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ABSTRACT 
Software systems are normally developed in a number of releases. 
Each release usually modifies existing code. In this study we 
show that such modified code can be an important source of 
faults. Since faults are considered major cost drivers of software 
projects, the ability to identify fault-prone classes before they are 
implemented would give a chance to apply some preventive 
measures, which could bring significant savings on project costs. 
To achieve that, however, the prediction model available early in 
the development process would have to be accurate. In this study 
we compare the accuracy of fault prediction models available 
before and after the system is implemented. We find that fault 
prediction models that are available after the system is 
implemented are about 34% more accurate compared to models 
available before the system is implemented. We discover that the 
higher accuracy of the prediction models available after the 
system is implemented is caused by the metric that describes the 
size of the class modification. This metric is a code metric that is 
available only after the system is developed. As further work, we 
suggest defining design metrics that describe the characteristics of 
modifications and evaluating their applicability to predict faults in 
modified code.  

Categories and Subject Descriptors 
D.2.5 [Testing and debugging], D.2.8 [Metrics] 

General Terms 
Measurement, Verification. 

Keywords 
Fault prediction models, early fault prediction, modified code 

1. INTRODUCTION 
Faults are considered as one of the major cost drivers of software 
development. Finding and correcting them is a very expensive 
activity [20]. Fault detection can account for a significant part of 
the project budget, e.g., in the study reported in [2] 45% of the 
project resources were devoted to testing and simulation.  

Typical software systems are produced in a number of releases. In 
each new release usually a significant amount of new 
functionality is added. This often results in major changes 
introduced to the code implementing the current system. Such 
code modifications are an important source of faults [16].  

A well known fact concerning faults is that a majority of the 
faults can be found in a minority of the code (e.g., 60% of the 

faults can be found in 20% of the modules [14]). A prediction 
model that identifies the most fault-prone code can bring 
significant savings on project costs by enabling more efficient 
allocation of resources. This has been widely recognized by 
researchers that attempted to build prediction models, including 
models available early in development process (e.g., [5, 14, 16-
18, 22]). 

Fault prediction models are usually based on different 
characteristics of the software, e.g., design or code metrics (e.g., 
[5, 22]). Some of those metrics are available only after the system 
is developed. These are mostly code metrics, like the number of 
lines of code or McCabe complexity [8]. A model based on these 
metrics can be applied only after the system has been developed. 
Other metrics, e.g., design metrics, are often available before the 
coding has started, e.g., from the design documentation. 
Prediction models based on such metrics are able to identify fault-
prone classes before they are implemented. This makes it possible 
to apply some preventive measures to such classes, like assigning 
them to more experienced developers or increasing the number of 
code reviews. This can lead to large potential savings. However, 
the savings largely depend on the accuracy of the model based on 
the metrics available early in the design phase.   

In this paper we compare the accuracy of fault prediction models 
that are available before the system is developed with models that 
contain data available only after the system has been 
implemented. The models are built using linear regression and 
predict the number of faults in a class. We discover that models 
available early in the development process are about 34% more 
accurate compared to those available before the system is 
implemented.  

Our models are based on the data from one release of a large 
telecommunication system developed by Ericsson. The system 
comprises about 600 classes (250 KLOC in total). The system is 
divided into subsystems. Each subsystem comprises a number of 
components.  The system works in a service layer of a mobile 
phone network. It is mission-critical system for mobile network 
operators. Because of high quality requirements the system 
undergoes extensive, and therefore expensive, testing before it is 
released to the market. The system is a mature system that has 
been available on the market for over six years. The people 
involved in its development are experienced and have been 
involved in the development of the system for several years.  

The release that we examine in this study is considered typical for 
this system. 40% of the code that is included in the examined 
release of the system is new compared to the previous release. 
65% of the new code has been introduced as modifications of 



existing classes and 35% as new classes. The faults found in the 
modified code accounted for 86% of the total number of faults 
found in the new and the modified classes. Our goal was to build 
prediction models for the modified classes, as faults in those 
classes contribute most to the total number of faults in the release. 
The faults we discuss in this study are all the faults that had been 
reported until the project reached the stage of market availability. 

