
Forming Consensus on Testability in
Software Developing Organizations
Frans Mårtensson, Håkan Grahn, and Michael Mattsson

Department of Systems and Software Engineering
School of Engineering, Blekinge Institute of Technology

P.O. Box 520, SE-372 25 Ronneby, Sweden
{Frans.Martensson, Hakan.Grahn, Michael.Mattsson}@bth.se, http://www.bth.se/besq

ABSTRACT
Testing is an important activity in all software development

projects and organizations. Therefore, it is important that all parts

of the organization have the same view on testing and testability of

software components and systems. In this paper we study the view

on testability by software engineers, software testers, and

managers, using a questionnaire followed by interviews. The

questionnaire also contained a set of software metrics that the

respondents grade based on their expected impact on testability.

We find, in general, that there is a high consensus within each

group of people on their view on testability. Further, we have

identified that the software engineers and the testers mostly have

the same view, but that their respective views differ on how much

the coupling between modules and the number of parameters to a

module impact the testability. Base on the grading of the software

metrics we conclude that size and complexity metrics could be

complemented with more specific metrics related to memory

management operations.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging], D.2.8 [Metrics]

General Terms
Management, Measurement, Design, Human Factors.

Keywords
Testability, Software testing, Software metrics.

1. INTRODUCTION
In software developing organizations there exist a number of
roles. These roles range from, e.g., project managers through
software and hardware engineers to test engineers. As an
organization grows and evolves, new people are introduced to
the different roles. Each person brings their own knowledge
and experience to the organization based on their background
and education. Their background thus influences how they
practice their role. As a result, an organization that from the
beginning had a shared set of definitions and understandings
between people in different roles, can after some time end up
in a state where this is no longer the case. Roles can start to
have different meanings of the same concept. But, when people
in different roles no longer understand what a concept means
to another role in the organization, it can become a source of
misunderstandings, and also generate additional costs.

For example, an organization decides that the software system
that they are developing needs to be improved, and a set of
desirable quality attributes and requirements is selected. The

changes made to a software system can be driven by many
sources, ranging from business goals, e.g., new functionality
requested by the customers, to pure maintenance changes, e.g.,
error corrections. In addition, the developers designing and
implementing the system also have an impact on how the
system changes. Therefore, it is important that all roles in the
organization have an understanding of what the quality
attributes mean to the other roles. One important quality
attribute for a software system is testability [6, 8, 9], having
high testability simplifies the task of validating the system
both during and development and maintenance [14].

In this paper we examine a software developing organization.
We look for different definitions of and views on testability
between different roles in the organization. We devise a
questionnaire and use it to gather the opinions and views on
testability of the people in the organization. The questionnaire
is then followed up with some additional questions raised
during the analysis of the responses. The follow-up questions
were posed during telephone interviews. Finaly we analyze
and discuss the results of the examination. We plan a
workshop where we will try to identify the reasons for the
different opinions of the respondents, other than the ones that
we have identified from the questionnaire.

The rest of the paper is organized as follows. In the next
section we introduce software testing and testability. Then, in
Section 3, we define the basis for our case study, e.g., the goals
and participants in the study. In Section 4 and Section 5, we
present the results from our questionnaire along with an
analysis of them. Then, in Section 6 we discuss the validity of
our findings. Finally, we conclude our study in Section 7.

2. SOFTWARE TESTING AND

TESTABILITY
Software testing is the activity of verifying the correctness of a
software system. The goal is to identify defects that are present
in the software so that they can be corrected. Several classes of
tests exist and the tests can be performed on a number of levels
in the system. Typical tests used in software development are
unit tests, regression tests, integration test, and system tests.

Different types of tests can be introduced at different points in
the software life cycle. Unit tests are often introduced during
the implementation phase, and focus on testing a specific
method or class in the software system. Unit tests can be
constructed by the developer as he writes the program code
and used as a verification that the code that has been produced
meets the requirements (both functional and non-functional)
posed by the requirements specification.

Tests performed late in the development cycle are, e.g.,
integration tests and system function tests. The integration

31

tests test that the software modules that have been developed
independently of each other still work as specified when they
are integrated into the final system configuration. Integration
testing becomes particularly important when the development
organization is geographically dispersed, or when parts of the
system have been developed with only little interaction
between different development teams. System tests verify that
all the integrated modules provide correct functionality, i.e.,
correct according to the requirements specification. System
tests view the system from the user’s point of view and look at
the complete system as a black box which the user interacts
with using some sort of user interface.

