
Prototype-based Software Architecture Evaluation —
Component Quality Attribute Evaluation

Frans Mårtensson, Håkan Grahn, and Michael Mattsson

Department of Systems and Software Engineering
School of Engineering

Blekinge Institute of Technology
P.O. Box 520, SE-372 25 Ronneby, Sweden

{Frans.Martensson, Hakan.Grahn, Michael.Mattsson}@bth.se

ABSTRACT
The architecture of a software system is crucial since it

often affects and limits the quality attributes of the system,
e.g., performance and maintainability. In this paper we
evaluate three communication components suggested for
use in a software architecture using prototype-based evalu-
ation. We evaluate the performance quantitatively, and
also present qualitative results on portability and maintain-
ability. Components for both intra- and inter-process com-
munication are evaluated and we find that it might be
possible to use one third-party component for both intra-
and inter-process communication, thus replacing two
inhouse developed components.

KEYWORDS: Software architecture, performance
evaluation, component evaluation.

1. Introduction
The size and complexity of software systems are con-

stantly increasing. It has been identified that the quality
properties of software systems, e.g., performance and
maintenance, often are constrained by their software archi-
tecture [1]. The software architecture describes the parts
that make up a software system, their responsibilities, and
how they interact with each other. The software architec-
ture is created early in the development of a software sys-
tem and has to be kept alive throughout the system life
cycle. Part of the process of creating a software architec-
ture is the decision of possible use of existing software
components in the system.

Before committing to the use of a particular software
architecture and set of components, it is important to make
sure that it will be able to handle all the requirements that
are put upon it. Bad architecture design decisions can
result in a system with undesired characteristics, e.g., low
performance and/or low maintainability. Therefore, evalu-
ating the quality properties of a proposed software archi-
tecture is very important.

Several approaches to architecture evaluation can be
identified [2]. In this study we use an prototype-based
evaluation approach from the simulation family of evalua-

tion methods that relies on the construction of an execut-
able prototype of the architecture. Small test
implementations of candidate technologies and architec-
tures can easily be implemented and several alternatives
can be compared.

In this paper we evaluate the quality properties of three
different communication components in a distributed sys-
tem. We use three prototypes built using the same proto-
type framework to measure the performance of each
component, both intra-process as well as inter-processes
communication are tested. The communicating processes
reside both on the same computer and on two different
computers connected with a network. We also discuss
qualitative data for the portability and maintenance aspects
of the components.

The evaluation is performed in cooperation with Dana-
her Motion Särö [4] and the usage scenarios that are used
during the evaluations have been developed in cooperation
with them.

The paper is organized as follows. Section 2 presents
some background to software architecture, architecture
evaluation and automated guided vehicles. In Section 3 we
introduce the components and the quality attributes that
we will evaluate. We present the results from the evalua-
tion in Section 4. Finally, in Section 5 we conclude our
study.

2. Background
In this section, we give some background about soft-

ware architectures, how to evaluate them, different quality
attributes, and the application domain, i.e., automated
vehicle systems.

2.1. Software Architecture
Software systems are developed based on a require-

ment specification. The requirements can be categorized
into functional requirements and non-functional require-
ments, also called quality requirements. Functional
requirements are often easiest to test (the software either
has the required functionality or not) and the non-func-

tional requirements are harder to test (quality is hard to
define and quantify).

In the recent years, the domain of software architecture
[1, 2, 8, 9] has emerged as an important area of research in
software engineering. This is in response to the recogni-
tion that the architecture of a software system often con-
strains the quality attributes.

Software architecture is defined in [1] as follows:
“The software architecture of a program or computing

system is the structure or structures of the system, which
comprise software components, the externally visible
properties of those components, and the relationships
among them.”

