
Thread-Level Speculation as an Optimization Technique
in Web Applications - Initial Results

Jan Kasper Martinsen and Håkan Grahn
School of Computing

Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

{Jan.Kasper.Martinsen,Hakan.Grahn}@bth.se

Abstract—Web Applications have become increasingly popu-
lar as they allow developers to use an uniform platform for user
interactions. The dynamic programming language JavaScript
used in most Web Applications has performance penalties, that
have been addressed by traditional optimization techniques. We
have found that while the performance gain of such techniques
are positive for a set of established benchmarks, it often fails
to improve the performance of real-life Web Applications.

We suggest Thread-Level Speculation (TLS) at the
JavaScript function level to automatically extract parallelism
to gain performance. There have been multiple TLS proposals
in both hardware and software, but little work has been
done within JavaScript. Currently we are implementing our
TLS ideas in a state-of-the-art JavaScript engine targeted for
embedded mobile devices.

Keywords-JavaScript; Multithreading; Parallel Computing;
Speculative execution; Runtime environment

I. INTRODUCTION

Current and future processor generations are based on
multicore architectures, and future performance increase will
mainly come from an increasing number of processor cores.
In order to achieve an efficient utilization of an increasing
number of processor cores, software needs to be parallel as
well as scalable [1], [2], [3].

Due to the simplicity of distribution along with increased
platform independence, many applications are moved to
the World Wide Web as so called Web Applications.
Many of these Web Applications use JavaScript extensively.
JavaScript is a dynamically typed, object-based scripting lan-
guage with run-time evaluation, where execution is done in
a JavaScript engine. To preserve platform independence and
simplicity, there are currently no support for threading. With
the increased popularity of Web Applications and a higher
demand for performance, several optimization techniques
have been suggested along with a set of benchmarks. Several
studies have shown that these benchmarks are unrepresen-
tative [4], [5], [6], and that current optimization techniques
often degrades the performance of Web Applications [7].
Therefore alternative optimization techniques and multicore
architectures should play a crucial part.

Developing parallel applications are difficult, time con-
suming and error-prone and therefore we would like to ease

the burden of the programmer. To hide some of the details,
an approach is to dynamically extract parallelism from a
sequential program using Thread-Level Speculation (TLS)
techniques [8]. The performance potential of TLS has been
shown for applications with static loops, statically typed
languages, and in Java bytecode environments.

Previously we have evaluated the performance of TLS
together with the Rhino JavaScript engine and evaluated it’s
performance with the V8 benchmark [9]. We are extending
this study to the SquirrelFish JavaScript engine found in
WebKit, and also perform experiments on Web Applications
rather than the benchmarks. We have found that we are able
to decrease the execution time with thread-level speculation,
that function calls are well suited for this technique, and
that there is more to gain by using alternative optimization
techniques.

II. BACKGROUND

A. JavaScript

JavaScript is a dynamically typed, object-based scripting
language with run-time evaluation often used in association
with Web Applications. JavaScript application execution
is done in a JavaScript engine, i.e., an interpreter/virtual
machine that parses and executes the JavaScript program.

The performance of JavaScript engines have increased sig-
nificantly during the last years, reaching a very high single-
thread performance. However, today no official JavaScript
engine supports parallel execution of threads from a single
JavaScript program. Further, we have not found any study
that addresses the applicability and performance potential
of TLS in a dynamically typed scripting language, such as
JavaScript.

B. Thread-Level Speculation

TLS aims at dynamically extracting parallelism from a
sequential program, and can be implemented both in hard-
ware and in software. One popular approach is to allocate
each loop iteration to a thread. Then, we can (ideally)
execute as many iterations in parallel as we have proces-
sors. However, data dependencies may limit the number
of iterations that can be executed in parallel. Further, the



memory requirements and run-time overhead for detecting
data dependencies can be considerable.

Between two consecutive loop iterations we can have
three types of data dependencies: Read-After-Write (RAW),
Write-After-Read (WAR), and Write-After-Write (WAW). A
TLS implementation must be able to detect these depen-
dencies during run-time using dynamic information about
read and write addresses from each loop iteration. A key
design parameter is the precision of what granularity the
TLS system can detect data dependency violations.