Catching defects early in the development process is an
important goal for the development organization. The sooner a
defect is identified the sooner it can be corrected. Software
defects can be at the code level, in algorithms, but also at the
design or architecture level. Defects at the design and
architecture levels become more expensive to correct the later
in the development cycle that they are identified, since larger
parts of the design have been implemented. Hence the earlier
the testing can begin, the more likely it will be that the
completed software will be correct. Several development
methods exist that put emphasis on testing, e.g., agile methods.

During software development different roles focus on different
types of tests, depending on the organization. It is common that
the programmers create and implement the unit tests while they
implement their part of the system. Later tests, such as
integration and particularly system tests, are usually done by a
dedicated test team that has software testing as their main task.

One way of simplifying the repetition of tests is to automate
the process. This is useful for, e.g., regression, unit, and
performance tests. Automated testing can be implemented as a
part of a daily build system. Test cases that have been
automated can be executed once a build cycle is completed.
Report generation and comparison to previous test results can
be created as feedback to the developers. An example of such a
system is Tinderbox by the Mozilla Foundation [13]. During
the daily build it is also possible to collect data regarding
source code metrics, e.g., the Maintainability Index [11] can be
computed.

A software system that makes the testing activity easy to
perform is described as having a high testability. Testability is
a quality attribute [3] of a software system. It describes how
much effort that is required to verify the functionality or
correctness of a system, or a part of a system. One aspect of
testability is to give the software testers useful feedback when
something goes wrong during execution. Testability exists at a
number of levels ranging from methods/classes through
subsystems and components up to the system function level.
Several definitions of testability exist, e.g., [6, 8, 9].

“Attributes of software that bear on the effort needed to
validate the software product.” [6]

“Testability is a measure of how easily a piece of hardware
can be tested to insure it performs its intended function.” [8]

“The degree to which a system or component facilitates the
establishment of test criteria and the performance of tests to
determine whether those criteria have been met.” [9]

An important observation is stated in [6]:

“Testability is predicted on the definition employed, and there
are numerous definitions. All definitions are legitimate;

however, it is necessary to agree on terminology up front to
avoid misunderstandings at test time.”

The statement above leads us to the first focus in this study,
i.e., how to identify different definitions of testability between
roles in an organization. The second focus in our study is to
identify those metrics the software developers and testers
believe have an impact on testability. We focus our
investigation on static analysis of a software system. Dynamic
analysis requires an executable system, and that is out of scope
of this study. Static analysis typically collects metrics by
analyzing the complexity of the source code, i.e. counting the
number of statements in and looking at the structure of the
code [10]. There are metrics that can be collected at the
method/algorithm level but there are also a number of object-
oriented metrics that can be collected at the design level, e.g.,
inheritance depth, number of methods in a class, and coupling
[7].

3. OBJECTIVES AND METHODOLOGY
Our case study was performed at a company that develops
embedded control and guidance systems for automated guided
vehicles. The company has worked with software development
for more than 15 years, and has a development organization
consisting of about 20 software engineers, 5 project managers,
3 product managers, and 2 software test engineers.

The company expressed concerns that there were
misunderstandings between organizational roles regarding
software testability and software testing. As part of the BESQ
[2] project we devised this study to evaluate how the people in
different roles in the organization define testability. We look
for disagreement between the roles as well as within the roles.

Three roles (groups) are included in this case study: software
engineers, test engineers, and managers. The group of software
engineers includes the programmers and designers that develop
the software for the control system. The group of test engineers
includes people that perform system function testing of the
completed software system. Finally, the third group consists of
the project managers and product managers. Project managers
manage the groups of software and test engineers, and make
sure that the software development is proceeding according to
schedule. The product managers represent the customers’
interest in the development process, and are responsible for
forwarding the requirements from the customers during the
development and maintenance of the software.

Together with representatives from the company we
determined two short-term objectives as well as one long-term
objective. The two short-term objectives were:

1. To see how testability is defined by different roles in the
organization.

2. To identify a set of software metrics that the developers
indicate as useful when determining the testability of
source code.