Software architectures have theoretical and practical
limits for quality attributes that may cause the quality
requirements not to be fulfilled. If no analysis is done dur-
ing architectural design, the design may be implemented
with the intention to measure the quality attributes and
optimize the system. However, the architecture of a soft-
ware system is fundamental to its structure and cannot eas-
ily be changed without affecting virtually all components
and, consequently, considerable effort.

2.2. Architecture Evaluation Methodology
In order to make sure that a software architecture ful-

fills its quality requirements, it has to be evaluated. Four
main approaches to architecture evaluation can be identi-
fied, i.e., scenarios, simulation, mathematical modelling,
and experience-based reasoning [2]. In this paper we use a
prototype-based architecture evaluation method which is
part of the simulation-based approach and relies on the
construction of an executable prototype of the architecture
[2, 5, 10]. It also lets the developer compare all compo-
nents in a fair way, all components get the same input from
a simplified architecture model. An overview of the parts
that go into a prototype is shown in Figure 1. A strength of
this evaluation approach is that it is possible to make accu-

rate measurements on the intended target platform for the
system early on in the development cycle.

The prototype-based evaluation is performed in seven
steps plus reiteration. We will describe the steps shortly in
the following paragraphs.

Define the evaluation goal. In this first step two things
are done. First, the environment that the simulated archi-
tecture is going to interact with is defined. Second, the
abstraction level that the simulation environment is to be
implemented at is defined (high abstraction gives less
detailed data, low abstraction gives accurate data but
increases model complexity).

Implement an evaluation support framework. The
evaluation support framework’s main task is to gather data
that is relevant to fulfilling the evaluation goal. Depending
on the goal of the evaluation, the support framework has to
be designed accordingly, but the main task of the support
framework is to simplify the gathering of data. The sup-
port framework can also be used to provide common func-
tions such as base and utility classes for the architecture
models.

Integrate architectural components. The component of
the architecture that we want to evaluate has to be adapted
so that the evaluation support framework can interact with
it. The easiest way of achieving this is to create a proxy
object that translates calls between the framework and the
component.

Implement architecture model. Implement a model of
the architecture with the help of the evaluation support
framework. The model should approximate the behavior
of the completed system as far as necessary. The model
together with the evaluation support framework and the
component that is evaluated is compiled to an executable
prototype.

WorkerB

WorkerC

AbstractWorker

«interface»
Communication

NDCDispatcherComm

LogManager

WorkerA

-End15

-End16

-End1

-End2

ActiveObjectBase
«interface»

BaseConsumer

WorkerE

WorkerF

Ar
ch

ite
ct

ur
e

C
om

po
ne

nt

A

B

C D

E

Architecture model Evaluation Support Framework Architecture Component

Figure 1: The prototype consists of three main parts: the architecture model,
the evaluation support framework, and the architecture components.

Execute prototype. Execute the prototype and gather the
data for analysis in the next step. Try to make sure that the
execution environment matches the target environment as
close as possible.

Analyse logs. Analyse the gathered logs and extract infor-
mation regarding the quality attributes that are under eval-
uation. The analysis is with advantage automated as much
as possible since the amount of data easily becomes over-
whelming.

Predict quality attribute. Predict the quality attributes
that are to be evaluated based on the information from the
analysed logs.

Reiteration. This goes for all the steps in the evaluation
approach. As the different steps are completed it is easy to
see things that were overlooked during the previous step or
steps. Once all the steps has been completed and results
from the analysis are available, you should review them
and use the feedback for deciding if adjustments have to
be done to the prototype. These adjustments can be neces-
sary in both the architecture model and the evaluation sup-
port framework. It is also possible to make a test run to
validate that the analysis tools are working correctly and
that the data that is gathered really is useful for addressing
the goals of the evaluation.

2.3. AGV Systems
As an industrial case we use an Automated Guided

Vehicle system (AGV system). AGV systems are used in
industry mainly for supply and materials handling, e.g.,
moving raw materials, and finished products to and from
production machines.

