
Experiences from Implementing Multiprocessor Support for an Industrial
Operating System Kernel

Simon Kågström, Håkan Grahn, and Lars Lundberg

Department of Systems and Software Engineering, School of Engineering
Blekinge Institute of Technology, Ronneby, Sweden

{ska, hgr, llu}@bth.se

Abstract

The ongoing transition from uniprocessor to multiproces-
sor computers requires operating system support. There
is a large body of specialized operating systems which re-
quire porting in order to work on multiprocessors. In this
paper we describe the design and implementation of a mul-
tiprocessor port of a cluster operating system kernel. The
multiprocessor support is implemented with a giant locking
scheme, which allowed us to get an initial working version
with only minor changes to the original code. We also dis-
cuss performance and implementation experiences.

1. Introduction

A current trend in the computer industry is the transition
from uniprocessors to various kinds of multiprocessors.
Apart from SMPs, many manufacturers are now present-
ing chip multiprocessors or simultaneous multithreaded
CPUs [5] which allow more efficient use of chip area. This
trend requires support from operating systems.

We are working on a project together with a producer of
large industrial systems in providing multiprocessor sup-
port for an operating system kernel. The operating sys-
tem is proprietary fault-tolerant industrial operating system
primarily used in telecommunications with (soft) real-time
response time which runs on clusters of uniprocessor In-
tel IA-32 computers. The system can use either the Linux
kernel or an in-house kernel, which performs better than
Linux. In this paper, we describe the design and implemen-
tation of the initial multiprocessor support for the in-house
kernel. More technical details about the implementation
can be found in [1]. Some structure names and terms were
changed to keep the anonymity of our industrial partner.

The rest of the paper is structured as follows. Section 2.1
describes the operating system. Section 3 discusses the de-
sign of the multiprocessor support and Section 4 describes
a performance evaluation. We thereafter discuss some ex-
periences we made in Section 5 and conclude in Section 6.

2. The Operating System

2.1. General OS structure

Figure 1 shows the architecture of the operating system.
The system exports a C++ or Java API to application pro-
grammers for the clusterware. The clusterware runs on top
of one of the two kernels and provides access to a repli-
cated RAM-resident database, cluster management, and a
CORBA object broker. The cluster consists of process-
ing nodes and gateway nodes. Processing nodes handle
the workload and usually run the in-house kernel, while
gateway nodes run Linux and act as front-ends to the clus-
ter. The gateway nodes also provide logging support for the
cluster nodes and do regular database backups to disk.

Processor
Node

In-house Kernel Linux kernel

Clusterware

Signalling
Node
management

C++ / Java API

Processor
Node

Gateway
node

Gateway
node

External
network

Cluster-internal network

Figure 1. The operating system architecture.

The operating system employs an asynchronous event-
driven programming model, with short-lived processes ac-
tivated by incoming workload. The system supports two
types of processes, static and dynamic. Static processes
are restarted on failure and can either be unique (one for
the entire cluster) or replicated (one per node in the clus-
ter, for lower communication costs). Dynamic processes
are created when referenced by another process and usu-
ally run short jobs, e.g., checking and updating an entry in
the database. Dynamic processes are often tied to database
objects on the local node for fast access to the database.

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

2.2. The Process and Memory Model

The in-house kernel base user programs on three ba-
sic entities: threads, processes, and containers. There is
kernel-level support for threading, and threads define the
basic unit of execution. The in-house kernel separates the
concepts of process and protection domains. Processes are
resource holders, while containers define the protection do-
main (an address space). To support the asynchronous pro-
gramming model, the kernel supplies very fast creation and
termination of processes. There are several mechanisms
behind the fast process handling. Each code package (ob-
ject code) is located at a unique virtual address range in
the address space and all code packages also reside perma-
nently in memory. This allows fast setup of new containers
since no new memory mappings are needed for object code
and also means that there will never be any page faults on
application code. Further, the in-house kernel does not use
disk swapping, which simplifies page fault handling and
reduces page fault latency.