The third, long-term, objective will only be discussed briefly
in this case study. We will not try to implement any changes in
the organization yet.

3. Based on the results from objective 1, try to create a
unified view of the testability concept within the
organization.

To fulfill the first objective we need to determine the current
state of the organization. We use a questionnaire to gather the

32

required information, which also enables us to analyze the
results relatively easy. The questionnaire contains a set of
statements regarding testability, and the respondents indicate
to what extent they agree or disagree with each statement.

The second objective require a number of software engineers
to grade a set of source code metrics. The idea is to identify
which source code metrics that the respondents believe have an
impact on the testability of a system. This information is also
collected through the questionnaire. For each metric, the
respondent indicates whether he/she believes the metric has a
positive or negative impact on testability, and how large the
impact would be. This part of the questionnaire is divided into
two sub parts; one that focuses on metrics that can be collected
from C/C++ code, and one that focuses on metrics that only are
relevant for C++ code, i.e., object-oriented structural metrics
[1, 4].

The third objective will be addressed through a workshop
where the results of the survey will be presented to participants
from the different roles. The intention is to discuss with them
the different testability definitions that exist as well as the
other roles’ views on testability and expectations on their own
role.

The questionnaire addressing the first two objectives contains
65 questions, which are divided into three categories. Category
one contains questions related to the role of the respondent in
the organization as well as background and previous
experience. The second category contains questions regarding
how the respondent view testability. This is formulated as a
number of statements that the respondent agree or disagree
with. The statements are graded using a five point Likert scale
[12]. The scale ranges from 1 to 5, where 1 is that the
respondent does not agree at all, 3 indicates that the respondent
is neutral to the statement, and 5 indicates that the respondent
strongly agrees with the statement. The third category contains
a number of source code metrics that is used to assess the
testability of C/C++ source code. These metrics are also
graded using a five point Likert scale. For each question we
also ask how sure the respondent is on the answer. These
questions are also graded using a Likert scale.

The questionnaire was distributed as an Excel file via e-mail
and the respondents sent their replies back via e-mail. Together
with the Excel file we sent a short dictionary with descriptions
of concepts and definitions that were used in the questionnaire.
This was done in order to minimize the amount of questions
that the respondents might have and to make sure that all
respondents used similar definitions of basic concepts. We sent
the questionnaire to all people with the roles that we wanted to
examine.

4. RESULTS AND ANALYSIS OF

TESTABILITY STATEMENTS

We distributed 25 questionnaires and got 14 responses,
resulting in a 56% response rate. The number of responses for
each of the groups is found in Table 1. The number of
responses was to few to apply statistical methods. Instead, we
rely on quantitative and qualitative reasoning based on the
answers. The first part of the questionnaire (general testability
statements) was answered by all 14 respondents, and the
second part (C/C++ metrics) was answered only by the
software engineers.

The statements in the first part of the questionnaire are listed in
Table 2, and are all related to definitions of testability. The
statements can be grouped into three groups: S1, S3, S5, S6
and S12 are related to the size and design of a software
module, S2, S4, and S7 are related to the size of a software
module only, and S8, S9, S10, and S11 are related to the
internal state of a module.

The analysis is done in several steps. First, we compare the
responses by the people within each group (role) in order to
evaluate the agreement within the group. Second, we compare
the answers between the groups in order to evaluate agreement
or disagreement between the groups. Third, we compare the
expectations the software engineers and test engineers have on
each other regarding testability.

4.1 Consistencies Within the Roles
The first analysis of the responses is to look for inconsistencies
within the roles. We want to see if all respondents in a role
give similar answers, and if they differ, where the
inconsistencies are. The answers are summarized so the

Table 1. The number of replies divided per role.

Role Nr of replies

Software Engineer 9

Test Engineer 2

Project/Product Manager 3

Total number of replies 14

Table 2. Statements regarding testability.

ID Statement

S1 Modules with low coupling have high testability.

S2 Functions with few parameters have high testability.

S3 Modules with high coupling have low testability.

S4 Modules with few lines of code have high testability.

S5 Modules with few public methods in their interface have

high testability.

S6 Modules with many public methods in their interface have

high testability.