Central to an AGV system is the ability to automati-
cally drive a vehicle along a predefined path, the path is
typically stored in a path database in a central server and
distributed to the vehicles in the system when they are
started. The central server is responsible for many things
in the system, it keeps track of the vehicles positions and
uses the information for routing and guiding the vehicles
from one point in the map to another. It also manages col-
lision avoidance so that vehicles do not run into each other
by accident and it detects and resolves deadlocks when
several vehicles want to pass the same part of the path at
the same time. The central server is also responsible for
the handling of orders from operators. When an order is
submitted to the system, e.g., “go to location A and load
cargo”, the server selects the closest free vehicle and
begins to guide it towards the pickup point.

In order for the central server to be able to perform its
functions, it has to know the exact location of all the vehi-
cles under its control on the premise. Therefore every
vehicle sends its location to the server several times every
second. The vehicles can use one or several methods to
keep track of its location. The three most common meth-

ods are induction wires, magnetic spots, and laser range
finders.

The simplest way is the use of induction wires that are
placed in the floor of the premises. The vehicles are then
able to follow the electric field that the wire emits and
from the modulation of the field determine where it is.

A second method of navigation is to place small mag-
netic spots at known locations along the track that the
truck is to follow, the truck can then predict where it is
based on a combination of dead reckoning and anticipation
of coming magnetic spots.

A third alternative is the use of a laser located on the
vehicle, that measures distances and angles from the vehi-
cle to a set of reflectors that has been placed at known
locations throughout the premises. The control system in
the vehicle is then able to calculate its position in a room
based on the data returned from the laser.

Regardless of the way that a vehicle acquires the infor-
mation of where it is, it must be able to communicate its
location to the central control computer. Depending on the
available infrastructure and environment in the premises
of the system, it can for example use radio modems or a
wireless LAN.

The software in the vehicle can be roughly divided into
three main components that continuously interact in order
to control the vehicle. These components require commu-
nication both within processes and between processes
located on different computers. We will perform an evalu-
ation of the communication components used in an exist-
ing AGV system and compare them to an alternative
COTS component for communication that is considered
for a new version of the AGV system.

3. Component Quality Attribute Evaluation
In this section we describe the components that we

evaluate, as well as the evaluation methods used. The goal
is to assess three quality attributes e.g. performance, porta-
bility and maintainability for each component. The proto-
types simulate the software that is controlling the vehicles
in the AGV system. The central server is not part of the
simulation.

3.1. Evaluated Communication Components
The components we evaluate are all communication

components. They all distribute events or messages
between threads within a process and/or between different
processes over a network connection. Two of the compo-
nents are developed by the company we are working with.
The third component is an open source implementation of
the CORBA standard.

NDC Dispatcher. The first component is an implementa-
tion of the dispatcher pattern which provides publisher-
subscriber functionality and adds a layer of indirection
between the sender and receivers of messages. It is used
for communication between threads within one process

and can not pass messages between processes. The dis-
patcher is implemented with active objects using one
thread for dispatching messages and managing subscrip-
tions. It is able to handle distribution of messages from
one sender to many receivers. The implementation uses
the ACE framework for portability between operating sys-
tems. The component is developed by the company and is
implemented in C++.

Network Communication Channel. Network Communi-
cation Channel (NCC) is a component is developed by the
company as well. It is designed to provide point to point
communication between processes over a network. It only
provides one to one communication and has no facilities
for managing subscriptions to events or message types.
NCC can provide communication with legacy protocols
from previous versions of the control system and can also
provide communication over serial ports. The component
is implemented in C.

TAO Real-time Event Channel. The third component,
The ACE Orb Real-time Event Channel (TAO RTEC) [7],
can be used for communication between both threads
within a process, and between processes both on the same
computer and over a network. It provides communication
from one to many through the publisher subscriber pattern.
The event channel is part of the TAO CORBA implemen-
tation and is open source. This component can be seen as a
commercial of-the-shelf (COTS) component to the sys-
tem. We use TAO Real-time Event Channel to distribute
messages in the same way that the Dispatcher does.

