
An approach for performance measurements in distributed CORBA applications
HÅKAN GRAHN

Dept. of Software Engineering and Computer Science
Blekinge Institute of Technology

P.O. Box 520, SE-372 25 Ronneby, Sweden

MARCUS HOLGERSSON

Velocity AB
Campus Gräsvik 26

SE-371 75 Karlskrona, Sweden

ABSTRACT

One way to construct distributed systems is to use a
communication model with distributed objects such as
CORBA (Common Object Request Broker Architecture).
Distributed objects give many advantages, but suffer from
some performance problems. In order to handle the
performance problem it is important to find where in the
event chain the delays occur. Therefore, a tool for
performance measurement and for identifying the
performance bottlenecks in a distributed system should be
a great help.

In this paper we present an approach for performance
measurements in distributed CORBA applications. Our
approach is based on Interceptors, which is the technique
we use for insertion of measurement points. This approach
gives sufficient information for identifying many
performance problems. In order to verify our approach, a
prototype tool for profiling and performance
measurements is constructed. A presentation program is
built for making the captured information more readable.
The tool and presentation programs show the execution
flow of the system in different call graphs and also
produces some call statistics at different levels. Finally,
the tool is tested and verified in a distributed environment.

1. INTRODUCTION

Distributed systems are becoming more and more
important in everyday life as well as in industrial and
scientific domains. One way to construct large distributed
systems is to use a communication model with distributed
objects. Distributed objects have many advantages, but
suffer from some performance problems. A distributed
object system can be constructed using CORBA
(Common Object Request Broker Architecture [10]). One
large benefit with CORBA is that it works in a
heterogeneous environment with different programming
languages and different operating systems. By using
CORBA, an application handles distributed objects just as
if they where local objects.

Performance problems can occur in several places in the
event chain in a distributed system. When developing a
distributed system it is important to know its limitations
and bottlenecks in order to prevent performance problems.
If it is possible to make performance tests early in the

application development, potential performance problem
can be prevented. In order to handle the performance
problem it is important to identify where in the event
chain the delays occur. Therefore a tool for performance
measurements and for identifying performance
bottlenecks in a distributed system should be a great help.

In order to build such a tool, we need to identify what
performance criteria that are important, how much
information shall the tool gather, and where the important
measurement points are. Further, the tool much have low
overhead in order to disturb the application execution as
little as possible. Finally, we would like the tool to be so
general that it can be used on different applications
without changing the application.

In this paper, we collect and analyze information
concerning performance in distributed systems. This
information is used for investigating the possibilities to
measure performance and finding out what performance
aspects that are important in a distributed system. We also
investigate whether it is possible to automatically find the
performance bottlenecks in a distributed system. The
investigation is used as a basis for a prototype tool for
performance profiling and measurement. The approach
taken is based on interceptors as a means to transparently
introduce measurement points in a distributed system.

In order to evaluate our approach, we have implemented a
prototype of the performance measurement tool that uses
interceptors for instrumentation of a distributed object
system in the purpose of finding the bottlenecks of the
system. Further, we have evaluated the prototype tool
using a number of distributed test applications. The test
applications and the distributed test system have been
implemented using JacORB as CORBA implementation.
The results from the experiments are analyzed in order to
give design hints for distributed system with distributed
objects.

The rest of the paper is organized as follows. In sections 2
and 3, we give some background information. In Section
4, we discuss performance aspects of distributed systems.
Then, section 5 presents the design of the prototype tool.
Sections 5 and 6 presents the experimental framework and
the experimental results, respectively. Finally, the results
and related work are discussed in section 6, and the paper
is concluded in section 7.

2. DISTRIBUTED SYSTEMS

Distributed systems are becoming more and more
important in everyday life as well as in the industrial and
scientific domains. The Internet and its capabilities enable
people to communicate and cooperate all over the world.
Distributed computing can be seen as an effort to connect
multiple machines, that will cooperate with each other in
such a way that information and other resources can be
shared by all of these connected computers. The reason
for building the application distributed can be one or more
of the following reasons:

• The data used by the application are distributed.
• The computation is distributed.
• The users of the application are distributed.

There are a lot of techniques to choose from for
constructing distributed system. The current trends in
distributed computing shows a movement towards
distributed middleware environments based on
standardized communication protocols and networks [5].
One of the most common programming paradigms used
for distributed computing is called distributed object
computing (DOC)

Distributed object computing as system approach
integrates object orientation, client/server architecture, and
distributed computing. Applications are decomposed into
a set of objects, either providing server functionality or
acting as clients. Every object can act as both a client and
a server for a set of other objects. Objects interact by
invoking methods on requested target objects, identical to
the traditional paradigm of object-orientation. Distributed
object computing is a popular paradigm for object-
oriented distributed applications. Since the application is
modeled as a set of cooperating objects, it maps very
naturally to the services of the distributed system. The
remote access is implemented by making use of proxy and
broker patterns.

The purpose with distributed object technology is to make
an object location transparent. It aims at making it just as
easy to access an object on a remote node as an object on
a local node. Location transparency involves these
functions [2]:

• Locating and loading remote classes.
• Locating remote objects and providing references

to them.
• Enabling remote method calls, including passing

of remote objects as arguments and return values.
• Notifying programs of network failures and other

problems.

If all four functions are present and work properly, a
distributed object computing system is enabled.