S7 Functions with many parameters have high testability.

S8 If it is easy to select input to a module so that all execution

paths in it are executed, then it has high testability.

S9 If it is likely that defects in the code will be detected

during testing then the module has high testability.

S10 If it is easy to set the internal state of a module during

testing then it has high testability. Modules that can be set

to a specific state makes it easier to retest situations where

faults have occurred.

S11 If it is easy to see the internal state of a module then it has

high testability. Modules that for example log information

that is useful to the testers/developers have high

testability.

S12 If a module has high cohesion, then it has high testability.

33

frequency of each response is identified, and we also evaluate
the distribution of responses. The responses for each question
is grouped into four categories for further analysis. The
categories are defined as:

1. Consensus. There is a clear consensus between the
respondents.

2. Consensus tendency. There is disagreement but with a
tendency towards one side or the other.

3. Polarization. There are two distinct groupings in the
responses.

4. Disagreement. There is a clear disagreement between the
respondents.

If a statement is placed in the Consensus and Consensus
tendency categories, it is good, i.e., the respondents agree with
each other and a tendency can be seen even though the
responses might spread somewhat. The Polarization category
is less good and indicates that there exists two different views
on the statement among the respondents. The Disagreement
category is also less good since there are several views of the
statement and no real consensus among the respondents exists.

4.1.1 Software Engineers

The software engineers’ responses can be found in Table 3.
The responses to statements S1, S3, S5, and S10 belong to the
Consensus category since there are a clear consensus in the
answers. Statements S2, S6, S7, S9, and S11 we put in the
Consensus tendency category where we have a tendency
towards agreement or disagreement with the statement. In the
Polarization category we put statements S8 and S12 since there
are two groupings in the answers. Finally, in the Disagreement
category we put statement S4.

The answers show that there are good consensus among the
software engineers regarding coupling of modules, the number
of public methods, the number of function parameters, and
their relation to testability. There is also a high degree of
consensus that modules have high testability if defects will be
detected during testing, and if it easy to set and view the
internal state of the module.

The software engineers have different opinions about high
cohesion and the easiness of selecting input data for testing all
execution paths. These issues are subjects for further
investigation and discussion in the organization. Finally, there
is a large disagreement if a module with few lines of code has
high testability or not.

It is good that so many statements are agreed upon by the
respondents. There are only two statements where the
respondents form two distinct groupings, and only one
statement where no clear consensus can be identified. This
leads us to believe that the software engineers, as a group, have
a rather coherent view on what testability is, although some
disagreements exist.

4.1.2 Test Engineers
The responses from the test engineers can be found in Table 4.
The number of respondents in this role is only two. Therefore,
it is more difficult to place the statements in the four
categories. In category Consensus we put the statements S1,
S3, S5, S6, S8, S9, S10, and S12 since the respondents give
similar responses to the statements. Statements S2, S4, S7, and
S11 are placed in category Disagreement because the
responses are further apart. The responses could not be placed
in the Polarization category since they are spread between both
agree and not agree to the statements. The issues where there
exist disagreements are functions with few and many
parameters, few lines of codes for a module, and viewing the
internal state.

4.1.3 Managers
The responses from the managers can be found in Table 5.
They suffer from the same problem as the testers, i.e., we only
got three responses to the questionnaire from this role which
makes the categorization of the responses difficult. Statements
S5 and S6 are placed in category Consensus, and statements S4
and S9 in the category Consensus tendency. The rest of the
statements are placed in the Disagreement category since the
respondents disagree on the grading of the statements. When
one of the respondents agree then two disagree and vice versa.
This group of the respondents is the one that has the most
disagreement in their responses.

Table 3. Summary of replies from the software engineers.

Answer: 1 2 3 4 5 Result Category

S1 0 0 0 2 6 Consensus

S2 0 1 2 2 3 Consensus tendency

S3 0 0 1 3 4 Consensus

S4 0 2 2 1 3 Disagreement

S5 0 1 4 2 1 Consensus

S6 2 2 3 1 0 Consensus tendency

S7 3 2 2 1 0 Consensus tendency

S8 0 0 3 0 5 Polarization

S9 0 0 3 2 3 Consensus tendency

S10 0 0 1 4 3 Consensus

S11 0 1 2 2 3 Consensus tendency

S12 0 0 3 1 4 Polarization

Table 4. Summary of replies from the test engineers.