3.2. Software Quality Attributes to Evaluate
In our study we are interested in several quality

attributes. The first is performance because we are inter-
ested in comparing how fast messages can be delivered by
the three components. We assess the performance at the
system level and look at the performance of the communi-
cation subsystem as a whole.

The second attribute is portability, i.e., how much effort
is needed in order to move a component from one environ-
ment/platform to another. This attribute is interesting as
the system is developed and to some extent tested on com-
puters running Windows, but the target platform is based
on Linux.

The third attribute is maintainability which was
selected since the system will continue to be developed
and maintained under a long period. The selected commu-
nication component will be an integral part of the system,
and must therefore be easy to maintain.

Performance. We define performance as the time it takes
for a communication component to transfer a message
from one thread or process to another. In order to measure

this we created one prototype for each communication
component.

Four prototypes were constructed using a framework
that separated the communication components from the
model of the interaction. By doing so we were able to use
the same interaction model for the prototypes and mini-
mize the risk of the communication components being
treated unequally in their test scenarios. Most of the
framework was reused from a previous study [5] and only
minor modifications were introduced in it for this study.
Most notably we added functionality for measuring the
difference in time for computers that were connected via a
network. This information was used to both adjust the
timestamps in the logs when prototypes were running on
separate computers, and to synchronize the start time for
when the prototypes should start their models.

We created two different models, one for communica-
tion between threads in a process and one for communica-
tion between processes on separate computers that
communicated via a network. The NDC Dispatcher was
tested with the model for communication between threads
in a process and NCC was tested with the model for com-
munication over the network. The TAO RTEC was tested
with both models since it can handle both cases.

The prototypes were executed three times on a test plat-
form that was as similar to the target environment as we
could make it. The test setup consisted of two computers
running the Linux 2.4 kernel. both computers had a
233Mhz Pentium 2 processor and 128 MB RAM. Both
computers were connected to a dedicated 10Mbps network
for the tests that required network communication.

Portability. We define portability as the effort needed to
move the prototypes and communication components
from the Windows XP based platform to the Linux 2.4
based platform. This is a simple way of assessing the
attribute but it verifies that the prototypes actually works
on the different platforms and it gives us some experience
from making the port. Based on this experience we can
make a qualitative comparison of the three components.

Maintainability. We reason around this attribute using
qualitative discussions and our experiences from develop-
ment of the prototypes. We have also looked at the size of
the components using the lines of code count as an indica-
tion of complexity.

4. Evaluation Results
During the evaluation, the largest effort was devoted to

implementing the three prototypes and running the perfor-
mance benchmarks. The data from the performance
benchmarks gave us quantitative performance figures
which together with the experience from the implementa-
tions were used to assess the portability and maintainabil-
ity of the components.

4.1. Performance Results
After implementing the prototypes and performing the

test runs, the gathered logs were processed by an analysis
tool that merged the log entries, compensated for the dif-
ferences in time on the different machines and calculated
the time it took to transfer each message

4.1.1. Intra Process Communication
The intra process results in Table 1 shows that the aver-

age time it takes for the Dispatcher to deliver a message is
0,3 milliseconds. The same value for the TAO RTEC is 0,6
milliseconds. The extra time that it takes for TAO RTEC is
due to the differences in size between it and the Dis-
patcher. The TAO RTEC makes use of a CORBA ORB for
dispatching the events between the threads in the proto-
type, this makes the TAO RTEC very flexible but it
impacts its performance when both publisher and sub-
scriber are threads within the same process; the overhead
in a longer code path for each message becomes the limit-
ing factor. The Dispatcher on the other hand is consider-
ably smaller in its implementation than the TAO RTEC,
resulting in a shorter code path and faster message deliv-
ery.

