
The Accuracy of Early Fault Prediction in Modified Code
Piotr Tomaszewski, Lars Lundberg, Håkan Grahn

Department of Systems and Software Engineering
School of Engineering

Blekinge Institute of Technology
SE-372 25 Ronneby, Sweden

{piotr.tomaszewski, lars.lundberg,hakan.grahn} @bth.se

ABSTRACT
Software systems are normally developed in a number of releases.
Each release usually modifies existing code. In this study we
show that such modified code can be an important source of
faults. Since faults are considered major cost drivers of software
projects, the ability to identify fault-prone classes before they are
implemented would give a chance to apply some preventive
measures, which could bring significant savings on project costs.
To achieve that, however, the prediction model available early in
the development process would have to be accurate. In this study
we compare the accuracy of fault prediction models available
before and after the system is implemented. We find that fault
prediction models that are available after the system is
implemented are about 34% more accurate compared to models
available before the system is implemented. We discover that the
higher accuracy of the prediction models available after the
system is implemented is caused by the metric that describes the
size of the class modification. This metric is a code metric that is
available only after the system is developed. As further work, we
suggest defining design metrics that describe the characteristics of
modifications and evaluating their applicability to predict faults in
modified code.

Categories and Subject Descriptors
D.2.5 [Testing and debugging], D.2.8 [Metrics]

General Terms
Measurement, Verification.

Keywords
Fault prediction models, early fault prediction, modified code

1. INTRODUCTION
Faults are considered as one of the major cost drivers of software
development. Finding and correcting them is a very expensive
activity [20]. Fault detection can account for a significant part of
the project budget, e.g., in the study reported in [2] 45% of the
project resources were devoted to testing and simulation.

Typical software systems are produced in a number of releases. In
each new release usually a significant amount of new
functionality is added. This often results in major changes
introduced to the code implementing the current system. Such
code modifications are an important source of faults [16].

A well known fact concerning faults is that a majority of the
faults can be found in a minority of the code (e.g., 60% of the

faults can be found in 20% of the modules [14]). A prediction
model that identifies the most fault-prone code can bring
significant savings on project costs by enabling more efficient
allocation of resources. This has been widely recognized by
researchers that attempted to build prediction models, including
models available early in development process (e.g., [5, 14, 16-
18, 22]).

Fault prediction models are usually based on different
characteristics of the software, e.g., design or code metrics (e.g.,
[5, 22]). Some of those metrics are available only after the system
is developed. These are mostly code metrics, like the number of
lines of code or McCabe complexity [8]. A model based on these
metrics can be applied only after the system has been developed.
Other metrics, e.g., design metrics, are often available before the
coding has started, e.g., from the design documentation.
Prediction models based on such metrics are able to identify fault-
prone classes before they are implemented. This makes it possible
to apply some preventive measures to such classes, like assigning
them to more experienced developers or increasing the number of
code reviews. This can lead to large potential savings. However,
the savings largely depend on the accuracy of the model based on
the metrics available early in the design phase.

In this paper we compare the accuracy of fault prediction models
that are available before the system is developed with models that
contain data available only after the system has been
implemented. The models are built using linear regression and
predict the number of faults in a class. We discover that models
available early in the development process are about 34% more
accurate compared to those available before the system is
implemented.

Our models are based on the data from one release of a large
telecommunication system developed by Ericsson. The system
comprises about 600 classes (250 KLOC in total). The system is
divided into subsystems. Each subsystem comprises a number of
components. The system works in a service layer of a mobile
phone network. It is mission-critical system for mobile network
operators. Because of high quality requirements the system
undergoes extensive, and therefore expensive, testing before it is
released to the market. The system is a mature system that has
been available on the market for over six years. The people
involved in its development are experienced and have been
involved in the development of the system for several years.