The rest of the paper is structured as follows: in Section 2 we 
present the work that has been done by others in the area of fault 
prediction, Section 3 describes methods we have used for model 
building and evaluation. Section 4 presents the results. In Section 
5 we discuss our findings. In the last section (Section 6) we 
present the most important conclusions from our study. 

2. RELATED WORK 
The most common method for building fault prediction models is 
multivariate linear regression (e.g., [2, 3, 13, 15, 18, 22]). 
Typically, the first step of model building involves some kind of 
selection of metrics for the model. The metrics used should be 
independent from each other. According to [2] introducing 
dependent metrics  into the model causes a risk of 
multicolinearity. Examples of dependant metrics are number of 
lines-of-code and number of language statements, because they 
are very likely to measure the same thing – size - in different 
units. Multicolinearity is especially risky when regression models 
are built. It leads to “unstable coefficients, misleading statistical 
tests, and unexpected coefficient signs” [7]. Obviously, selected 
metrics should also be good fault predicators. Introducing metrics 
that are not good fault predicators into a regression equation 
increases the risk for misleading and unstable models.  
The next steps involve model equation calculation and evaluation. 
A typical evaluation criterion for regression models is “goodness-
of-fit” measure called R2. R2 describes the proportion of 
variability of variable predicted by the model [11]. It has values 
between 0 and 1 [12]. The closer R2 is to 1 the better is the 
prediction model. For details concerning the calculation of R2 see 
Section 3.3. 
Below we present studies, in which fault prediction models were 
built. For each study we describe the set of metrics used, the 
metric selection criteria, and the results obtained. The results 
presented in this section will provide a baseline for evaluation of 
our models. 
A study similar to our one was performed by Zhao et al. [22]. The 
authors compare the applicability of design and code metrics to 
predict the number of faults. The analyzed system is one release 
of a large telecommunication system. However, the authors do not 
say if the modules analyzed are new or modified.  The design 
measures collected are mostly different SDL related metrics 
(number of SDL diagrams, number of task symbols in SDL 
descriptions, etc.). Code metrics included the number of lines of 
code, the number of variables, the number of signals, and the 
number of if statements. The initial selection of metrics was based 
on correlation analysis. To build the models the authors used 
stepwise regression, which additionally eliminated metrics that 
are not good fault predicators. The authors concluded that both 
code and design metrics are applicable and give good results. 
However, the best result was obtained when both types of metrics 
were included in the same model. R2 values obtained in this study 

were 0.63 for the design metrics model, 0.558 for the code metrics 
model, and 0.68 for the model based on design and code metrics.  
The applicability of object-oriented metrics for predicting the 
number of faults was evaluated by Yu et al.[18]. The analyzed 
system consisted of new classes only. The set of metrics used was 
largely based on metrics suggested by Chidamber and Kemerer 
(C&K metrics) [4]. The authors evaluated univariate and 
multivariate models. The best univariate model was based on 
Number of Methods per Class (R2 value = 0.423). The results of 
univariate regression were used to select metrics for multivariate 
regression. To be selected the regression model based on the 
metric had to be significant (t-test) as well as it had to account 
large proportion of variability of the predicted value. However, in 
practice, the authors only rejected the variables from the 
insignificant models. Stepwise regression was used in order to 
eliminate redundant metrics. Finally six different metrics were 
included in the proposed regression model. The R2 statistic of this 
model was 0.597. The authors also show the model based on all 
ten metrics they collected which had R2 value equal to 0.603. 
Cartwright and Shepperd [2] present a study in which they predict 
faults in object oriented system. The metric suite they use consists 
of some of the object-oriented C&K metrics (depth of inheritance 
and number of children), some code metrics, and some metrics 
that are characteristic for the development method employed 
(Shlaer-Mellor). The authors obtained very high prediction 
accuracy. Their linear model based only on number of events in 
the class in state model achieved R2 = 0.876. By adding a variable 
indicating if there is an inheritance the goodness-of-fit has 
increased to R2 = 0.897. 
A number of other studies were performed to assess the relation 
between different metrics and fault-proneness. Since they did not 
use linear regression we do not quote the results obtained in them. 
They are, however, still interesting since they give indication of 
which metrics are good predicators of faults. For example, El 
Emam et al. [5] observed the impact of inheritance and coupling 
on the fault-proneness of the class. The relation between 
inheritance, coupling, and probability of finding fault in the class 
was also identified by Briand et al. [1].   