Answer: 1 2 3 4 5 Result Category

S1 0 1 1 0 0 Consensus

S2 1 0 1 0 0 Disagreement

S3 0 2 0 0 0 Consensus

S4 0 1 0 0 1 Disagreement

S5 0 1 1 0 0 Consensus

S6 0 1 1 0 0 Consensus

S7 0 1 0 1 0 Disagreement

S8 0 0 0 1 1 Consensus

S9 0 0 0 2 0 Consensus

S10 0 0 0 1 1 Consensus

S11 0 1 0 0 1 Disagreement

S12 0 0 1 1 0 Consensus

34

From the managers viewpoint we see that the amount of public
methods has no impact if a model has high testability or not
(S5 and S6). They also believe that defects detected in code
and modules with few lines of code indicate high testability.
For all other statements there are differences in opinions, and
this has to be addressed.

4.2 Differences Between Roles
The next analysis step is to compare the view on testability
between the different groups (roles). In order to make the
groups easier to compare, we aggregate the responses for the
groups. The results of the aggregation can be found in Table 6.
The numbers are translated into their literal meaning, i.e., 5 -
Strongly agree, 4 - Agree, 3 - Neutral, 2 - Do not agree, and 1 -
Strongly disagree.

From the aggregation we find that the software engineers and
the test engineers do not agree on three main statements (S1,
S2, and S3). These are statements that are related to the design

and size of software, i.e., coupling-cohesion vs. high-low
testability and few function parameters. For the remainder of
the statements there is mainly an agreement between the two
roles.

Most of the managers’ answers are neutral in the aggregation.
The reason is that the responses from the managers had a large
spread. One respondent answered similarly to the software
engineers and another answered almost the direct opposite, and
both were very sure on their answers. The differences in
opinion can maybe be attributed to the backgrounds of the
managers. One of them had never worked with testing, while
the other one had long test experience. The differences also
make it hard to make statements about the expectations on the
other roles from the managers since they inside their group
have different opinions, making the relations to the other
groups hard to interpret. As mentioned earlier, this difference
in opinions must be unified.

4.3 Understanding and Expectations Between

Software Engineers and Test Engineers

We made follow-up interviews which focused on how the
respondents perceive the expectations of the other roles that
participated. The additional questions regarding this aspect
complement and further focus the results of the study. The
follow-up interviews were done over telephone. We did not
include the managers since they as a group had a to scattered
view on the statements. Hence, we discuss the expectations of
the software engineers on the test engineers in Table 7, and
vice versa in Table 8. For each statement the respondent
answers what he/she thinks that the people in other role would
answer. This give an indication of how much the roles are
aware of each others opinion of testability.

Overall we conclude that the software engineers and the test
engineers seem to have a good understanding of each others
interpretation of testability. The answers only differ on three
statements, S1, S2, and S3, where both roles predicted
different answers from the other role than they actually gave.
From the interviews we think that the difference can be

Table 5: Summary of replies from the managers.

Answer: 1 2 3 4 5 Result Category

S1 0 1 0 1 1 Disagreement

S2 0 2 0 1 0 Disagreement

S3 0 1 0 2 0 Disagreement

S4 0 1 1 1 0 Consensus tendency

S5 0 1 2 0 0 Consensus

S6 0 0 1 2 0 Consensus

S7 0 2 0 1 0 Disagreement

S8 0 1 0 1 1 Disagreement

S9 0 1 1 1 0 Consensus tendency

S10 0 1 0 2 0 Disagreement

S11 0 1 0 2 0 Disagreement

S12 0 1 0 2 0 Disagreement

Table 6. Aggregation of replies for the groups.

Software

engineers
Test engineers Managers

S1 Strongly agree Do not agree Neutral

S2 Strongly agree Do not agree Neutral

S3 Strongly agree Do not agree Neutral

S4 Agree Neutral Neutral

S5 Neutral Neutral Neutral

S6 Neutral Neutral Neutral

S7 Do not agree Do not agree Neutral

S8 Agree Strongly agree Neutral

S9 Agree Agree Neutral

S10 Agree Strongly agree Neutral

S11 Agree Agree Neutral

S12 Strongly agree Agree Neutral

Table 7. Software engineers’ expected

answers from the test engineers.