The release that we examine in this study is considered typical for
this system. 40% of the code that is included in the examined
release of the system is new compared to the previous release.
65% of the new code has been introduced as modifications of

existing classes and 35% as new classes. The faults found in the
modified code accounted for 86% of the total number of faults
found in the new and the modified classes. Our goal was to build
prediction models for the modified classes, as faults in those
classes contribute most to the total number of faults in the release.
The faults we discuss in this study are all the faults that had been
reported until the project reached the stage of market availability.

The rest of the paper is structured as follows: in Section 2 we
present the work that has been done by others in the area of fault
prediction, Section 3 describes methods we have used for model
building and evaluation. Section 4 presents the results. In Section
5 we discuss our findings. In the last section (Section 6) we
present the most important conclusions from our study.

2. RELATED WORK
The most common method for building fault prediction models is
multivariate linear regression (e.g., [2, 3, 13, 15, 18, 22]).
Typically, the first step of model building involves some kind of
selection of metrics for the model. The metrics used should be
independent from each other. According to [2] introducing
dependent metrics into the model causes a risk of
multicolinearity. Examples of dependant metrics are number of
lines-of-code and number of language statements, because they
are very likely to measure the same thing – size - in different
units. Multicolinearity is especially risky when regression models
are built. It leads to “unstable coefficients, misleading statistical
tests, and unexpected coefficient signs” [7]. Obviously, selected
metrics should also be good fault predicators. Introducing metrics
that are not good fault predicators into a regression equation
increases the risk for misleading and unstable models.
The next steps involve model equation calculation and evaluation.
A typical evaluation criterion for regression models is “goodness-
of-fit” measure called R2. R2 describes the proportion of
variability of variable predicted by the model [11]. It has values
between 0 and 1 [12]. The closer R2 is to 1 the better is the
prediction model. For details concerning the calculation of R2 see
Section 3.3.
Below we present studies, in which fault prediction models were
built. For each study we describe the set of metrics used, the
metric selection criteria, and the results obtained. The results
presented in this section will provide a baseline for evaluation of
our models.
A study similar to our one was performed by Zhao et al. [22]. The
authors compare the applicability of design and code metrics to
predict the number of faults. The analyzed system is one release
of a large telecommunication system. However, the authors do not
say if the modules analyzed are new or modified. The design
measures collected are mostly different SDL related metrics
(number of SDL diagrams, number of task symbols in SDL
descriptions, etc.). Code metrics included the number of lines of
code, the number of variables, the number of signals, and the
number of if statements. The initial selection of metrics was based
on correlation analysis. To build the models the authors used
stepwise regression, which additionally eliminated metrics that
are not good fault predicators. The authors concluded that both
code and design metrics are applicable and give good results.
However, the best result was obtained when both types of metrics
were included in the same model. R2 values obtained in this study

were 0.63 for the design metrics model, 0.558 for the code metrics
model, and 0.68 for the model based on design and code metrics.
The applicability of object-oriented metrics for predicting the
number of faults was evaluated by Yu et al.[18]. The analyzed
system consisted of new classes only. The set of metrics used was
largely based on metrics suggested by Chidamber and Kemerer
(C&K metrics) [4]. The authors evaluated univariate and
multivariate models. The best univariate model was based on
Number of Methods per Class (R2 value = 0.423). The results of
univariate regression were used to select metrics for multivariate
regression. To be selected the regression model based on the
metric had to be significant (t-test) as well as it had to account
large proportion of variability of the predicted value. However, in
practice, the authors only rejected the variables from the
insignificant models. Stepwise regression was used in order to
eliminate redundant metrics. Finally six different metrics were
included in the proposed regression model. The R2 statistic of this
model was 0.597. The authors also show the model based on all
ten metrics they collected which had R2 value equal to 0.603.
Cartwright and Shepperd [2] present a study in which they predict
faults in object oriented system. The metric suite they use consists
of some of the object-oriented C&K metrics (depth of inheritance
and number of children), some code metrics, and some metrics
that are characteristic for the development method employed
(Shlaer-Mellor). The authors obtained very high prediction
accuracy. Their linear model based only on number of events in
the class in state model achieved R2 = 0.876. By adding a variable
indicating if there is an inheritance the goodness-of-fit has
increased to R2 = 0.897.
A number of other studies were performed to assess the relation
between different metrics and fault-proneness. Since they did not
use linear regression we do not quote the results obtained in them.
They are, however, still interesting since they give indication of
which metrics are good predicators of faults. For example, El
Emam et al. [5] observed the impact of inheritance and coupling
on the fault-proneness of the class. The relation between
inheritance, coupling, and probability of finding fault in the class
was also identified by Briand et al. [1].

