000000 -p8 Sort an array with radix sort,

eight threads
SPLASH2 FFT FFT -m20 -p8 Fourier transform, eight threads
SPLASH2 LU LU -p 8 -b 16 -n 512 Matrix factorization, eight

threads(non-contiguous)

Multi-programming
176.gcc 176.gcc smred.c-iterate.i -o a.s SPEC2000 C-compiler
find find / List all files in the system

(13 946 files and directories)
grep grep "linux" /boot/System.map Search for an expression in a file.

System.map has 150 000 lines
find and grep find / | grep "data" List all files in the system and

search for a string in the results
SPLASH2 FFT FFT -m10 -p8 Fourier transform, eight threads
SPLASH2 LU LU -p 8 -b 16 -n 512 Matrix factorization, eight

threads

Table II. getpid latency in Linux and the
application kernel.

Linux Application kernel

PPro 200 MHz 970 5700
Simics 74 860

(user mode to kernel and back). For the application kernel, there are five privilege level switches
(see Figure 2). First, the application thread traps down into the application kernel, which updates the
shared area. The bootstrap thread thereafter performs another trap for the actual call and upon return
invokes the application kernel driver through an ioctl call, i.e. performing another three privilege
level switches. Finally, the application thread is scheduled again, performing the fifth privilege level
switch. In our simulated system, each instruction executes in one cycle and there is no additional
penalty for changing privilege mode and therefore the getpid cost is dominated by the number of
executed instructions. This explains why the application kernel overhead is proportionally larger in the
simulated system than on real hardware.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



1578 S. KÅGSTRÖM, H. GRAHN AND L. LUNDBERG

Table III. Speedup for the single-process benchmarks.

Speedup versus uniprocessor Linux

Find 176.gcc 164.gzip

Processors Linux Appkern Linux Appkern Linux Appkern

2 0.9803 0.7844 1.0015 0.8976 1.0008 0.9461
3 0.9795 0.8284 1.0033 0.9125 1.0012 0.9461
4 0.9807 0.8641 1.0047 0.9218 1.0014 0.9462
5 0.9804 0.8690 1.0053 0.9230 1.0016 0.9462
6 0.9800 0.8748 1.0047 0.9244 1.0016 0.9462
7 0.9795 0.8784 1.0050 0.9252 1.0017 0.9462
8 0.9776 0.8831 1.0055 0.9260 1.0017 0.9462

Table IV. Speedup for the parallel and multi-programming benchmarks.

Speedup versus uniprocessor Linux

RADIX FFT LU Multi-programming

Processors Linux Appkern Linux Appkern Linux Appkern Linux Appkern

2 2.0433 1.0834 1.6916 1.0401 1.9217 1.2662 1.5049 0.9705
3 3.3758 2.5174 2.2930 1.8654 2.9430 2.0795 1.6627 1.1375
4 4.0885 3.7227 2.5090 2.3235 3.5053 2.9941 1.6850 1.1779
5 5.1898 4.8200 2.8456 2.6323 4.0857 3.8009 1.6782 1.1878
6 5.9562 5.5736 2.9927 2.8626 4.7706 5.0445 1.6845 1.1962
7 6.9355 6.1934 3.1732 3.0188 5.3277 5.1628 1.6803 1.2059
8 8.0009 6.0924 3.3272 3.0745 6.0084 1.6839

In the computationally intensive single-process gcc and gzip benchmarks from SPEC CPU2000,
the application kernel performs almost on-par with SMP Linux (the difference is between 5 and 10%)
as shown in Table III. Furthermore, we can also see that as more processors are added, the gap decreases
because there is a higher probability of a processor being free to schedule the thread when the bootstrap
thread has handled the call.

A weak spot for the application kernel shows in the filesystem-intensive find benchmark. Here, the
overhead associated with forwarding system calls prohibit the application kernel to reach SMP
Linux performance levels. However, since application kernel applications can coexist seamlessly with
applications tied to the bootstrap kernel, it is easy to schedule these applications on the bootstrap
kernel.

The selected computationally intensive parallel benchmarks from the Stanford SPLASH 2 suite
exhibit good scalability both in SMP Linux and for the application kernel (see Table IV and Figure 7).