During the test runs of the Dispatcher and TAO RTEC
based prototypes we saw that the time it took to deliver a
message was not the same for all messages. Figure 2 and
Figure 3 show a moving average of the measured times in
order to illustrate the difference in behavior between the
components. In both the Dispatcher and TAO RTEC proto-
types this time depends on how many subscribers that
there are to the message, and the order that the subscribers
subscribed to a particular message. We also saw that when
using TAO RTEC there is a large variation from message
to message. It is not possible to guarantee that the time it
takes to deliver a message will be constant when using
either the Dispatcher nor the TAO RTEC, but the Dis-
patchers behavior is more predictable.

4.1.2. Inter Process Communication
The inter process communication in Table 2 shows that

the TAO RTEC takes on average 2 milliseconds to deliver
a message from one computer to another in our test envi-
ronment. The NCC component takes on average 1 milli-
second. The extra time needed for TAO RTEC to deliver a
message is also a result of the longer code path involved
due to the use of CORBA. The gain of having this compo-

nent is added flexibility in how messages can be distrib-
uted between subscribers on different computers. In
comparison, the NCC component is only able to pass mes-
sages from one point to another, making it less complex in
its implementation.

In Table 3 we see the amount of data that is actually
transmitted (and in how many TCP/IP packages) over the
network by prototypes using TAO RTEC and NCC respec-
tively. In the architecture model, both prototypes perform
the same work and sends the same number of messages
over the network. In the table we see that both components
send about the same number of TCP/IP packages (TAO
RTEC sends 37 more than NCC), the difference is located
to the initialization of the prototypes were a number of
packages are sent during ORB initialization, name resolu-
tion and subscriptions to the event channel etc. When we
look at the amount of data sent in the packages we see that
TAO Real-time Event Channel sends about 55% more data
than NCC does. This indicates that NCC has less overhead
per message than TAO Real-time Event Channel does.

Table 1: Communication time between components when
thay are on the same computer.

Dispatcher TAO RTEC NCC

Intra process 0,3 ms 0,6 ms

Inter process 2 ms 0,8 ms

Table 2: Communication time between components when
thay are on different computers

TAO RTEC NCC

Inter process 2 ms 1 ms

Deliverytime per message

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400 1600 1800 2000

message number

m
s

WorkerB WorkerA WorkerD WorkerC

Figure 2: Dispatcher delivery time.

Deliverytime per message

450

500

550

600

650

700

750

800

850

0 200 400 600 800 1000 1200 1400 1600 1800 2000

message number

m
s

WorkerD WorkerA WorkerB WorkerC

Figure 3: TAO RTEC delivery time.

Both components do however add considerably to the
amount of data that is generated by the model which gen-
erated 6 kb of data in 300 messages.

4.2. Portability Results
Based on our experiences from building the prototypes

we found that moving the prototypes from the Windows
based platform to the Linux based platform was generally
not a problem and did not take very long time (less than a
day per prototype), most of the time was spent on writing
new make files and not on changing the code for the proto-
types.

Both the Dispatcher and TAO Real-time Event Channel
are based on the ADAPTIVE Communications Environ-
ment (ACE) [7] that provides a programming API that has
been designed to be ported to many platforms. Once ACE
was built on the Linux platform it was easy to build the
prototypes that used it.

NCC was originally written for the Win32 API and uses
a number of portability libraries built to emulate the neces-
sary Win32 APIs on platforms other than windows. Build-
ing the prototype using NCC was not more complicated
than those using the Dispatcher or TAO RTEC.

4.3. Maintainability Results
The Dispatcher is quite small (700 loc) and therefor

quite easy to get an overview of. This component is proba-
bly the easiest for a maintainer to understand.