The paging system uses a two-level paging structure on
the IA-32 where 4KB pages are mapped into 4MB page
tables which in turn are mapped into the complete 4GB
address space in a page directory. A global page direc-
tory containing application code, kernel code, and kernel
data is created during kernel startup, and this page directory
can thereafter serve as basis for subsequent page directories
since containers share most of the address space. Contain-
ers start with only two memory pages allocated, one con-
taining the page table and the other the first 4KB of the
process stack. Because of this, the container can use the
global page directory, only replacing the entry mapping the
process stack, global variables, and part of the heap.

3. Design of the Multiprocessor Support

For the first multiprocessor implementation, we employ
a simple locking scheme where the entire kernel is pro-
tected by a single, “giant” lock (see Chapter 10 in [4]).
The giant lock is acquired when the kernel is entered and
released again on kernel exit. The advantage of the giant
locking mechanism is small changes to the code since most
of the uniprocessor semantics of the kernel can be kept. For
the initial version, we deemed this important for correct-
ness reasons and to get a working version early. However,
the giant lock has performance shortcomings especially for
kernel-bound workloads.

3.1. CPU-local Data

Some structures in the kernel need to be accessed pri-
vately by each CPU. For example, the currently running
thread and the kernel stack must be local to each CPU. To

avoid having to convert every private structure into an array,
we adopted an approach where each CPU always runs in a
private address space, accessing CPU-local data in private
memory. To achieve this, we reserve a 4KB virtual address
range for CPU-local data and map this page to different
physical pages for each CPU. We modified structure dec-
larations to place the data in a special ELF-section, which
then is mapped and page-aligned by the boot loader.

The CPU-local page approach presents a few problems,
however. First, some CPU-local structures are too large
to fit in one page of memory. Second, handling of multi-
threaded processes must be modified with our approach as
described in the next section. The kernel stack, which is
128KB per CPU, is one structure which is too large to store
in the CPU-local page. The address of the kernel stack
is only needed at a few places, however, so we added a
level of indirection to set the stack pointer register through
a CPU-local pointer to the kernel stack top.

3.2. Multithreaded Processes

The CPU-local page presents a problem for multi-
threaded containers. Using a single address space for all
CPUs on a multiprocessor would cause the CPU-local vir-
tual page to map to the same physical page for all CPUs,
i.e., the CPU-local variables would be the same for all
CPUs. To solve this problem, a multithreaded container
needs a separate page directory for every CPU executing
threads in the container. Since multithreaded containers
are fairly rare, we chose a lazy method for handling mul-
tithreaded containers. Our method allows singlethreaded
containers to run with the same memory requirements as
before, while multithreaded containers require one extra
memory page per CPU which executes in the container.
The method requires only minimal scheduler changes.

Figure 2 shows the handling of multithreaded contain-
ers on multiprocessors in the in-house kernel. The fig-
ure shows the container memory data structure, which (as
before) has a container page directory pointer and an ini-
tial page directory entry, but is extended with an array of
per-CPU page directory pointers. When the process starts
up it will have only one thread as in Figure 2a. The sin-
glethreaded process starts without a private page directory
and instead uses the global page directory. The global page
directory is modified with a page table for the process stack,
global variables and part of the heap. This state will be kept
as long as the process is singlethreaded and uses moderate
amounts of heap or stack space.