3. METHODS
3.1 Metrics suite

All metrics that were collected are summarized in Table 1. All
measurements were done at the class level. The set of metrics is
divided into two groups. One group consists of design metrics (in
Table 1 these are the metrics with grey background). The design
metrics are mostly metrics that belong to the classic set of object
oriented metrics suggested by Chidamber and Kemerer (C&K
metrics) [4]. These metrics are normally available before the
implementation is done. Most of these metrics can be obtained
automatically from design documentation (e.g., can be calculated
by CASE tools from UML system design documentation). One
exception in this group is the LCOM metric, which can not be
calculated automatically from the documentation (though it can
be obtained automatically from the code). Manual calculation
would significantly increase the cost of obtaining data for the
model. In our further discussion we take this issue into account, as
metrics that can be obtained automatically are, in practice, much
more useful.

Table 1. Metrics collected in the study. The metrics with grey background are design metrics that normally are available
before the system is implemented.

Name Variable Description
Independent variables

Coup Coupling Number of classes the class is coupled to [4, 8]
NoC Number of Children Number of immediate subclasses [4]
Base Number of Base Classes Number of immediate base classes [4]
WMC Weighted Methods per Class Number of methods defined locally in the class [4]
RFC Response for Class Number of methods in the class including inherited ones [4]
DIT Depth of Inheritance Tree Maximal depth of the class in the inheritance tree [4, 6]
LCOM Lack of Cohesion “how closely the local methods are related to the local instance

variables in the class”[8]. In the study LCOM was calculated as
suggested by Graham [9, 10]

Stmt Number of statements Number of statements in the code
StmtExe Number of executable statements Number of executable statements in the code
StmtDecl Number of declarative statements Number of declarative statements in the code
MaxCyc Maximum cyclomatic complexity The highest McCabe complexity of a function within the class
ChgSize Change Size Number of new and modified LOC (from previous release)

Dependent variable
Faults Number of faults Number of faults found in the class

The second group are code metrics, which mostly include
different size metrics (e.g., number of statements), or metrics
describing McCabe cyclomatic complexity (Maximum
Cyclomatic Complexity). Since we, in this study, focus on
modified code, we have an additional metric describing the size of
modification (ChgSize – number of new and modified lines of
code in the final system, compared to previous release of the
system). ChgSize was obtained by comparing classes from the
examined and the previous release of the system. To measure
ChgSize we used LOCC application. For details concerning
LOCC and the measurement of the size of modification see [21].

The code metrics are not available until the system is
implemented. Therefore prediction models that use them can be
applied only after the system is fully implemented. All code
metrics can be obtained automatically from the code by using
appropriate software tools.

3.2 Model building
As stated before, our prediction models should predict the number
of faults in modified classes. We want to compare the accuracy of
fault prediction models available before the system is
implemented with the models available after the system is
implemented.

In this study we compare two kinds of models:

- Univariate models, which are models based on one
variable only.

- Multivariate models, which predict the number of faults
based on more than one variable.

We have decided to include both univariate and multivariate
models because there are different opinions regarding their
applicability. Some authors (e.g., [2]) prefer simple univariate
models, as such models are supposed to be more stable. Other
authors (e.g., [22]) build multivariate models, as such models give
potentially higher accuracy.

