
A Comparative Evaluation of the Execution
Behavior of JavaScript Benchmarks and

Real-World Web Applications

J.K. Martinsen and H. Grahn
School of Computing, Blekinge Institute of Technology, Karlskrona, Sweden

jkm@bth.se, hgr@bth.se

Abstract: In this study, we argue that the execution behavior of the current JavaScript bench-
marks differs from the behavior of real-world Web Applications. We have compared the first 100
Web Applications in the Alexa top-sites list and 5 Facebook use cases, against three established
JavaScript benchmark suites, i.e., Dromaeo, SunSpider, and V8. Our measurements indicate that
the JavaScript eval function is important in most Web Applications, the scripts associated with
Web Applications may change between page visits to the same page, anonymous functions are
used more extensively for in Web Applications, and the workload of Web Applications often differ
significantly from the workload found in many of the benchmarks.

Keywords: Web Applications JavaScript Workload Characterization

1. Introduction

JavaScript is a dynamically typed, object-based script-
ing language with run-time evaluation often used to
add interactivity to Web Applications. The execution
of a JavaScript program is done in a JavaScript en-
gine, i.e., an interpreter/virtual machine that parses and
executes the JavaScript program. Several techniques
have been proposed to increase the performance of the
JavaScript engine along with a number of benchmark
suites [1, 6, 7] to evaluate their performance. Some of
these benchmarks have been ported from domains other
than Web Applications, and we suspect that some of
these tasks are rarely performed in Web Applications.
Therefore, it might also exist functionalities and execu-
tion behaviors in Web Applications that might not be
present in the benchmark suites.

We have used a profiler to evaluate and compare
the execution behavior of real-world Web Applications
against the established JavaScript benchmarks. We
have profiled the performance of the first 100 entries in
the Alexa top-sites list and for a set of selected use cases
for some Web Applications. We have then compared
these measurements with three established JavaScript
benchmark suites [1, 6, 7]. Related work indicate that
significant differences exist [2, 3, 4].

2. Experimental Methodology

We want to compare the execution behavior of a set
of real-world Web Applications against a set of bench-
marks. All our experiments are done on a Microsoft
Windows XP platform, and the experiments are exe-
cuted through Firefox 3.6. To extract information from
the execution, we have used the FireBug 1.5 profiler [5].

Web Applications and the benchmarks differ since ex-
ecuting benchmarks require no user-interaction. The

user interaction pattern might differ from time to time,
both when performed automatically and manually. To
solve this we use the AutoIt automation scripting lan-
guage to repeat a certain task multiple times. We exe-
cute each application 10 times.

The second critical issue in this type of study is which
benchmarks and Web Applications that can be consid-
ered as representative. We have identified three main
established benchmark suites that are frequently used
for evaluating the performance of JavaScript engines,
i.e., Dromaeo [1] from Mozilla, V8 [6] from Google, and
SunSpider [7] from WebKit.

We have selected the 100 most visited sites from the
Alexa top-list as representatives of popular Web Appli-
cations, and profiled the start page of each. In addi-
tion to evaluating the JavaScript behavior of the first
page, we have profiled the behavior of a set of prede-
fined use cases for Facebook, e.g., login, searching for
friends, sending messages to friends, and posted news.

3. Experimental Results

3.1 Usage of the eval function

We have measured the number of the eval function
calls relative to the total number of function calls. Our
results show that eval is used only in 4 out of 35 bench-
mark applications. However, in these four applications
are, on average, 31% of the total number of function
calls invocations of the eval function. For the Alexa
top sites list, we find that eval is used more frequently.
44 out of the top 100 sites use the eval function. In
average, 11% of all function calls are eval calls. Fur-
ther, we have found that for some Web Applications,
e.g., sina.com.cn, up to 55% of all function calls are
eval calls.



3.2 Changing JavaScript functions and
code between reloads

By reloading a Web Application we have discovered
that the executed code might change between succes-
sive reloads. As JavaScript has a function such as eval,
scripts can dynamically generate JavaScript code. We
have found that several function names are unique for
a page reload, suggesting that changes occur between
reloads. We have observed this in 6 of the benchmarks.
However, if we do not count the eval function calls, the
function names remain static in all the benchmarks.