3. METHODS 
3.1 Metrics suite 
 
All metrics that were collected are summarized in Table 1. All 
measurements were done at the class level. The set of metrics is 
divided into two groups. One group consists of design metrics (in 
Table 1 these are the metrics with grey background). The design 
metrics are mostly metrics that belong to the classic set of object 
oriented metrics suggested by Chidamber and Kemerer (C&K 
metrics) [4]. These metrics are normally available before the 
implementation is done. Most of these metrics can be obtained 
automatically from design documentation (e.g., can be calculated 
by CASE tools from UML system design documentation). One 
exception in this group is the LCOM metric, which can not be 
calculated automatically from the documentation (though it can 
be obtained automatically from the code). Manual calculation 
would significantly increase the cost of obtaining data for the 
model. In our further discussion we take this issue into account, as 
metrics that can be obtained automatically are, in practice, much 
more useful.  



Table 1. Metrics collected in the study. The metrics with grey background are design metrics that normally are available 
before the system is implemented. 

Name Variable Description 
Independent variables 

Coup Coupling Number of classes the class is coupled to [4, 8] 
NoC Number of Children Number of immediate subclasses [4] 
Base Number of Base Classes Number of immediate base classes [4] 
WMC Weighted Methods per Class Number of methods defined locally in the class [4] 
RFC Response for Class Number of methods in the class including inherited ones [4] 
DIT Depth of Inheritance Tree Maximal depth of the class in the inheritance tree [4, 6] 
LCOM Lack of Cohesion “how closely the local methods are related to the local instance 

variables in the class”[8]. In the study LCOM was calculated as 
suggested by Graham [9, 10] 

Stmt Number of statements Number of statements in the code 
StmtExe Number of executable  statements Number of executable  statements in the code 
StmtDecl Number of declarative  statements Number of declarative  statements in the code 
MaxCyc Maximum cyclomatic complexity The highest McCabe complexity of a function within the class 
ChgSize Change Size Number of new and modified LOC (from previous release) 

Dependent variable 
Faults Number of faults Number of faults found in the class 

The second group are code metrics, which mostly include 
different size metrics (e.g., number of statements), or metrics 
describing McCabe cyclomatic complexity (Maximum 
Cyclomatic Complexity). Since we, in this study, focus on 
modified code, we have an additional metric describing the size of 
modification (ChgSize – number of new and modified lines of 
code in the final system, compared to previous release of the 
system). ChgSize was obtained by comparing classes from the 
examined and the previous release of the system. To measure 
ChgSize we used LOCC application. For details concerning 
LOCC and the measurement of the size of modification see [21].  

The code metrics are not available until the system is 
implemented. Therefore prediction models that use them can be 
applied only after the system is fully implemented. All code 
metrics can be obtained automatically from the code by using 
appropriate software tools.  

3.2 Model building 
As stated before, our prediction models should predict the number 
of faults in modified classes. We want to compare the accuracy of 
fault prediction models available before the system is 
implemented with the models available after the system is 
implemented.   

In this study we compare two kinds of models: 

- Univariate models, which are models based on one 
variable only.  

- Multivariate models, which predict the number of faults 
based on more than one variable.  