The models were built using linear regression. Univariate linear
regression estimates the value of the dependant variable (number
of faults) as a function of the independent variable (code or design
metric) [19]:

f(x) = a + bx (1)

Multivariate linear regression estimates the value of the
dependant variable (number of faults) as a linear combination of
independent variables (code and design metrics) [19]:

f(x) = a + b1x1+b2x2+b3x3+…..+bkxk (2)

To find the metrics for multivariate models we performed a
correlation analysis. The correlation co-efficient quantifies the
linear correlation between two variables. The value -1 describes
perfect negative and +1 described perfect positive correlation.
Values close to 0 denote lack of correlation.

For multivariate models we selected variables that were correlated
to the number of faults, i.e., with correlation coefficient values not
close to 0. For our dataset it turned out that we selected only
variables with correlation to the number of faults higher than
0.38. Additionally, the correlation to the number of faults had to
be significant at 0.05 level (standard significance level describing
5% chance of rejecting correct hypothesis). In this way we
eliminated the metrics that, due to low correlation with faults, can
not be considered useful for building prediction models.

To minimize the risk for introducing multicolinearities into our
multivariate models we used stepwise regression (see Section 2
for details concerning multicolinearity). Stepwise regression is
one of the methods that attempt to build a model on minimal set
of variables that explain the variance of the dependant variable.
The initial model is built using one variable. Later, a number of
iterative steps is performed. In each step the model obtained in the
previous step is altered by either adding a new predicator variable
to the model or removing a variable from the model. A new
variable is added if it improves the ability of the model to explain
the dependant variable significantly. The variables that do not

contribute the model goodness anymore are removed from the
model. For details concerning the stepwise regression see [12].

By using stepwise regression we wanted to get models based on
minimal sets of variables. The stepwise regression was applied to
the set of metrics that were selected in correlation analysis. It
means that not all metrics selected in correlation analysis ended
up in the final model.

3.3 Evaluation
Since our goal was to compare the accuracy of prediction of the
number of faults in the class we have evaluated our candidate
models from that perspective.
 The goodness of the model is measured by its “goodness-of-fit”.
A standard metric applied in measuring “goodness-of-fit” is a co-
efficient of determination, R2. It measures the strength of
correlation between the actual and predicted number of faults.
The R2 equation is presented below (3):

()

()∑

∑

=

=

−

−
−= n

i
i

n

i
ii

yy

yy
R

1

2

1

2

2 1

)

 (3)

where: iy
 – actual number of faults, iy)

-predicted number of

faults, y - average number of faults.
The practical meaning of R2 is that it describes the proportion
(percentage) of variability of the predicted variable accounted by
the model [11]. The higher the R2 value the better the prediction
model fits the actual data. R2 values range from 0 to 1 [12], where
1 means a perfect model that accounts for all variability of the
predicted variable (perfect prediction). R2 equal to 0 means that
the model is useless as prediction model.
Similarly to [22] we have also evaluated the significance of the
entire prediction model using F-test [12]. We have selected a 0.05

significance level, i.e., if significance of F-test has a value below
0.05 then the prediction model is significant.

4. RESULTS
As described in Section 3.2 we have begun with building
univariate prediction models. The models and their evaluation are
presented in Table 2.
From Table 2 it can be noticed that the best univariate model that
is available before the system is implemented is the model based
on coupling (Coup). It explains about 40% of variability of the
dependant variable (number of faults). Also models based on the
number of methods (WMC, RFC) are significant and explain
some variability of the dependant variable (31%, and 17%,
respectively). The model based on the “lack of cohesion” metric,
even though significant, accounts for only 2% of variability of
dependant variable and, in practice, has no value.
The best univariate model available after the system is
implemented is the model based on the size of modification
(ChgSize) with R2 = 55%. The next most promising models are
models based on size (Stmt, StmtExe) which account for roughly
the same amount of variability (around 40%) as the model based
on the best design metric – coupling (Coup).
To select metrics for the multivariate models we have performed a
correlation analysis. The results of the correlation analysis are
presented in Table 3. Not surprisingly, the findings from the
correlation analysis are similar to the observations from building
the univariate prediction models. From the metrics available
before the system is implemented (marked with italics) as the
most promising fault predicators we consider coupling (Coup),
weighted method per class (WMC), and response for class (RFC).
Base, NOC, and DIT were excluded because of low and
insignificant correlation, LCOM because of low correlation with
the number of faults. From code metrics, available after the
system is implemented, we consider all metrics to be good fault
predicators.