For the Alexa top 100 web-sites there were func-
tions that changed between reloads. For some ap-
plications there were significant differences, e.g., for
deviantart.com 74% of all function calls had unique
function names. For 4 Web Applications, the relative
number of unique function names were more than 0.5,
and 23 out of 100 Web Applications had unique func-
tion names after 10 reloads. Function names such as
adOnload 970558 (and similar) suggest that the func-
tion name is indeed unique and that many functions
probably are created dynamically.

3.3 Anonymous function calls

An anonymous function call is a call to a function that
does not have a name. We have discovered that some of
the anonymous function calls in the benchmarks are in-
strumentation codes, e.g., to start a certain benchmark.
In our results, we have removed such instrumentation
calls.

Our results show that 18 of the 35 benchmark ap-
plications use anonymous function calls, and 74 out of
100 real-world Web Applications use anonymous func-
tion calls. If we calculate the average relative number of
anonymous function calls, we find that the benchmarks
use anonymous function calls more frequently. On av-
erage are 16% of all function calls in the benchmarks
anonymous. For the real-world Web Applications, our
results show that only 4.7% of the function calls are
anonymous.

3.4 Distribution of function calls

Our results indicate that both the benchmarks and the
Web Applications have a large number of short-running
functions. However, most of the benchmarks have a few
functions that account for most of the execution time.,
i.e., a “hot-spot” function. For the Web Applications,
the workload seems to be more evenly distributed. In
our selected Web Applications, no JavaScript function
contributes to more than at most 39% of the total exe-
cution time.

3.5 Facebook use cases

We have created 5 use cases for Facebook and execute
each of these use cases 10 times. For the Facebook
use cases, we have measured the difference between the

largest number of unique functions against the lowest
number of unique functions for each of the 5 cases. We
found a different number of unique function calls for 3
out 5 use cases, and for 2 of the use cases there were no
unique functions after 10 reloads. The use case where
we added multiple strings to a news feed, had the high-
est number of unique function calls.

Our results on the Facebook use cases confirm that
the workload is more distributed among the functions
than in the benchmarks in general, with no clear “hot-
spots” found. This indicates that the execution behav-
ior of the use cases, and also the Web Applications, is
different from execution behavior of the benchmarks.
While benchmark applications sought to solve a prob-
lem with a clear start and end, Web Applications often
would perform multiple tasks rather than addressing
one single task or problem.

4. Conclusions

In this study we have done a comparative evaluation of
the execution behavior of established JavaScript bench-
marks, i.e., Dromaeo [1], V8 [6], and SunSpider [7], and
Web Applications from the 100 most used web sites on
the Alexa top-list.

Our results indicate that the execution behavior of
the Web Applications from the Alexa top sites differs
from the benchmarks on several points. Important dif-
ferences are the use of the eval function, code that
changes between reloads of the same page, and the lack
of functions in the Alexa top sites list that could clearly
be categorized as performance “hot-spots”.

References

[1] Dromaeo. Dromaeo: JavaScript performance test-
ing, 2010. http://dromaeo.com/.

[2] A. Nazir et al. Unveiling Facebook: a measure-
ment study of social network based applications. In
IMC’08, pages 43–56, 2008.

[3] G. Richards et al. An analysis of the dynamic be-
havior of javascript programs. In Programming Lan-
guage Design and Implementation (PLDI), pages 1–
12, 2010.

[4] P. Ratanaworabhan et al. JSMeter: Comparing the
behavior of javascript benchmarks with realweb ap-
plications. In Webapps’10, pages 27–38, 2010.

[5] FireBug. Firebug, javascript profiler, 2010.
http://getfirebug.com.

[6] Google. V8 benchmark suite - version 5,
2010. http://v8.googlecode.com/svn/data/
benchmarks/v5/run.html.

[7] WebKit. SunSpider JavaScript Benchmark, 2010.
http://www2.webkit.org/perf/sunspider-0.9/
sunspider.html.