Expected answers Actual answer

S1 Strongly agree Do not agree

S2 Agree Do not agree

S3 Strongly agree Do not agree

S4 Neutral Neutral

S5 Neutral Neutral

S6 Neutral Neutral

S7 Do not agree Do not agree

S8 Strongly agree Strongly agree

S9 Strongly agree Strongly agree

S10 Strongly agree Strongly agree

S11 Strongly agree Agree

S12 Agree Agree

35

attributed to different interpretations of the concepts of high
and low coupling in object-oriented design.

5. SELECTION OF TESTABILITY

METRICS

The second objective of our study is to identify and select a
number of software metrics that can be collected and used to
assess the testability of a system under development. The data
for this selection are collected through the second part of the
questionnaire. The statements and questions from this part of
the questionnaire is presented in Table 9. Statements M1 to M9
are general questions related to code size. Statements M10 to
M23 are questions related to C and C++, since those are the
major programming languages used at the company. Finally,
statements M24 to M38 are related only to C++. The C++
related metrics cover aspects such as class structures and
inheritance while the C/C++ metrics focus on metrics related
to code structure, methods, and statements. The participants in
the study answered both in what way a statement impacts
testability (improve or deteriorate) as well as how much it
impacts testability relative to the other metrics.

We got 5 responses where all questions were answered, and 4
responses where only questions M1 to M23 were answered.
The reason given by the respondents for not answering all
questions was usually that they felt unsure about the C++
statements since they usually worked with the C programming
language.

The results are analyzed in a similar way as in the previous
sections. We aggregate the results and translate them from
numbers to their literal meaning in order to make the results
easier to compare as well as more readable. The mapping for
the impact is done as follows: 1 - Very small, 2 - Small, 3 -
Average, 4 - Large, 5 - Very large, and for the direction: 1 -
Very negative, 2 - Negative, 3 - No impact, 4 - Positive, 5 -
Very positive. We focus our analysis on the metrics that the
respondents identify as the ones with large positive or negative
impact on the testability of a system. The results of the
aggregation is presented in Table 10 (large negative impact)
and Table 11 (large positive impact).

Of the metrics with negative impact, see Table 10, we find that

the developers focus on memory management aspects of the

source code as well as the structural aspects. This is interesting

as there is usually little focus on what the source code actually

does and more on how understandable code is through its

structure and complexity [11]. This indicates that structural

Table 8. Test engineers’ expected answers

from the software engineers.

Expected answers Actual answer

S1 Strongly agree Agree

S2 Neutral Agree

S3 Do not agree Strongly agree

S4 Strongly agree Agree

S5 Neutral Neutral

S6 Do not agree Do not agree

S7 Do not agree Do not agree

S8 Strongly agree Agree

S9 Strongly agree Agree

S10 Strongly agree Agree

S11 Strongly agree Agree

S12 Strongly agree Strongly agree

Table 9. Statements regarding how different

code metrics impact testability.

ID Metric Statement

M1 How many lines of code the module contains.

M2 How many lines of code that each function contains.

M3 How many lines of comments the module contains.

M4 How many lines of comments that each function contains.

M5 How many parameters that are passed to a function.

M6 The length of the function name.

M7 The length of the class name.

M8 The number of lines of comments that are present directly

before a function declaration.

M9 The number of lines of comments present inside a

function.

M10 The number of variables present in a struct.

M11 The size of macros used in a module.

M12 The number of macros used in a module.

M13 The number of functions in a module.

M14 The number of parameters of a function.

M15 The number of macros called from a module.

M16 The number of times that a struct is used in a module.

M17 The number of control statements (case, if, then, etc.) in

the module.

M18 The number of method calls that is generated by a method.

M19 The number of assignments that are made in a module.

M20 The number of arithmetic operations in a module.

M21 The presence of pointer arithmetic.

M22 The number of dynamic allocations on the heap.

M23 The number of dynamic allocations on the stack.

M24 The total number of classes in the system.

M25 The number of classes in a module (name space?).

M26 The number of interfaces that a class implements.

M27 The number of classes that a class inherits.

M28 The number of classes that a class uses.