Table 2. Univariate prediction models (Nr_of_faults=b*Metric+intercept). In the upper part models available before
implementation are presented. In the lower part models available only after implementation are presented. Models

denoted with italics are the best models from respective groups. R2 describes goodness-of-fit (coefficient-of-determination),
F is the value of F-test, Sig. is the significance of F-test. The models marked with grey background are models that are

significant and have R2 different from 0.

Metrics available before and after implementation
Metric Base Coup NoC WMC RFC DIT LCOM

b -0.032 0.082 0.006 0.045 0.021 -0.042 0.006
intercept 0.645 -0.264 0.625 -0.217 -0.074 0.653 0.227

R2 0.00 0 0.403 0.000 0.313 0.173 0.000 0.020
F 0.43 139.666 0.008 94.306 43.389 0.094 4.179

Sig. 0.836 0.000 0.929 0.000 0.000 0.759 0.042

Metrics available only after implementation
Metric Stmt StmtDecl StmtExe MaxCyc ChgSize

b 0.002 0.008 0.002 0.030 0.005
intercept -0.036 -0.026 0.027 0.214 0.000

R2 0.437 0.278 0.435 0.246 0.550
F 160.594 79.815 159.662 67.681 252.842

Sig. 0.000 0.000 0.000 0.000 0.000

Table 4. Prediction models obtained using stepwise regression. R2 describes goodness-of-fit (values closer to 1 indicate
better fit), Sig. is significance level of F-test. The model with grey background is available before the system is

implemented. Design+Code and Code models are the same because in stepwise regression only code metrics were selected
to the model.

Model Equation R2 F Sig.
Design Faults = 0.062*Coup+0.018*WMC-0.384 0.429 77.412 0.0

Design+Code Faults = 0.004*ChgSize+0.001*StmtExe-0.002*StmtDec+0.008 0.585 96.412 0.0
Design+Code-ChgSize Faults = 0.001*Stmt+0.04*Coup-0.227 0.474 92.796 0.0

Code Faults = 0.004*ChgSize+0.001*StmtExe-0.002*StmtDec+0.008 0.585 96.412 0.0

We have built following multivariate models:
- Design – a model built using selected design metrics

(Coup, WMC, RFC). This model is available before the
system is implemented

- Design+Code – a model that is available after the system
implemented. As model input we use selected design
metrics and all code metrics

- Design+Code-ChgSize – same as Design+Code but
without ChgSize metric

- Code – a model based on code metrics only.
Some of the models were introduced for special reasons. The
Design+Code-ChgSize is a model available after the system is
implemented, in which we excluded the ChgSize metric. There are
two reasons for introducing this model. First, to collect ChgSize
data it is not enough to measure the final code or design. We need
historical information about previous class release, which makes
data collection and processing more complex. The second reason
is that ChgSize is a metric of a different type than all other
metrics. It describes the characteristic of the modification, not the
characteristic of the final product. By comparing the accuracy of
models with and without this metric we should get some
indication to what extent metrics describing the characteristics of
modifications are useful.
The reason for introducing the Code model was to enable the
comparison of our findings with findings of other authors that
usually tend to introduce such a model in their published work