We have decided to include both univariate and multivariate 
models because there are different opinions regarding their 
applicability. Some authors (e.g., [2]) prefer simple univariate 
models, as such models are supposed to be more stable. Other 
authors (e.g., [22]) build multivariate models, as such models give 
potentially higher accuracy.  

The models were built using linear regression. Univariate linear 
regression estimates the value of the dependant variable (number 
of faults) as a function of the independent variable (code or design 
metric) [19]: 

f(x) = a + bx   (1) 

Multivariate linear regression estimates the value of the 
dependant variable (number of faults) as a linear combination of 
independent variables (code and design metrics) [19]: 

f(x) = a + b1x1+b2x2+b3x3+…..+bkxk  (2) 

To find the metrics for multivariate models we performed a 
correlation analysis. The correlation co-efficient quantifies the 
linear correlation between two variables. The value -1 describes 
perfect negative and +1 described perfect positive correlation. 
Values close to 0 denote lack of correlation.  

For multivariate models we selected variables that were correlated 
to the number of faults, i.e., with correlation coefficient values not 
close to 0. For our dataset it turned out that we selected only 
variables with correlation to the number of faults higher than 
0.38. Additionally, the correlation to the number of faults had to 
be significant at 0.05 level (standard significance level describing 
5% chance of rejecting correct hypothesis). In this way we 
eliminated the metrics that, due to low correlation with faults, can 
not be considered useful for building prediction models.  

To minimize the risk for introducing multicolinearities into our 
multivariate models we used stepwise regression (see Section 2 
for details concerning multicolinearity). Stepwise regression is 
one of the methods that attempt to build a model on minimal set 
of variables that explain the variance of the dependant variable. 
The initial model is built using one variable. Later, a number of 
iterative steps is performed. In each step the model obtained in the 
previous step is altered by either adding a new predicator variable 
to the model or removing a variable from the model. A new 
variable is added if it improves the ability of the model to explain 
the dependant variable significantly. The variables that do not 



contribute the model goodness anymore are removed from the 
model. For details concerning the stepwise regression see [12].      

By using stepwise regression we wanted to get models based on 
minimal sets of variables. The stepwise regression was applied to 
the set of metrics that were selected in correlation analysis. It 
means that not all metrics selected in correlation analysis ended 
up in the final model. 

3.3 Evaluation 
Since our goal was to compare the accuracy of prediction of the 
number of faults in the class we have evaluated our candidate 
models from that perspective. 
 The goodness of the model is measured by its “goodness-of-fit”. 
A standard metric applied in measuring “goodness-of-fit” is a co-
efficient of determination, R2. It measures the strength of 
correlation between the actual and predicted number of faults. 
The R2 equation is presented below (3): 
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where: iy
 – actual number of faults, iy)

-predicted number of 

faults, y - average number of faults. 
The practical meaning of R2 is that it describes the proportion 
(percentage) of variability of the predicted variable accounted by 
the model [11]. The higher the R2 value the better the prediction 
model fits the actual data. R2 values range from 0 to 1 [12], where 
1 means a perfect model that accounts for all variability of the 
predicted variable (perfect prediction). R2 equal to 0 means that 
the model is useless as prediction model. 
Similarly to [22] we have also evaluated the significance of the 
entire prediction model using F-test [12]. We have selected a 0.05 

significance level, i.e., if significance of F-test has a value below 
0.05 then the prediction model is significant. 