When the process becomes multithreaded the first time,
as shown in Figure 2b, a new container page directory is al-
located and copied from the global page directory, with the
current CPU set as owner. Apart from setting the owner,
this step works exactly as in the uniprocessor version and

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

CPU-local page
directory entry

Container memory
data structure

Process stack page
table

Container page

Per CPU page

Initial page
directory entry

Legend
Page table /
page directory

CPU-local
Page table

(c) multiple CPUs, multithreaded(b) single CPU, multithreaded(a) startup, singlethreaded

Global page
directory

directory pointer

directory pointers

Container-local
page directory

CPU-local
page directory

Owner

Figure 2. Handling of container address spaces in the in-house kernel for multiprocessor computers

since thread stacks reside outside the 4MB process stack
area, multithreaded processes will soon need a private ad-
dress space even on uniprocessor hardware. As long as
only one CPU executes in the process, only one page direc-
tory will be used. However, when another CPU schedules
a thread in the process, a single page directory is no longer
safe. The container page directory must be copied to a new
CPU-local page directory, requiring one page directory per
CPU active in the container. This is shown in Figure 2c.

One complication with this scheme is page fault han-
dling. If two or more CPUs run in a container, a page fault
will be generated for the CPU-local page directory. We
therefore modified the page fault handler to always update
the container page directory beside the CPU-local page di-
rectory. However, there can still be inconsistencies if the
fault is caused by the owner of the container page direc-
tory. A later access on the same page from another CPU
will then cause a spurious page fault. We handle this sit-
uation lazily in the page fault handler by checking if the
page was already mapped in the container page directory,
in which case we just copy the entry to the faulting page
directory. This situation is fairly uncommon since it only
affects page directory faults, i.e., unmapped 4MB areas.

4. Evaluation

We have performed an initial evaluation of our multi-
processor implementation where we evaluate contention on
our locking scheme as well as the performance of the mul-
tiprocessor port. We ran all performance measurements
on a two-way 300MHz Pentium II SMP. For the perfor-
mance evaluation, we constructed a benchmark application
with two processes executing a loop. The loop performs
system calls at configurable intervals so that we can vary

the proportion of user to kernel execution. Apart from the
benchmark processes, around 100 system threads handling
database replication, logging etc., were also running in the
system. We measure the time from the start of the bench-
mark application until it finishes.

Consistent speedups on the multiprocessor is seen only
when our benchmark application executes almost com-
pletely in user-mode, so the presented results refer to the
case when the benchmark processes run only in user-mode.
Executing the benchmark with the multiprocessor kernel
on a uniprocessor gives a modest slowdown of around 2%,
which suggests that our implementation can be used even
on uniprocessor hardware. Running the benchmark on the
multiprocessor gives a 20% speedup over the uniproces-
sor kernel, which was less than we expected. Since the
two benchmark processes run completely in user-mode and
does not interact with each other, we expected a speedup
close to 2.0.

Table 1. Kernel/user time for UP and SMP.
User-mode Kernel Spinning

UP 64% 36% < 0.1%
SMP 55%-59% 20%-22% 20-23%

Table 1 shows the lock contention during the benchmark
run, both for the uniprocessor (when acquiring the lock al-
ways succeeds directly) and for the multiprocessor. From
the table, we can see that the multiprocessor spends 20%-
23% of the time spinning for the giant lock. Since the in-
kernel time is serialized by the giant lock, the theoretically
maximum speedup we can achieve on a dual processor sys-
tem is 36+64

36+ 64
2
≈ 1.47 according to Amdahl’s law. There are

several reasons why the speedup is only 1.2 for our bench-
mark. First, the in-kernel time is high due to running sys-

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

tem processes. Second, some heavily accessed shared ker-
nel structures, e.g., the ready queue, cause cache lines to
move between processors, and third, as a consequence of
the high in-kernel time, time is wasted spinning on the lock.

5. Implementation Experiences

The implementation of multiprocessor support for the
in-house kernel was more time consuming then we had ex-
pected. The project has been ongoing part-time for two
years, during which a single developer has performed the
multiprocessor implementation whereas we initially ex-
pected a first version within approximately six months. The
reasons for the delay are manifold.

First, the development of a multiprocessor kernel is gen-
erally harder then a uniprocessor kernel because of inher-
ent mutual exclusion issues. We also performed most of the
implementation off-site, which made it harder to get assis-
tance from the core developers. A highly specialized and
complex build and setup process led us to spend significant
amount of time on configuration issues and build problems.
Further, the code base consists of over 2.5 million lines of
code, of which around 160,000 were relevant for our pur-
poses. The complexity and volume of the code meant that
we had to spend a lot of time to understand the code.