(see Section 2 for examples). In this way we get some indication
to what extend our findings are typical.
We had some concerns regarding the relatively high cost of
collecting the LCOM metric (see Section 3.1). Because LCOM is
not considered useful for building prediction model our concerns
are not valid anymore.
To build the prediction models we have used stepwise regression.
As we mentioned before (see Section 3.2) this method attempts to
build a model using minimal set of variables. Therefore the final
models use subsets of metrics that were used as input for model
building. The results of model building and evaluation are
summarised in Table 4.
The model that is available before the system is implemented
(Design, marked in Table 4 with grey background) explains 43%
of variability of the dependant variable. The models available
after the system is developed are better, they explain up to 58.5%
of fault variability. When building Design+Code model the
stepwise regression procedure selected only code metrics.
Therefore, Design+Code and Code models are exactly the same.
Excluding ChgSize metric affected significantly the accuracy of
fault prediction. The “after implementation” model based on all
metrics but ChgSize (Design+Code-ChgSize) is only a little bit
better than models available before the implementation. It
explains about 48% of fault variability (“before implementation”
model explains up to 44%).

Table 3. Correlation analysis (Spearman correlation co-efficient). Correlations with grey background are NOT significant at
0.05 significance level. The metrics available before the system is implemented are marked with italics.

 Base Coup NOC WMC RFC Stmt StmtDecl StmtExe MaxCyc DIT LCOM ChgSize
Base 1

Coup 0.35 1

NOC -0.13 0.06 1

WMC 0.23 0.76 0.18 1

RFC 0.63 0.68 0.07 0.82 1

Stmt 0.15 0.67 0.09 0.74 0.62 1

StmtDecl 0.01 0.57 0.08 0.61 0.44 0.86 1

StmtExe 0.25 0.72 0.10 0.79 0.70 0.92 0.64 1

MaxCyc 0.21 0.65 0.09 0.65 0.56 0.83 0.51 0.93 1

DIT 0.97 0.35 -0.13 0.22 0.61 0.11 -0.01 0.22 0.12 1

LCOM -0.08 0.3 0.18 0.37 0.15 0.20 0.38 0.11 0.07 -0.08 1

Chg Size 0.07 0.48 0.02 0.47 0.40 0.68 0.7 0.50 0.42 0.04 0.28 1

Faults 0.00 0.43 0.02 0.47 0.41 0.52 0.48 0.48 0.38 -0.01 0.15 0.6

5. DISCUSSION
The goal of this paper was to compare the accuracy of fault
prediction models based on metrics available before
implementation (design metrics) and metrics available after the
system is implemented. By looking at Table 4 we can see that
models based on metrics available after the system is
implemented provide more accurate prediction (R2 equal to about
58%) compared to models available early in design process (R2 =
43%). This means that prediction made after the system is
implemented is about 34% more accurate.
A closer analysis reveals that the metric that contributes most to
the accuracy of the models that are available after the
implementation is the size of modification (ChgSize). It alone is
able to explain 55% of the fault variability (see univariate model
based on ChgSize in Table 2). In our study this metric does not
have any corresponding metric among the design metrics. We can
potentially think of design metrics based on similar concept, e.g.,
by applying similar ideas to coupling (amount of new and
modified coupling relations) we could potentially obtain some
design level metric describing the change. To our best knowledge
the collection of such metrics would, given available tools, be
rather complex. However, it is an interesting research direction.
From our findings, it seems that the characteristics of the
modification affect fault-proneness more than the final
characteristics of the class. If we exclude the ChgSize metric we
can see that prediction accuracy of design and code metrics is
roughly the same. It would be similar to the findings of other
researchers in the area (see Section 2 for details concerning
related work). One difference is that in our work code metrics
tend to give slightly better results compared to design metrics,
while, e.g., [22] reported opposite findings. In [22], however,
different design metrics were used as well as it is not clear if the
code there was new or modified.
When it comes to our prediction accuracy, there are studies (e.g.,
[2, 22]) that report better accuracies. However, when it comes to
prediction using object oriented metrics (C&K) the results
obtained by other researchers (e.g., [18], see Section 2 for values)
are very similar. It can be an indication that the accuracy of our
models is typical and our results are rather reliable.
An interesting finding is that the accuracy of univariate models is
not much lower compared to the accuracy of multivariate models.
As many authors claim [2, 7] the simple models are preferable
since they do not suffer from the risk of multicolinearity (see
Section 2 for details). Even our multivariate models, despite the
fact that they consist of rather modest number of metrics, have
some signs of multicolinearity. For example, in Design+Code
model (see Table 4) the sign before StmtDecl is negative (i.e.,
increasing the number of declarative statements decreases the
amount of faults in the class), while from Table 3 we clearly see
that the correlation between Faults and StmtDecl is positive,
which suggests something opposite.
A great advantage of our models is that they can be applied
automatically. All metrics can be extracted from the code by
appropriate software tools in the matter of minutes. Design
metrics can be also extracted from design documentation (e.g.,
UML diagrams). As we have mentioned before, the only problem
is LCOM metric that would require manual calculation. However,
as it can be noticed in Table 2 and Table 3, LCOM is not
particularly useful for predicting the number of faults. Therefore