When a data dependency violation is detected, the exe-
cution must be aborted and rolled back to safe point in the
execution. Thus, all TLS systems need a roll-back mecha-
nism. The book-keeping related to this functionality results
in both memory overhead as well as run-time overhead. In
order for TLS systems to be efficient, the number of roll-
backs should be low.

A key design parameter for a TLS system is the data struc-
tures used to track and detect data dependence violations.
The more precise tracking of data dependencies, the more
memory overhead is required. Unfortunately, one effect of
imprecise dependence detection is the risk of a violation that
is detected when no actual dependence violation is present.

TLS implementations can differ depending on whether
they update data speculatively ’in-place’, i.e., moving the
old value to a buffer and writing the new value directly, or in
a special speculation buffer. Updating data in-place usually
results in higher performance if the number of roll-backs is
low, but lower performance when the number of roll-backs
is high since the cost of doing roll-backs is high.

C. Software-Based Thread-Level Speculation

There exists a number of different software-based TLS
proposals, and we review some of the most important ones.

Bruening et al. [10] proposed a software-based TLS
system that targets loops where the memory references
are stride-predictable. It was one of the first techniques
applicable to while-loops where the loop exit condition is
unknown. The results show speed-ups of up to almost five
on 8 processors.

Rundberg and Stenström [8] proposed a TLS implementa-
tion that resembles the behaviour of a hardware-based TLS
system. It supports precise data dependency tracking, but
has a high memory overhead. They show a speedup of up
to ten times on 16 processors.

Kazi and Lilja developed the course-grained thread
pipelining model [11] for exploiting coarse-grained paral-
lelism. They suggest to pipeline the concurrent execution
of loop iterations speculatively, using run-time dependence
checking. On an 8-processor machine they achieved speed-
ups of between 5 and 7.

Bhowmik and Franklin [12] developed a compiler frame-
work for extracting parallel threads from a sequential pro-

gram for execution on a TLS system. The approach yields
speed-ups between 1.64 and 5.77 on 6 processors.

Cintra and Llanos [13] present a software-based TLS
system that speculatively executes loop iterations within a
sliding window. They managed to reach in average 71% of
the performance of hand-parallelized code.

Chen and Olukotun present two studies [14], [15] on how
method-level parallelism can be exploited using speculative
techniques. Their techniques are implemented in the Java
runtime parallelizing machine (Jrpm). On four processors,
their results show speed-ups of 3 − 4, 2 − 3, and 1.5 − 2.5
for floating point applications, multimedia applications, and
integer applications, respectively.

Picket and Verbrugge [16], [17] developed SableSpMT,
a framework for method-level speculation and return value
prediction. Their solution is implemented in a Java Virtual
Machine (SableVM), and works at the bytecode level. They
obtained at most a two-fold speed-up on a 4-way multi-core
processor.

Oancea et al. [18] present a novel software-based TLS
proposal that supports in-place updates. Their proposal has a
low memory overhead with a constant instruction overhead,
at the price of slightly lower precision in the dependence
violation detection mechanism. The results show that their
TLS approach reaches in average 77% of the speed-up of
hand-parallelized versions.

A study by Prabhu and Olukotun [19] analyzed what
types of thread-level parallelism that can be exploited in
the SPEC CPU2000 Benchmarks [20]. They also identified
a number of obstacles that hinder or limit the usefulness of
TLS parallelization.

III. PREVIOUS RESULTS

A. Unrepresentative Benchmarks

Established JavaScript benchmarks are often ported from
existing benchmark suites. However we measured the
JavaScript workload for a large number of popular Web Ap-
plications, with in-depth measurements for so-called social
networks [4], and we found that certain JavaScript features
play an important role in real-life Web Applications [4], [7].

We found that features, which are optimized heavily for
in the benchmarks, such as large loops and a large amount
of arithmetic instructions (Figure 1), were absent in Web
Applications. We found that one reason is that there is no
interrupt mechanism in JavaScript, so large loops make the
Web Application unresponsive. Large loop-type structures
are instead confined into anonymous functions calls made
from events.

These observations suggest that attention should be given
to the features in JavaScript that come along with being a
dynamic programming language. We have found evidence
that new multimedia functionalities will be even more de-
pendent on JavaScript and these features [7].