4. RESULTS 
As described in Section 3.2 we have begun with building 
univariate prediction models. The models and their evaluation are 
presented in Table 2.  
From Table 2 it can be noticed that the best univariate model that 
is available before the system is implemented is the model based 
on coupling (Coup). It explains about 40% of variability of the 
dependant variable (number of faults). Also models based on the 
number of methods (WMC, RFC) are significant and explain 
some variability of the dependant variable (31%, and 17%, 
respectively). The model based on the “lack of cohesion” metric, 
even though significant, accounts for only 2% of variability of 
dependant variable and, in practice, has no value.  
The best univariate model available after the system is 
implemented is the model based on the size of modification 
(ChgSize) with R2 = 55%. The next most promising models are 
models based on size (Stmt, StmtExe) which account for roughly 
the same amount of variability (around 40%) as the model based 
on the best design metric – coupling (Coup). 
To select metrics for the multivariate models we have performed a 
correlation analysis. The results of the correlation analysis are 
presented in Table 3. Not surprisingly, the findings from the 
correlation analysis are similar to the observations from building 
the univariate prediction models. From the metrics available 
before the system is implemented (marked with italics) as the 
most promising fault predicators we consider coupling (Coup), 
weighted method per class (WMC), and response for class (RFC). 
Base, NOC, and DIT were excluded because of low and 
insignificant correlation, LCOM because of low correlation with 
the number of faults. From code metrics, available after the 
system is implemented, we consider all metrics to be good fault 
predicators.  

Table 2.  Univariate prediction models (Nr_of_faults=b*Metric+intercept).  In the upper part models available before 
implementation are presented. In the lower part models available only after implementation are presented.  Models 

denoted with italics are the best models from respective groups. R2 describes goodness-of-fit (coefficient-of-determination), 
F is the value of F-test, Sig. is the significance of F-test. The models marked with grey background are models that are 

significant and have R2 different from 0. 

Metrics available before and after implementation 
Metric Base Coup NoC WMC RFC DIT LCOM 

b -0.032 0.082 0.006 0.045 0.021 -0.042 0.006 
intercept 0.645 -0.264 0.625 -0.217 -0.074 0.653 0.227 

R2 0.00 0 0.403 0.000 0.313 0.173 0.000 0.020 
F 0.43 139.666 0.008 94.306 43.389 0.094 4.179 

Sig. 0.836 0.000 0.929 0.000 0.000 0.759 0.042 
 

Metrics available only after implementation 
Metric Stmt StmtDecl StmtExe MaxCyc ChgSize   

b 0.002 0.008 0.002 0.030 0.005   
intercept -0.036 -0.026 0.027 0.214 0.000   

R2 0.437 0.278 0.435 0.246 0.550   
F 160.594 79.815 159.662 67.681 252.842   

Sig. 0.000 0.000 0.000 0.000 0.000   



Table 4. Prediction models obtained using stepwise regression. R2 describes goodness-of-fit (values closer to 1 indicate 
better fit), Sig. is significance level of F-test. The model with grey background is available before the system is 

implemented. Design+Code and Code models are the same because in stepwise regression only code metrics were selected 
to the model. 

 
Model Equation R2 F Sig. 
Design Faults = 0.062*Coup+0.018*WMC-0.384 0.429 77.412 0.0 

Design+Code Faults = 0.004*ChgSize+0.001*StmtExe-0.002*StmtDec+0.008 0.585 96.412 0.0 
Design+Code-ChgSize Faults = 0.001*Stmt+0.04*Coup-0.227 0.474 92.796 0.0 

Code Faults = 0.004*ChgSize+0.001*StmtExe-0.002*StmtDec+0.008 0.585 96.412 0.0 

We have built following multivariate models: 
- Design – a model built using selected design metrics 

(Coup, WMC, RFC). This model is available before the 
system is implemented 

- Design+Code – a model that is available after the system 
implemented. As model input we use selected design 
metrics and all code metrics 

- Design+Code-ChgSize – same as Design+Code but 
without ChgSize metric 

- Code – a model based on code metrics only.  
Some of the models were introduced for special reasons. The 
Design+Code-ChgSize is a model available after the system is 
implemented, in which we excluded the ChgSize metric. There are 
two reasons for introducing this model. First, to collect ChgSize 
data it is not enough to measure the final code or design. We need 
historical information about previous class release, which makes 
data collection and processing more complex. The second reason 
is that ChgSize is a metric of a different type than all other 
metrics. It describes the characteristic of the modification, not the 
characteristic of the final product. By comparing the accuracy of 
models with and without this metric we should get some 
indication to what extent metrics describing the characteristics of 
modifications are useful.  
The reason for introducing the Code model was to enable the 
comparison of our findings with findings of other authors that 
usually tend to introduce such a model in their published work 