We did consider a number of other approaches apart
from the giant lock for the initial implementation. Master-
slave systems (refer to Chapter 9 in [4]) also allow only
one processor in the kernel at a time. In master-slave sys-
tems, one “master” processor is dedicated to handling ker-
nel operations while the other processors (“slaves”) only
run user-level applications. Similarly, the application ker-
nel approach [2] executes all kernel operations on one pro-
cessor, but allows the uniprocessor kernel to be kept as-is
while multiprocessor support is added as a loadable ker-
nel module. Neither of these approaches provide any ad-
ditional performance benefit over giant locking, and in-
crementally improving the giant locking with finer-grained
strategies is easier.

In the end, around 1% of the relevant code base was
modified. We wrote around 2,300 lines of code in new files
and modified 1,600 existing lines for the implementation.
The new code implement processor startup and support for
the locking scheme whereas the modified lines implement
CPU-local data, acquiring and releasing the giant lock, etc.

Future work related to the multiprocessor port will cen-
ter around the following. Since the speedup with the giant
lock is low, we will investigate a more fine-grained lock-
ing scheme, starting with coarse subsystem locks. First,
we are planning to use a separate lock for low-level inter-
rupt handling to get lower interrupt latency. Another area
of possible improvements is the scheduler were we will in-
vestigate dividing the common ready queue into one queue

per processor as e.g., recent versions of Linux do [3]. Fi-
nally, we would like to further explore CPU-affinity opti-
mizations for short-lived processes. Currently, processes
will not be moved from the processor they are started on,
but for short-lived processes it could also be beneficial to
restart them on the last processor they executed on.

6. Conclusions

In this paper, we have described the design and imple-
mentation of a multiprocessor port of a cluster operating
system kernel. Since our focus was to get an initial ver-
sion with low engineering effort, we chose a simple “giant”
locking scheme where a single lock protects the entire ker-
nel. Our model where CPU-local variables are placed in a
virtual address range mapped privately on different CPUs
limited the source code changes and we also showed how
this method can be applied to multithreaded processes with
a very small additional memory penalty. Our experience
illustrates that refactoring of a large and complex unipro-
cessor kernel for multiprocessor operation is a substantial
undertaking, but also that it is possible to implement multi-
processor support without intrusive changes to the original
kernel, changing around 1% of the core parts of the kernel.

Acknowledgments

The authors would like to thank the anonymous re-
viewers and the PAARTS-group for their valuable com-
ments. This work was partly funded by The Knowl-
edge Foundation in Sweden under a research grant for
the project “Blekinge - Engineering Software Qualities
(BESQ)” (http://www.bth.se/besq).

References

[1] S. Kågström, H. Grahn, and L. Lundberg. The Design and
Implementation of Multiprocessor Support for an Industrial
Operating System Kernel. Technical Report 2005:3, ISSN:
1103-1581, Blekinge Institute of Technology.

[2] S. Kågström, L. Lundberg, and H. Grahn. A novel method for
adding multiprocessor support to a large and complex unipro-
cessor kernel. In Proceedings of the 18th International Par-
allel and Distributed Processing Symposium (IPDPS 2004),
Santa Fe, NM, USA, April 2004.

[3] R. Love. Linux Kernel Development. Sams, Indianapolis,
Indiana, 1st edition, 2003.

[4] C. Schimmel. UNIX Systems for Modern Architectures.
Addison-Wesley, Boston, first edition, 1994.

[5] L. Spracklen and S. G. Abraham. Chip multithreading: Op-
portunities and challenges. In Proceedings of the 11th In-
ternational Conference on High-Performance Computer Ar-
chitecture (HPCA-11), pages 248–252, San Francisco, CA,
USA, February 2005.

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