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

negate

add
mul

div
mod

sub
lshift

rshift

urshift

bitand

bitxor

bitor

bitnot

not

R
e
l
a
t
i
v
e
 
n
u
m
b
e
r
 
o
f
 
e
x
e
c
u
t
i
o
n
 
c
a
l
l
s

Instructions

Alexa top 100
Sunspider

Figure 1. Number of arithmetic instructions in the bytecode produced by
Squirrelfish for Sunspider benchmark and for a set of Web Applications

B. Early TLS Results

In [21] and [9] we have done an early implementation
of the TLS technique in the Rhino [22] JavaScript engine.
In Figure 2 we show some results from our early imple-
mentation on a dualcore laptop running Windows Vista and
a quadcore workstation running Ubuntu 8.04 Linux, and it
shows a modest speedup. The limited speedup is mainly
a result of a relative large amount of conflicts between
functions and global variables, as shown in Figure 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

raytrace

richards

crypt
earley

regex
splay

S
pe

ed
up

Benchmarks

dual core laptop
quad core workstation

Figure 2. Relative execution time with TLS enabled, normalized to the
execution time without TLS enabled. Regex benchmark did not execute
correctly on the official Rhino interpreter that was used for our tests.

IV. ONGOING WORK

We have acknowledged the difference between Web Ap-
plications and the established JavaScript benchmarks. These
studies suggested that focusing merely on the benchmarks
could lead to optimization strategies that are not effective
for Web Applications.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

raytrace

richards

crypt

earley

regex

splay

F
u
n
c
t
i
o
n
 
c
a
l
l
s

Benchmarks

Conflict with global variables
Nonconflict with global variables

Figure 3. Number of functions with data dependence violations with global
variables.

We are currently working on incorporating TLS tech-
niques into WebKit’s register-based JavaScript interpreter
SquirrelFish. Being a register-based interpreter suggests
some more book-keeping challenges when it comes to man-
aging the state before and during speculation. The registers
serve as temporary placements of variables. However, the
registers also seem to decrease the complexity of duplicating
values before speculation. In earlier experiments, with a
stack-based interpreter, we were forced to duplicate a large
portion of the stack before speculation.

We have found that anonymous and eval function calls
are less prone to have conflicts with global variables, and
therefore would be better candidates for speculations. In
addition, in the initial discussion of TLS, we suggested that
for loops, the ideal would be to add one iteration per thread.
Due to the lack of an interrupt mechanism, we are forced
to use events to simulate large loops, and that anonymous
functions were associated with events. Our previous results
show that anonymous functions are quite common in Web
Applications, and their relative importance increases the
longer time the Web Applications are executing. Further,
accesses to global variables are rare in such functions.
Therefore, we believe that anonymous functions are good
candidates for speculation.

V. FUTURE WORK

We believe that Thread-Level Speculation is a promising
lead for optimization of Web Applications. With the increas-
ing amount of multimedia in Web Application, JavaScript’s
workload might increase significantly in the near future.
Similar applications in a desktop environment have large
loops, and as we suggested that loops, events and anonymous
functions will play a key role for Web Applications. Further,
we have shown that just-in-time compilation techniques have
limited or often negative effect on the execution time of Web



Applications [7].
In the near future we will extend our studies with two con-

tributions; We will add additional logic to the speculation,
making speculation adaptive, and we will make a study to
determine when register-based interpreters are more suited
for Thread-Level Speculation than stack-based interpreters.

VI. CONCLUSION

Thread-level speculation in JavaScript engines is a
promising technique to increase the performance of Web
Applications. The increase of multimedia workloads in Web
Applications could prove this technique even more promis-
ing. We will give this workload, along with a different
platform more attention in our future work.

ACKNOWLEDGMENT

This work was partly funded by the Industrial Excellence
Center EASE - Embedded Applications Software Engineer-
ing, (http://ease.cs.lth.se).

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick, “The landscape
of parallel computing research: A view from Berkeley,”
EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html

[2] R. McDougall, “Extreme software scaling,” Queue, vol. 3,
no. 7, pp. 36–46, 2005.

[3] H. Sutter and J. Larus, “Software and the concurrency revo-
lution,” Queue, vol. 3, no. 7, pp. 54–62, 2005.