(see Section 2 for examples). In this way we get some indication 
to what extend our findings are typical. 
We had some concerns regarding the relatively high cost of 
collecting the LCOM metric (see Section 3.1). Because LCOM is 
not considered useful for building prediction model our concerns 
are not valid anymore.  
To build the prediction models we have used stepwise regression. 
As we mentioned before (see Section 3.2) this method attempts to 
build a model using minimal set of variables. Therefore the final 
models use subsets of metrics that were used as input for model 
building. The results of model building and evaluation are 
summarised in Table 4.  
The model that is available before the system is implemented 
(Design, marked in Table 4 with grey background) explains 43% 
of variability of the dependant variable. The models available 
after the system is developed are better, they explain up to 58.5% 
of fault variability. When building Design+Code model the 
stepwise regression procedure selected only code metrics. 
Therefore, Design+Code and Code models are exactly the same. 
Excluding ChgSize metric affected significantly the accuracy of 
fault prediction. The “after implementation” model based on all 
metrics but ChgSize (Design+Code-ChgSize) is only a little bit 
better than models available before the implementation. It 
explains about 48% of fault variability (“before implementation” 
model explains up to 44%). 

Table 3. Correlation analysis (Spearman correlation co-efficient).  Correlations with grey background are NOT significant at 
0.05 significance level. The metrics available before the system is implemented are marked with italics. 