there is no point in collecting this metric before the system is
implemented.
When discussing our findings we must state that a big threat to
validity of our study is that we have built and evaluated the model
using the same data. Therefore we have not tested the most
important feature of the prediction models – how well they
predict faults when they are applied to other project/release.
Unfortunately, when performing the study, we had no access to
similar data from other project or other release of the same
project. We believe that our findings can be generalized, mostly
based on similarities of our findings with findings of other
researchers. However we have not performed any empirical
validation of our models. We plan to perform such validation in
future. Therefore, our current study has to be considered to be
more of a feasibility study.

6. CONCLUSIONS
The goal of the study was to compare the accuracy of fault
prediction models available before and after the system is
implemented. We have built and evaluated a number of fault
prediction models based on the data collected from a large
telecommunication system. The models were built using linear
regression. We have built univariate and multivariate models. The
models were evaluated using a standard metric (coefficient of
determination – R2) that describes the percentage of variability of
faults accounted for by the model.
We have found that prediction models that include metrics
available after the system is implemented provide about 34%
more accurate prediction. It concerns both univariate and
multivariate fault prediction models. The models based on metrics
available after the implementation were able to explain about 58%
of fault data variability. Prediction model based on metrics
available before the system is implemented explained about 43%
of fault variability.
We have discovered that the higher accuracy of models available
after the system is implemented is caused by the code metric
ChgSize, which describes the size of modification. Without this
metric the fault prediction accuracy before and after the
implementation is roughly the same, both in case of univariate
and multivariate models. In this study we did not have any
corresponding design metric that would characterize the
modification. It seems like a promising way forward to look for
such a metric and test its applicability for early fault prediction in
modified code.
 In this study we have also found that the gain connected with
building multivariate models over univariate models is rather
limited for modified code and our set of metrics. The univariate
models were about 5% less accurate compared to their
multivariate counterparts, which we do not see as a major
difference. Since univariate models are more stable, as they are
not prone to multicolinearity, we suggest using them for
predicting the number of faults in modified code.

7. ACKNOWLEDGMENTS
The authors would like to thank Ericsson for providing us with
the data for the study and The Collaborative Software
Development Laboratory, University of Hawaii, USA
(http://csdl.ics.hawaii.edu/) for LOCC application.

This work was partly funded by The Knowledge Foundation in
Sweden under a research grant for the project "Blekinge -
Engineering Software Qualities (BESQ)"
(http://www.bth.se/besq).

8. REFERENCES

[1] L. C. Briand, J. Wust, J. W. Daly, and D. V. Porter,

"Exploring the relationship between design measures and
software quality in object-oriented systems", The Journal of
Systems and Software, vol. 51, 2000, pp. 245-273.