[4] J. K. Martinsen and H. Grahn, “A methodology for evaluating
JavaScript execution behavior in interactive web applica-
tions,” in The 9th ACS/IEEE Int’l Conference on Computer
Systems and Applications, December 2011, (to appear).

[5] P. Ratanaworabhan, B. Livshits, and B. G. Zorn, “JSMeter:
Comparing the behavior of JavaScript benchmarks with real
web applications,” in WebApps’10: Proc. of the 2010 USENIX
Conf. on Web Application Development, 2010, pp. 27–38.

[6] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis
of the dynamic behavior of JavaScript programs,” in PLDI
’10: Proc. of the 2010 ACM SIGPLAN Conf. on Programming
Language Design and Implementation, 2010, pp. 1–12.

[7] J. K. Martinsen, H. Grahn, and A. Isberg, “A comparative
evaluation of JavaScript execution behavior,” in Proc. of the
11th Int’l Conference on Web Engineering (ICWE 2011), June
2011, (to appear).

[8] P. Rundberg and P. Stenström, “An all-software thread-level
data dependence speculation system for multiprocessors,”
Journal of Instruction-Level Parallelism, pp. 1–28, 2001.

[9] J. K. Martinsen and H. Grahn, “An alternative optimization
technique for JavaScript engines,” in Third Swedish Workshop
on Multi-Core Computing (MCC-10), November 2010, pp.
155–160.

[10] D. Bruening, S. Devabhaktuni, and S. Amarasinghe, “Soft-
spec: Software-based speculative parallelism,” in FDDO-3:
Proceedings of the 3rd ACM Workshop on Feedback-Directed
and Dynamic Optimization, 2000.

[11] I. H. Kazi and D. J. Lilja, “Coarse-grained thread pipelining:
A speculative parallel execution model for shared-memory
multiprocessors,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 12, no. 9, pp. 952–966, 2001.

[12] A. Bhowmik and M. Franklin, “A general compiler frame-
work for speculative multithreading,” in SPAA ’02: Proc. of
the 14th ACM Symp. on Parallel Algorithms and Architec-
tures, 2002, pp. 99–108.

[13] M. Cintra and D. R. Llanos, “Toward efficient and robust
software speculative parallelization on multiprocessors,” in
Proc. of the 9th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, 2003, pp. 13–24.

[14] M. K. Chen and K. Olukotun, “Exploiting method-level
parallelism in single-threaded java programs,” in PACT ’98:
Proc. of the 1998 Int’l Conference on Parallel Architectures
and Compilation Techniques, 1998, pp. 176–184.

[15] ——, “The Jrpm system for dynamically parallelizing Java
programs,” in ISCA ’03: Proc. of the 30th Annual Int’l Symp.
on Computer Architecture. New York, NY, USA: ACM,
2003, pp. 434–446.

[16] C. J. F. Pickett and C. Verbrugge, “SableSpMT: a software
framework for analysing speculative multithreading in java,”
in PASTE ’05: Proc. of the 6th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engi-
neering, 2005, pp. 59–66.

[17] ——, “Software thread level speculation for the java language
and virtual machine environment,” in LCPC ’05: Proc. of the
18th Int’l Workshop on Languages and Compilers for Parallel
Computing, October 2005, pp. 304–318, LNCS 4339.

[18] C. E. Oancea, A. Mycroft, and T. Harris, “A lightweight in-
place implementation for software thread-level speculation,”
in SPAA ’09: Proc. of the 21st Symp. on Parallelism in
Algorithms and Architectures, August 2009, pp. 223–232.

[19] M. K. Prabhu and K. Olukotun, “Exposing speculative thread
parallelism in SPEC2000,” in PPoPP ’05: Proc. of the 10th
ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming, 2005, pp. 142–152.

[20] Standard Performance Evaluation Corporation,
“SPEC CPU2000 v1.3,” Warrenton, VA, USA, 2000,
http://www.spec.org/cpu2000/.

[21] J. K. Martinsen and H. Grahn, “Thread-level speculation for
web applications,” in Second Swedish Workshop on Multi-
Core Computing (MCC-09), November 2009, pp. 80–88.

[22] Mozilla, “Rhino JavaScript interpreter,” 2010,
http://www.mozilla.org/rhino/.