 Base Coup NOC WMC RFC Stmt StmtDecl StmtExe MaxCyc DIT LCOM ChgSize 
Base 1            

Coup 0.35 1           

NOC -0.13 0.06 1          

WMC 0.23 0.76 0.18 1         

RFC 0.63 0.68 0.07 0.82 1        

Stmt 0.15 0.67 0.09 0.74 0.62 1       

StmtDecl 0.01 0.57 0.08 0.61 0.44 0.86 1      

StmtExe 0.25 0.72 0.10 0.79 0.70 0.92 0.64 1     

MaxCyc 0.21 0.65 0.09 0.65 0.56 0.83 0.51 0.93 1    

DIT 0.97 0.35 -0.13 0.22 0.61 0.11 -0.01 0.22 0.12 1   

LCOM -0.08 0.3 0.18 0.37 0.15 0.20 0.38 0.11 0.07 -0.08 1  

Chg Size 0.07 0.48 0.02 0.47 0.40 0.68 0.7 0.50 0.42 0.04 0.28 1 

Faults 0.00 0.43 0.02 0.47 0.41 0.52 0.48 0.48 0.38 -0.01 0.15 0.6 
 



5. DISCUSSION 
The goal of this paper was to compare the accuracy of fault 
prediction models based on metrics available before 
implementation (design metrics) and metrics available after the 
system is implemented. By looking at Table 4 we can see that 
models based on metrics available after the system is 
implemented provide more accurate prediction (R2 equal to about 
58%) compared to models available early in design process (R2 = 
43%). This means that prediction made after the system is 
implemented is about 34% more accurate.  
A closer analysis reveals that the metric that contributes most to 
the accuracy of the models that are available after the 
implementation is the size of modification (ChgSize). It alone is 
able to explain 55% of the fault variability (see univariate model 
based on ChgSize in Table 2). In our study this metric does not 
have any corresponding metric among the design metrics. We can 
potentially think of design metrics based on similar concept, e.g., 
by applying similar ideas to coupling (amount of new and 
modified coupling relations) we could potentially obtain some 
design level metric describing the change. To our best knowledge 
the collection of such metrics would, given available tools, be 
rather complex. However, it is an interesting research direction. 
From our findings, it seems that the characteristics of the 
modification affect fault-proneness more than the final 
characteristics of the class. If we exclude the ChgSize metric we 
can see that prediction accuracy of design and code metrics is 
roughly the same. It would be similar to the findings of other 
researchers in the area (see Section 2 for details concerning 
related work). One difference is that in our work code metrics 
tend to give slightly better results compared to design metrics, 
while, e.g., [22] reported opposite findings. In [22], however, 
different design metrics were used as well as it is not clear if the 
code there was new or modified. 
When it comes to our prediction accuracy, there are studies (e.g., 
[2, 22]) that report better accuracies. However, when it comes to 
prediction using object oriented metrics (C&K) the results 
obtained by other researchers (e.g., [18], see Section 2 for values) 
are very similar. It can be an indication that the accuracy of our 
models is typical and our results are rather reliable. 
An interesting finding is that the accuracy of univariate models is 
not much lower compared to the accuracy of multivariate models. 
As many authors claim [2, 7] the simple models are preferable 
since they do not suffer from the risk of multicolinearity (see 
Section 2 for details). Even our multivariate models, despite the 
fact that they consist of rather modest number of metrics, have 
some signs of multicolinearity. For example, in Design+Code 
model (see Table 4) the sign before StmtDecl is negative (i.e., 
increasing the number of declarative statements decreases the 
amount of faults in the class), while from Table 3 we clearly see 
that the correlation between Faults and StmtDecl is positive, 
which suggests something opposite.   
A great advantage of our models is that they can be applied 
automatically. All metrics can be extracted from the code by 
appropriate software tools in the matter of minutes. Design 
metrics can be also extracted from design documentation (e.g., 
UML diagrams). As we have mentioned before, the only problem 
is LCOM metric that would require manual calculation. However, 
as it can be noticed in Table 2 and Table 3, LCOM is not 
particularly useful for predicting the number of faults. Therefore 

there is no point in collecting this metric before the system is 
implemented.  
When discussing our findings we must state that a big threat to 
validity of our study is that we have built and evaluated the model 
using the same data. Therefore we have not tested the most 
important feature of the prediction models – how well they 
predict faults when they are applied to other project/release. 
Unfortunately, when performing the study, we had no access to 
similar data from other project or other release of the same 
project. We believe that our findings can be generalized, mostly 
based on similarities of our findings with findings of other 
researchers. However we have not performed any empirical 
validation of our models.  We plan to perform such validation in 
future. Therefore, our current study has to be considered to be 
more of a feasibility study.   

6. CONCLUSIONS 
The goal of the study was to compare the accuracy of fault 
prediction models available before and after the system is 
implemented. We have built and evaluated a number of fault 
prediction models based on the data collected from a large 
telecommunication system. The models were built using linear 
regression. We have built univariate and multivariate models. The 
models were evaluated using a standard metric (coefficient of 
determination – R2) that describes the percentage of variability of 
faults accounted for by the model. 
We have found that prediction models that include metrics 
available after the system is implemented provide about 34% 
more accurate prediction. It concerns both univariate and 
multivariate fault prediction models. The models based on metrics 
available after the implementation were able to explain about 58% 
of fault data variability. Prediction model based on metrics 
available before the system is implemented explained about 43% 
of fault variability.  
We have discovered that the higher accuracy of models available 
after the system is implemented is caused by the code metric 
ChgSize, which describes the size of modification. Without this 
metric the fault prediction accuracy before and after the 
implementation is roughly the same, both in case of univariate 
and multivariate models. In this study we did not have any 
corresponding design metric that would characterize the 
modification. It seems like a promising way forward to look for 
such a metric and test its applicability for early fault prediction in 
modified code. 
   In this study we have also found that the gain connected with 
building multivariate models over univariate models is rather 
limited for modified code and our set of metrics. The univariate 
models were about 5% less accurate compared to their 
multivariate counterparts, which we do not see as a major 
difference. Since univariate models are more stable, as they are 
not prone to multicolinearity, we suggest using them for 
predicting the number of faults in modified code. 
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