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



THE APPLICATION KERNEL APPROACH 1579

Number of processors
1 2 3 4 5 6 7 8

0

2

4

6

8

10

Linux speedup
Application kernel speedup

Number of processors
1 2 3 4 5 6 7 8

0

0.5

1

1.5

2

2.5

3

3.5

4

Linux speedup
Application kernel speedup

RADIX FFT

Number of processors
1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Linux speedup
Application kernel speedup

Number of processors
1 2 3 4 5 6 7 8

0

0.5

1

1.5

2

Linux speedup
Application kernel speedup

Sp
ee

du
p 

(v
er

su
s 

un
ip

ro
ce

ss
or

 L
in

ux
)

Sp
ee

du
p 

(v
er

su
s 

un
ip

ro
ce

ss
or

 L
in

ux
)

Sp
ee

du
p 

(v
er

su
s 

un
ip

ro
ce

ss
or

 L
in

ux
)

Sp
ee

du
p 

(v
er

su
s 

un
ip

ro
ce

ss
or

 L
in

ux
)

Multi-programming Linux Uniprocessor 

Figure 7. Speedup for the parallel and multi-programming benchmarks versus uniprocessor Linux.

The results for the application kernel are close to those for SMP Linux, especially considering that the
application kernel excludes one of the processors (the bootstrap processor) for computation. This shows
that the application kernel is a feasible approach for computationally intensive applications, where the
kernel interaction is limited.

The multi-programming benchmark, also shown in Table IV and Figure 7, contains a mix of
applications that have different behavior in terms of user/kernel execution. For this benchmark, we see
that running all applications on the application kernel places a high strain on the bootstrap kernel,
which hampers the scalability compared to SMP Linux. For general multi-programming situations, it is
probably better to divide the processes so that kernel-bound processes run on the bootstrap processor
while the rest are executed on the application kernel.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



1580 S. KÅGSTRÖM, H. GRAHN AND L. LUNDBERG

Table V. Comment-free lines of code.

Category Lines of code

Application kernel 2400
Linux driver 360
Libraries 920
Bootstrap thread 260

6.2. Implementation complexity and size

The application kernel was ported from the implementation presented in [9], and most of the internals
of the kernel are completely unchanged. Apart from some restructuring and the loadable Linux kernel
module, the only changes to the actual application kernel are some low-level handling of system calls
(i.e. the used trap vector and parameter passing). One single developer spent seven weeks part-time
implementing the application kernel support for Linux. The previous implementation took about five
weeks to finish, and was also done by a single developer.

The number of physical code lines (not counting empty and comments) in the application kernel
is 3600. Of these, the Linux driver module takes up around 250 lines, roughly equally split in
initialization and handling of ioctl calls. Only around 400 lines of the implementation were changed
from our previous implementation. Libraries, a small part of libc and malloc, list, stack and hash
table implementations, account for another 920 lines of code. The user-level library that contains the
bootstrap thread consists of 260 lines of code. Roughly one third of these are needed for the handling of
clone and fork while around 70 lines are needed for startup. The rest is used in the implementation
of page fault and system call handling (excluding clone and fork). The code lines are summarized
in Table V.

The source consists of around 360 lines of assembly code and the rest being C code. The high
proportion of assembly code, almost 10%, stems from the fact that a fairly large part of the code deals
with startup of the application processors and low-level interrupt handling. If we disregard the library
code (which is independent of the application kernel), the assembly portion increases to 17%.

A histogram of the McCabe cyclomatic complexity for the application kernel (without the library
implementation), and the kernel core and the IA-32-specific parts of Linux 2.4.26, FreeBSD 5.4 and
L4/Pistachio 0.4 [44] is shown in Figure 8. As the figure indicates, the cyclomatic complexity of the
application kernel implementation is fairly low (a value below 10 is generally regarded as indicative of
simple functions). We can see that the application kernel has a larger proportion of functions with low
cyclomatic complexity when compared with the other kernels, especially Linux and FreeBSD.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the application kernel, an alternative approach for adding SMP
support to a uniprocessor operating system. Our approach has lower implementation complexity than