[2] M. Cartwright and M. Shepperd, "An empirical
investigation of an object-oriented software system", IEEE
Transactions on Software Engineering, vol. 26, 2000, pp.
786-796.

[3] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer,
"Managerial use of metrics for object-oriented software: an
exploratory analysis", IEEE Transactions on Software
Engineering, vol. 24, 1998, pp. 629-639.

[4] S. R. Chidamber and C. F. Kemerer, "A metrics suite for
object oriented design", IEEE Transactions on Software
Engineering, vol. 20, 1994, pp. 476-494.

[5] K. El Emam, W. L. Melo, and J. C. Machado, "The
prediction of faulty classes using object-oriented design
metrics", The Journal of Systems and Software, vol. 56,
2001, pp. 63-75.

[6] N. Fenton and N. Ohlsson, "Quantitative analysis of faults
and failures in a complex software system", IEEE
Transactions on Software Engineering, vol. 26, 2000, pp.
797-814.

[7] N. E. Fenton and M. Neil, "A critique of software defect
prediction models", IEEE Transactions on Software
Engineering, vol. 25, 1999, pp. 675-689.

[8] N. E. Fenton and S. L. Pfleeger, Software metrics: a
rigorous and practical approach, 2. ed. London; Boston:
PWS, 1997.

[9] I. Graham, Migrating to object technology. Wokingham,
England; Reading, Mass.: Addison-Wesley Pub. Co., 1995.

[10] B. Henderson-Sellers, L. L. Constantine, and I. M. Graham,
"Coupling and cohesion (towards a valid metrics suite for

object-oriented analysis and design)", Object Oriented
Systems, vol. 3, 1996, pp. 143-158.

[11] G. Keppel, Design and analysis: a researcher's handbook,
4. ed. Upper Saddle River, N.J.: Prentice Hall, 2004.

[12] J. S. Milton and J. C. Arnold, Introduction to probability
and statistics: principles and applications for engineering
and the computing sciences, 4. ed. Boston: McGraw-Hill,
2003.

[13] A. P. Nikora and J. C. Munson, "Developing fault
predictors for evolving software systems", Proceedings of
The Ninth International Software Metrics Symposium, 2003,
pp. 338-349.

[14] N. Ohlsson, A. C. Eriksson, and M. Helander, "Early Risk-
Management by Identification of Fault-prone Modules",
Empirical Software Engineering, vol. 2, 1997, pp. 166-173.

[15] N. Ohlsson, M. Zhao, and M. Helander, "Application of
multivariate analysis for software fault prediction",
Software Quality Journal, vol. 7, 1998, pp. 51-66.

[16] M. Pighin and A. Marzona, "An empirical analysis of fault
persistence through software releases", Proceedings of the
International Symposium on Empirical Software
Engineering, 2003, pp. 206-212.

[17] M. Pighin and A. Marzona, "Reducing Corrective
Maintenance Effort Considering Module's History", Proc.
of Ninth European Conference on Software Maintenance
and Reengineering, 2005, pp. 232-235.

[18] Y. Ping, T. Systa, and H. Muller, "Predicting fault-
proneness using OO metrics. An industrial case study",
Proc. of The Sixth European Conference on Software
Maintenance and Reengineering, 2002, pp. 99-107.

[19] D. G. Rees, Essential statistics, 3rd ed. London; New York:
Chapman & Hall, 1995.

[20] I. Sommerville, Software engineering, 7th ed. Boston,
Mass.: Addison-Wesley, 2004.

[21] The Collaborative Software Development Laboratory,
University of Hawaii, USA;LOCC Project Homepage,
http://csdl.ics.hawaii.edu/Tools/LOCC/;2005

[22] M. Zhao, C. Wohlin, N. Ohlsson, and M. Xie, "A
comparison between software design and code metrics for
the prediction of software fault content", Information and
Software Technology, vol. 40, 1998, pp. 801-809.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