M29 The number of methods present in a class.

M30 The number of private methods present in a class.

M31 The number of public methods present in a class.

M32 The number of private variables in a class.

M33 The number of public variables in a class.

M34 The number of overloaded methods in a class.

M35 The number of calls to methods inherited from a

superclass.

M36 The size of templates used in a module.

M37 The size of templates used in a module.

M38 The number of different template instantiations.

36

measures need to be complemented with some measures of the

occurrence of memory related operations in the source code.

Traditional size measures such as the lines of code in files and

methods are also present in M1, M2, and M5. Source code

complexity measures such as cyclomatic complexity [10] can

also be seen in M17. Finally, we find class structure and

inheritance measures related to object-oriented metrics [1, 4]

in M26 and M27.

The metrics that are graded as having a large positive impact

on the testability of a system is presented in Table 11. These

metrics can also be divided into two groups: the first is related

to object-oriented structure (M24, M28, M30, M31, and M32)

and the second is related to documentation, e.g., lines of

comments (M3) and descriptive function names (M6).

Finally, we find three metrics that are graded as having a large
impact but rated as neither positive nor negative, see Table 12.
We interpret these results as an indecisiveness from the
respondents, that the metric should have an impact on
testability but that there is no feeling for towards which
direction the impact is.

From the tables we can see that the common size and structure
metrics are identified as properties that impact the testability
of a system. But we also find properties related to memory
management and addressing (M22, M23, and M21). It is
common to focus the testability discussion on the
understandability of the source code and not so much on what
the source code actually does [7, 10, 11]. Our results indicate
that memory management metrics should be taken into account
when assessing the testability of software developed by this
organization. We believe that this is data that relatively easy
can be gathered from the source code.

Because of the developers’ interest in memory related
operations, we think that it would be interesting to complement
existing testability measures, such as the testability index [7],
with these metrics to see if the accuracy of the measure is
improved. When creating such a measure it would also be
possible to tune it to the developing organization and the
systems they develop.

6. DISCUSSION
In this section we shortly discuss some validity aspects in our
study. The first issue concerns the design of the questionnaire.
It is always difficult to know whether the right questions have
been posed. We believe that we at least have identified some
important issues considering the overall view on testability by
different roles in the company. The questionnaire was
discussed with company representatives before it was issued to
the software developers. In future studies, the questionnaire
can be further refined in order to discern finer differences in
peoples’ opinion on testability. More statements would
perhaps give a better result.

The second issue concerns the number of replies from the
questionnaire, i.e., we only got 14 replies in total. The low
number of replies prohibit us from using statistical methods for
analysis. Instead, we have relied on qualitative reasoning and
interviews to strengthen the confidence in the results. Further,
the low number of respondents makes it difficult to generalize
from the results. An interesting continuation would be to do a
replicated study in another company.

The third validity issue is also related to the number of replies.
There is a clear imbalance in the distribution of replies, most
of the respondents were from one role, i.e., the software
engineers. This results in a higher confidence in the results
from one group than from the other groups. However, the
difference in the number of responses per group reflects the

Table 10. Metrics with large negative impact on testability.

ID Metric Impact Direction

M1 How many lines of code the module

contains.

Large Negative

M2 How many lines of code that each

function contains.

Large Negative

M5 How many parameters that are

passed to a function.

Large Negative

M17 The number of control statements

(case, if, then, etc.) in the module.

Large Negative

M21 The presence of pointer arithmetic. Large Negative

M22 The number of dynamic allocations

on the heap.

Large Negative

M23 The number of dynamic allocations

on the stack.

Large Negative

M26 The number of interfaces that a

class implements.

Large Negative

M27 The number of classes that a class

inherits.

Large Negative

Table 11. Metrics with large positive impact on testability.

ID Metric Impact Direction

M3 How many lines of comments the

module contains.

Large Positive

M6 The length of the function name. Large Positive

M24 The total number of classes in the

system.

Large Positive

M28 The number of classes that a class

uses.

Large Positive

M30 The number of private methods

present in a class.

Large Positive

M31 The number of public methods

present in a class.

Large Positive

M32 The number of private variables in

a class.

Large Positive

Table 12. Metrics that have an unclear impact on testability.

ID Metric Impact Direction

M13 The number of functions in a

module.