TAO is in comparison very large (>400 kloc). Although
the parts that are used for the real-time communications
channel are smaller it is still difficult to get an overview of
the source code. The question of maintainability is rele-
vant only if one version of TAO is selected for continued
use. If newer versions of TAO are used as they are
released then the maintenance is continuously done by the
developer community around TAO. There is however the
possibility that APIs in TAO are changed during develop-
ment, breaking applications. But since the application
developers are with the company, this problem should be
easier to deal with than defects in TAO itself.

The NCC is larger than the dispatcher but not as large
as TAO. Unfortunately we have not been able to review
the code and structure of NCC, which makes it difficult for
us to make a statement about the maintainability of this
component.

5. Conclusions and Future Work
In this paper we have used a prototype-based evalua-

tion methods for assessing three different communication
components. We have shown that it is possible to compare
the three different communication components in a fair
way using a common framework for building the proto-
types and analyzing the resulting data. The components
were one COTS component, The ACE Orb Real-Time
Event Channel (TAO RTEC), and two inhouse developed
components, Dispatcher and NCC.

We evaluate three quality attributes: performance, port-
ability, and maintainability. The performance is evaluated
quantitatively, while portability and maintainability are
evaluated qualitatively.

The performance measurements show that TAO RTEC
is slower than the Dispatcher in communication between
threads within a process, and also that it is slower than
NCC in communication between processes.

All three components fulfill the portability requirement
in this study. We had no problems moving the prototypes
from a Windows based- to a Linux based platform.

The maintainability of the components weight in the
favour of the Dispatcher and NCC, both components have
been developed within the company and the knowledge of
how they are constructed is documented. TAO RTEC is
the largest of the three components and the knowledge of
how it is constructed is not within the company. Therefore
we think that TAO RTEC is less maintainable for the com-
pany. On the other hand, the company can take advantage
of future development of TAO RTEC with no effort as
long as the APIs are the same.

Future work is to validate the accuracy of the proto-
types, this will be possible if the system is constructed
using the components we have evaluated. We would also
like to evaluate the usefulness of the prototypes from the
developers point of view, if the prototypes are a good
means for spreading knowledge between developers. We
will use questionnaires to assess the knowledge levels of
the developers before and after they are presented with the
prototypes. The goal will be to try to assess if prototypes
are a good method for spreading knowledge of a new tech-
nologies and methods within a company. The reason is
that if a prototype has been built in order to evaluate a new
technology then the effort has already been spent, so if
there anything to gain from sharing the prototype with oth-
ers then that will be a good thing.

Acknowledgments
This work was partly funded by The Knowledge Foun-

dation in Sweden under a research grant for the project
“Blekinge - Engineering Software Qualities (BESQ)”
http://www.bth.se/besq.

We would like to thank Danaher Motion Särö AB [4]
for providing us with a case for our case study and many
interesting discussions and ideas.

Table 3: Network traffic generated by TAO RTEC and
NCC.

TAO RTEC NCC

TCP/IP packages 800 packages 763 packages

Data over network 137 kb 88 kb

References
[1] L. Bass, P. Clements, and R. Kazman, “Software

Architecture in Practice,” Addison-Wesley, 1998.
[2] J. Bosch: “Design & Use of Software Architectures,”

Pearson Education Limited, ISBN 0-201-67494-7.
[3] L. Dobrica, E. Niemela, “A Survey On Architecture

Analysis Methods,” IEEE Transactions on Software
Engineering, 28(7):638 - 653, July 2002.

[4] Danaher Motion Särö AB, http://www.danahermo-
tion.se

[5] F. Mårtensson, H. Grahn, and M. Mattsson, “An
Approach for Performance Evaluation of Software
Architectures using Prototyping,” Proc. IASTED Int’l
Conference on Software Engineering and Applica-
tions (SEA 2003), pp. 605-612, Nov. 2003.

[6] Object Management Group, “CORBA™/IIOP™
Specification, 3.0,” Mar. 2004, available at
www.omg.org.

[7] D. Schmidt et al, “The ACE ORB”, available at http://
www.cs.wustl.edu/~schmidt/TAO.html last checked
Sept. 2004.