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



THE APPLICATION KERNEL APPROACH 1581

Function complexity
1 2 4 5 7 8 10 11 13 14

Pe
rc

en
ta

ge
 o

f 
fu

nc
tio

ns

0

10

20

30

40

50

Application Kernel Linux 2.4.26 FreeBSD 5.4 L4/Pistachio 0.4

Figure 8. Histogram of McCabe cyclomatic complexity for the Application Kernel, Linux 2.4.26, FreeBSD 5.4
and the L4/Pistachio 0.4 microkernel.

traditional approaches, often without changes to the original uniprocessor kernel, while at the same
time providing scalable performance. In this sense, the application kernel approach can be seen as a
modern revitalization of the master–slave approach. There are also similarities with approaches used
in distributed systems.

We have evaluated a prototype implementation of the application kernel approach for a uniprocessor
Linux kernel, where the results show that our approach is a viable method to achieve good
performance in computationally intensive applications. We also show that the implementation is quite
straightforward, with a low cyclomatic complexity compared to other operating system kernels and a
small size (around 3600 lines) requiring only seven weeks to implement.

There are several advantages with our approach. First, we do not need to modify the large
and complex code of the uniprocessor kernel. Second, the development of the uniprocessor kernel
can continue as usual with improvements propagating automatically to the multiprocessor version.
Our evaluation also shows that a large portion of the effort of writing the application kernel can be
reused for other uniprocessor kernels, which leads us to believe that our approach and implementation
is fairly generic and reusable for other kernels.

There are a number of optimizations possible for the application kernel approach. For instance, some
threads could run entirely on the bootstrap kernel, which would mainly be interesting for kernel-bound
applications. A migration scheme similar to that in MOSIX could then be used to move kernel-bound
threads to the bootstrap processor during runtime. Furthermore, some system calls should be possible
to implement directly on the application kernel, providing the semantics of the system calls are known.
For example, sleeping, yielding the CPU and returning the process ID of the current process can easily
be implemented in the application kernel.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



1582 S. KÅGSTRÖM, H. GRAHN AND L. LUNDBERG

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their useful feedback. This work was partly funded by
The Knowledge Foundation in Sweden under a research grant for the project ‘Blekinge—Engineering Software
Qualities (BESQ)’ (http://www.ipd.bth.se/besq).

The application kernel source code is available as free software licensed under the GNU GPL at
http://www.ipd.bth.se/ska/application kernel.html.

REFERENCES

1. Eggers SJ, Emer JS, Levy HM, Lo JL, Stamm RL, Tullsen DM. Simultaneous multithreading: A platform for next-
generation processors. IEEE Micro 1997; 17(5):12–19.

2. Hammond L, Nayfeh BA, Olukotun K. A single-chip multiprocessor. Computer 1997; 30(9):79–85.
3. Marr D, Binns F, Hill DL, Hinton G, Koufaty DA, Miller JA, Upton M. Hyper-threading technology architecture and

microarchitecture. Intel Technology Journal 2002; 6(1):4–15.
4. Kahle J. Power4: A dual-CPU processor chip. Proceedings of the 1999 International Microprocessor, San Jose, CA,

October 1999. MicroDesign Resources: Scottsdale, AZ, 1999.
5. Spracklen L, Abraham SG. Chip multithreading: Opportunities and challenges. Proceedings of the 11th International

Conference on High-Performance Computer Architecture (HPCA-11), San Francisco, CA, February 2005. IEEE Computer
Society Press: Los Alamitos, CA, 2005; 248–252.

6. Kleiman S, Voll J, Eykholt J, Shivalingiah A, Williams D, Smith M, Barton S, Skinner G. Symmetric multiprocessing in
Solaris 2.0. Compcon. IEEE, 1992; 181–186.

7. Arpaci-Dusseau AC, Arpaci-Dusseau R. Information and control in gray-box systems. Proceedings of the Symposium on
Operating Systems Principles. ACM Press: New York, NY, 2001; 43–56.

8. Zhang R, Abdelzaher TF, Stankovic JA. Kernel support for open QoS computing. Proceedings of the 9th IEEE Real-
Time/Embedded Technology and Applications Symposium (RTAS). IEEE Computer Society Press: Los Alamitos, CA, 2003;
96–105.