Large No impact

M25 The number of classes in a module. Large No impact

M33 The number of public variables in a

class.

Large No impact

37

distribution of people working in the different roles at the
company.

7. CONCLUSION
Software testing is a major activity during software
development, constituting a significant portion of both the
development time and project budget. Therefore, it is
important that different people in the software development
organization, e.g., software engineers and software testers,
share similar definitions of concepts such as testability in order
to avoid misunderstandings.

In this paper we present a case study of the view on testability
in a software development company. We base our study on a
questionnaire distributed to and answered by three groups of
people: software engineers, test engineers, and managers. The
questionnaire was then followed up by interviews.

Our results indicate that there is, in general, a large consensus
on what testability means within each group. Comparing the
view on testability by different groups, we find that the
software engineers and the test engineers mostly have the same
view. However, their respective views differ on how much the
coupling between modules and the number of parameters to a
module impact the testability.

We also evaluate the expected impact of different code metrics
on testability. Our findings indicate that the developers think
that traditional metrics such as lines of code and lines of
comments as well as object-oriented structure and source code
complexity are important. But we also found that the
developers think that the presence of memory operations, e.g.,
memory allocation, has a negative impact on the testability of
software modules. We think that common weighted metrics
such as testability index can be complemented by the
collection and integration of this information, depending on
the type of domain that the organization is operating in.

Future work include organizing a workshop at the company
where both software developers and software testers
participate. The goal of the workshop will be to enhance the
awareness of the different views on testability, based on the
results presented in this paper, and also to reach some
agreement on testability within the organization.

Acknowledgments
This work was partly funded by The Knowledge Foundation in
Sweden under a research grant for the project “Blekinge -
Engineering Software Qualities (BESQ)”
http://www.bth.se/besq. We would like to thank Danaher

Motion Särö AB [5] for their time answering our questions, as
well as many interesting discussions and ideas.

REFERENCES
[1] B. Baudry, Y. Le Traon, and G. Sunyé, “Testability Analysis

of a UML Class Diagram,” Proc. of the 8th IEEE Symposium

on Software Metrics (METRICS’02), pp. 54-63, June 2002.

[2] Blekinge - Engineering Software Qualities (BESQ),

http://www.bth.se/besq/

[3] J. Bosch, “Design & Use of Software Architectures,” Pearson

Education Limited, ISBN 0-201-67494-7.

[4] M. Bruntink and A. can Deursen, “Predicting Class

Testability using Object-Oriented Metrics,” Proc. of the

Fourth IEEE International Workshop on Source Code

Analysis and Manipulation, pp. 136-145, September 2004.

[5] Danaher Motion Särö AB, http://www.danahermotion.se

[6] Encyclopedia of Software Engineering, 2nd ed., Wiley-

Interscience, ISBN 0-471-37737-6, December 2001.

[7] V. Gupta, K. K. Aggarwal, and Y. Singh, “A Fuzzy Approach

for Integrated Measure of Object-Oriented Software

Testability,” Journal of Computer Science vol. 1, pp. 276-

282, 2005.

[8] M. Hare and S. Sicola, “Testability and test architectures,”

Proc. of the IEEE Region 5 Conference, 1988: 'Spanning the

Peaks of Electrotechnology', pp. 161 - 166, March 1988.

[9] Institute of Electrical and Electronics Engineers, “IEEE

Standard Computer Dictionary: A Compilation of IEEE

Standard Computer Glossaries,” New York, NY, 1990.

[10] T.J. McCabe, “A Complexity Measure,” IEEE Transactions

on Software Engineering SE-2, pp. 308-320, 1976.

[11] T. Pearse and P. Oman, “Maintainability Measurements on

Industrial Source Code Maintenance Activities,” Proc. of the

11th International Conference on Software Maintenance

(ICSM’95), pp. 295-303, October 1995.

[12] C. Robson, “Real World Research,” Blackwell publishers,

ISBN 0-631-21305-8, 2002.

[13] Tinderbox, Mozilla foundation. http://www.mozilla.org/

projects/tinderbox/, last checked 20051012

[14] J.M. Voas and K.W. Miller, “Software Testability: The New

Verification,” IEEE Software, 12(3):17-28, May 1995.

38