[8] D.E. Perry and A.L.Wolf, “Foundations for the Study
of Software Architecture,” Software Engineering
Notes, 17(4):40-52, October 1992.

[9] M. Shaw and D. Garlan, “Software Architecture -
Perspectives on an Emerging Discipline,” Prentice
Hall, ISBN 0-13-182957-2.

[10] C. Smith and L. Williams, “Performance Solutions -
A Practical Guide to Creating Responsive, Scalable
Software,” Addison-Wesley, 2001.

	Prototype-based Software Architecture Evaluation - Component Quality Attribute Evaluation
	Frans Mårtensson, Håkan Grahn, and Michael Mattsson
	Department of Systems and Software Engineering
	School of Engineering
	Blekinge Institute of Technology
	P.O. Box 520, SE-372 25 Ronneby, Sweden
	{Frans.Martensson, Hakan.Grahn, Michael.Mattsson}@bth.se
	ABSTRACT
	KEYWORDS: Software architecture, performance evaluation, component evaluation.
	1. Introduction
	2. Background
	2.1. Software Architecture
	2.2. Architecture Evaluation Methodology
	Figure 1: The prototype consists of three main parts: the architecture model, the evaluation support framework, and the architecture components.
	Define the evaluation goal
	Implement an evaluation support framework
	Integrate architectural components
	Implement architecture model
	Execute prototype
	Analyse logs
	Predict quality attribute
	Reiteration

	2.3. AGV Systems

	3. Component Quality Attribute Evaluation
	3.1. Evaluated Communication Components
	NDC Dispatcher
	Network Communication Channel
	TAO Real-time Event Channel

	3.2. Software Quality Attributes to Evaluate
	Performance.
	Portability
	Maintainability

	4. Evaluation Results
	4.1. Performance Results
	4.1.1. Intra Process Communication
	Table 1: Communication time between components when thay are on the same computer.
	Figure 2: Dispatcher delivery time.
	Figure 3: TAO RTEC delivery time.

	4.1.2. Inter Process Communication
	Table 2: Communication time between components when thay are on different computers
	Table 3: Network traffic generated by TAO RTEC and NCC.

	4.2. Portability Results
	4.3. Maintainability Results

	5. Conclusions and Future Work
	Acknowledgments
	References
	[1] L. Bass, P. Clements, and R. Kazman, “Software Architecture in Practice,” Addison-Wesley, 1998.
	[2] J. Bosch: “Design & Use of Software Architectures,” Pearson Education Limited, ISBN 0-201-67494-7.
	[3] L. Dobrica, E. Niemela, “A Survey On Architecture Analysis Methods,” IEEE Transactions on Software Engineering, 28(7):638 - 653, July 2002.
	[4] Danaher Motion Särö AB, http://www.danahermo tion.se
	[5] F. Mårtensson, H. Grahn, and M. Mattsson, “An Approach for Performance Evaluation of Software Architectures using Prototyping,” Proc. IASTED Int’l Conference on Software Engineering and Applica tions (SEA 2003), pp. 605-612, Nov. 2003.
	[6] Object Management Group, “CORBA™/IIOP™ Specification, 3.0,” Mar. 2004, available at www.omg.org.
	[7] D. Schmidt et al, “The ACE ORB”, available at http:// www.cs.wustl.edu/~schmidt/TAO.html last checked Sept. 2004.
	[8] D.E. Perry and A.L.Wolf, “Foundations for the Study of Software Architecture,” Software Engineering Notes, 17(4):40-52, October 1992.
	[9] M. Shaw and D. Garlan, “Software Architecture - Perspectives on an Emerging Discipline,” Prentice Hall, ISBN 0-13-182957-2.
	[10] C. Smith and L. Williams, “Performance Solutions - A Practical Guide to Creating Responsive, Scalable Software,” Addison-Wesley, 2001.