9. KleinOsowski A, Lilja DJ. MinneSPEC: A new SPEC benchmark workload for simulation-based computer architecture
research. Computer Architecture News Letters 2002; 1(June).

10. Bach MJ, Buroff SJ. Multiprocessor UNIX operating systems. AT&T Bell Laboratories Technical Journal 1984;
63(8):1733–1749.

11. Schimmel C. UNIX Systems for Modern Architectures (1st edn). Addison-Wesley: Boston, MA, 1994.
12. Lehey G. Improving the FreeBSD SMP implementation. Proceedings of the USENIX Annual Technical Conference,

FREENIX Track. USENIX Association: Berkeley, CA, 2001; 155–164.
13. Clark R, O’Quin J, Weaver T. Symmetric multiprocessing for the AIX operating system. Technologies for the Information

Superhighway (Compcon’95). IEEE Computer Society Press: Los Alamitos, CA, 1995; 110–115.
14. Kågström S, Grahn H, Lundberg L. Experiences from implementing multiprocessor support for an industrial operating

system kernel. Proceedings of the International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA’2005), Hong Kong, China, August 2005. IEEE Computer Society Press: Los Alamitos, CA, 2005;
365–368.

15. Love R. Linux Kernel Development (1st edn). Sams: Indianapolis, IN, 2003.
16. Härtig H, Hohmuth M, Liedtke J, Schönberg S, Wolter J. The performance of u-kernel-based systems. Proceedings of the

16th ACM Symposium on Operating System Principles (SOSP’97), St. Malo, France, October 1997. ACM Press: New York,
NY, 1997.

17. Liedtke J. On u-kernel construction. Proceedings of the 15th ACM Symposium on Operating System Principles (SOSP’95),
Copper Mountain Resort, CO, December 1995. ACM Press: New York, NY, 1995; 1–14.

18. Denham JM, Long P, Woodward JA. DEC OSF/1 symmetric multiprocessing. Digital Technical Journal 1994; 6(3):29–43.
19. des Places F, Stephen N, Reynolds F. Linux on the OSF Mach3 microkernel. Proceedings of the Conference on Freely

Distributable Software, February 1996. Free Software Foundation: Boston, MA, 1996.
20. QNX Software Systems Ltd. The QNX Neutrino Microkernel.

http://qdn.qnx.com/developers/docs/index.html [28 July 2005].
21. Bushnell MI. The HURD: Towards a new strategy of OS design. GNU’s Bulletin, 1994. Free Software Foundation.

Available at: http://www.gnu.org/software/hurd/hurd.html.
22. Roscoe T. The Structure of a multi-service operating system. PhD Thesis, Queens’ College, University of Cambridge, April

1995.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe



THE APPLICATION KERNEL APPROACH 1583

23. Gefflaut A, Jaeger T, Park Y, Liedtke J, Elphinstone K, Uhlig V, Tidswell J, Deller L, Reuther L. The SawMill multiserver
approach. Proceedings of the 9th ACM/SIGOPS European Workshop Beyond the PC: Challenges for the Operating System,
Kolding, Denmark, September 2000. ACM Press: New York, NY, 2000; 109–114.

24. Rawson FL III. Experience with the development of a microkernel-based, multi-server operating system. Proceedings
of the 6th Workshop on Hot Topics in Operating Systems, Cape Cod, MA, May 1997. IEEE Computer Society Press:
Los Alamitos, CA, 1997; 2–7.

25. Goble GH, Marsh MH. A dual processor VAX 11/780. Proceedings of the 9th Annual Symposium on Computer Architecture
(ISCA ’82). IEEE Computer Society Press: Los Alamitos, CA, 1982; 291–298.

26. Muir SJ. Piglet: An operating system for network appliances. PhD Thesis, University of Pennsylvania, 2001.
27. Regnier G, Makineni S, Illikkal R, Iyer R, Minturn D, Huggahalli R, Newell D, Cline L, Foong A. TCP onloading for data

center servers. Computer 2004; 37(11):48–58.
28. Yaghmour K. A practical approach to Linux Clusters on SMP hardware.

http://www.opersys.com/publications.html [28 July 2005].
29. Barham PT, Dragovic B, Fraser K, Hand S, Harris TL, Ho A, Neugebauer R, Pratt I, Warfield A. Xen and the art of

virtualization. Proceedings of the ACM Symposium on Operating Systems Principles (SOSP’03). ACM Press: New York,
NY, 2003; 164–177.

30. Govil K, Teodosiu D, Huang Y, Rosenblum M. Cellular Disco: Resource management using virtual clusters on shared-
memory multiprocessors. Proceedings of the ACM Symposium on Operating Systems Principles (SOSP’99), Kiawah Island
Resort, SC, December 1999. ACM Press: New York, NY, 1999; 154–169.

31. Barak A, La’adan O. The MOSIX multicomputer operating system for high performance cluster computing. Journal of
Future Generation Computer Systems 1999; 13(4–5):361–372.

32. Cheriton DR, Duda KJ. A caching model of operating system kernel functionality. Proceedings of the 1st Symposium on
Operating Systems Design and Implementation (OSDI). USENIX Association: Berkeley, CA, 1994; 179–193.

33. Greenwald M, Cheriton D. The synergy between non-blocking synchronization and operating system structure.
Proceedings of the 2nd USENIX Symposium on Operating Systems Design and Implementation, 28–31 October 1996.
USENIX Association: Berkeley, CA, 1996; 123–136.

34. MIPS Technologies. MIPS32 Architecture for Programmers Volume III: The MIPS32 Privileged Resource Architecture,
March 2001. Available at: http://www.mips.com/content/Documentation/MIPSDocumentation/ProcessorArchitecture/
doclibrary#ArchitectureSetExtensions.

35. IBM Corporation. PowerPC Microprocessor Family: The Programming Environments Manual for 32 and 64-bit
Microprocessors, March 2005. IBM Corporation: New York, NY, 2005.

36. Woo SC, Ohara M, Torrie E, Singh JP, Gupta A. The SPLASH-2 programs: Characterization and methodological
considerations. Proceedings of the International Symposium on Computer Architecture (ISCA’95). IEEE Computer Society
Press: Los Alamitos, CA, 1995; 24–36.

37. Standard Performance Evaluation Corporation. SPEC CPU 2000, 2000. http://www.spec.org.
38. Fenton NE, Pfleeger SL. Software Metrics: A Rigorous and Practical Approach. PWS Publishing Co: Boston, MA, 1998.
39. Wheeler DA. Sloccount. http://www.dwheeler.com/sloccount/ [20 June 2005].
40. Bame P. pmccabe. http://parisc-linux.org/∼bame/pmccabe/ [20 June 2004].
41. Magnusson PS, Christensson M, Eskilson J, Forsgren D, Hållberg G, Högberg J, Larsson F, Moestedt A, Werner B. Simics:

A full system simulation platform. IEEE Computer 2002; 35(2):50–58.
42. Gamsa B, Krieger O, Parsons EW, Stumm M. Performance issues for multiprocessor operating systems. Technical Report

CSRI-339, Computer Systems Research Institute, University of Toronto, 1995.
43. Kågström S, Lundberg L, Grahn H. A novel method for adding multiprocessor support to a large and complex uniprocessor

kernel. Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS 2004), Santa Fe, NM,
April 2004. IEEE Computer Society Press: Los Alamitos, CA, 2004.

44. The L4Ka::pistachio microkernel white paper. System Architecture Group, University of Karlsruhe, 2003.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1563–1583
DOI: 10.1002/spe


	1 INTRODUCTION
	2 RELATED WORK
	2.1 Monolithic kernels
	2.2 Microkernel-based systems
	2.3 Asymmetric operating systems
	2.4 Cluster-based approaches

	3 THE APPLICATION KERNEL APPROACH
	3.1 Terminology and assumptions
	3.2 Overview
	3.3 Hardware and software requirements
	3.4 Application kernel interaction
	3.5 Exported application programming interface

	4 IMPLEMENTATION
	4.1 Paging
	4.2 clone/fork system calls
	4.3 Running applications
	4.4 Experimental setup and methodology

	5 EVALUATION ENVIRONMENT
	5.1 Benchmarks

	6 EXPERIMENTAL RESULTS
	6.1 Performance evaluation
	6.2 Implementation complexity and size

	7 CONCLUSIONS AND FUTURE WORK