3. CORBA

CORBA (Common Object Request Broker Architecture)
[10] is a standard created by the Object Management
Group (OMG). The aim of CORBA is to define a general
framework for construction of distributed object
computing systems. In addition, CORBA is a specification
designed to work in a heterogeneous environment, and is
location and programming language independent.
CORBA hides the details of network protocols from the
application level, providing a software layer that wraps the
network with a logical set of services. Programmers can
then use these services in their applications, without
worrying about network related issues like connection
setup, protocol decisions, on-the-wire data format, and
failure scenarios.

The central component of CORBA is the Object Request
Broker (ORB). It contains the entire communication
infrastructure necessary to identify and locate objects,
handle connection management, and deliver data. In
general, the ORB is not required to be a single
component; it is simply defined by its interfaces.

Clients request services from objects (which will also be
called servers) through a well-defined interface. This
interface is specified in IDL (Interface Definition
Language) [9], a declarative language which means that it
is not possible to write execution or state dependent code
in IDL. The IDL separates object interface from
implementation. The IDL can be described as the contract
for communication between a client and a server. IDL
provides a set of built-in types, which can be augmented
by user-defined types, such as structures and sequences.

The IDL is translated in an IDL-compiler to client side
stubs and server side skeletons. The stub is an API for the
client to access the distributed object. It acts as a proxy for
the distributed object. The skeleton is an up-call interface
from the ORB to the code in the server. It is a connection
between the networking layer of the ORB and the
application code. The server’s implementation of the
distributed object is termed servant.

The interface declaration of the components is the key to
how it can be distributed. Functionality can only be
distributed if there is an interface to access the
functionality. So the way an application is broken into
interfaces determine how it can be distributed over
physical address spaces.

CORBA’s way for uniquely addressing objects within the
system is the usage of so called interoperable object
references (IOR). An IOR is an opaque handle for an
object that contains all the necessary information for any
other ORB on the network to locate the object. When a
new object implementation for a given service type is
instantiated, it is the object adapter’s task to choose a

globally unique object reference. The ORB interface
provides operations for converting IORs to strings and
back, so that a simple mechanism for passing around IORs
is given. As objects are only accessible by their object
reference, CORBA objects are generally passed by
reference when used as parameters in method calls.

The CORBA standard guarantees interoperability by
providing a gateway infrastructure that makes different
ORB implementations compatible. The General Inter-
ORB Protocol (GIOP) defines standard message formats,
a common data representation for mapping IDL data types
to flat messages, and a format for interoperable object
references. The Internet Inter-ORB Protocol, commonly
known as IIOP, defines GIOP message exchange over
TCP/IP networks.

The portable object adapter (POA) provides a set of
interfaces for managing object references and servants.
When an object is constructed using the POA interfaces it
gets portable across ORB implementations and has the
same semantics in every ORB that is compliant to
CORBA 2.2 or above. This makes the objects porting
between different ORBs very easy.

The CORBA standard also defines a set of distributed
services to support the integration and interoperation of
distributed objects. The services are defined on top of the
ORB, i.e., they are defined as standard CORBA objects
with IDL interfaces For example, for object location the
CORBA standard defines a naming service by providing a
mapping from names to object references: given a name,
the service returns an object reference.

The standard defines some services for alternative
communication paradigms. There is a service for Event
Channels and one for asynchronous measuring. These
services can be very useful for decoupling components in
a distributed application. They can also be used for
making load balancing and fault tolerant applications.

4. PERFORMANCE IN DISTRIBUTED
SYSTEMS

4.1. Demands for high performance.

Depending on the purpose of the system the important
performance measure can be different, e.g., response time
or throughput. As a system developer I want to know what
load the system can handle and were the bottlenecks are.
Distributed systems today have to be able to handle a lot
of concurrent users. A big commercial system can have
several thousands of users. If the information in the
distributed system is rapidly changing, as in an exchange
system, it must be able to handle high load peaks. The
performance in the system is directly dependent of the
invocation response time. By shorting the invocation
response time other performance parameters will benefit
the change.

4.2. Improving Performance

There is different way for improving the performance of a
distributed system, e.g., optimize code, optimize the
design and the distribution, and improve hardware and
network. If there is a performance problem, the first thing
to do is to find were the problem is in the system, i.e., the
bottlenecks have to be identified. One way can be to find
the steps in the critical path of the application. The critical
path can be different from time to time. When the critical
path is found it is much easier to improve the performance
of the system.

If it was possible to measure the time used in the steps in
the critical path it would give the bottlenecks of the
system in the current run. For improvement of the
performance in a distributed system a measurement tool
could be in great help. The measurement tool should give
the paths in the system and the time spent in every step.
The measurement tool should be possible to use in the
system without rewriting any code of the application.

If CORBA is used for all communication between all
autonomous components the system can be fully
distributed. The design and the distribution over several
processes or even several machines have a great impact on
the performance of the system. If it was possible to profile
different design solutions the best distribution can be
found and give hints for the best design of a distributed
system.

4.3. Performance considerations in CORBA

There are some basic factors that have a distinct impact on
the performance of a CORBA application. The first one is
the number of remote method invocations that are made
within the system. Each request sent over a network
connection imposes a network latency. This delay adds a
considerable amount of time for the processing of each
CORBA remote invocation. This factor is the reason that
the number of remote invocations is often more significant
than the amount of data transferred with each request.

The second one is the amount of data that is transferred
with each remote method invocation. If the message gets
too big, the throughput rate decreases due to the limitation
of the network as TCP buffering issues and growing
process sizes.

The third one is the marshalling/unmarshalling costs of
the different IDL data types used by the system.
Marshalling/unmarshalling is the procedure of translating
the data from the program representation to a portable and
transportable format a vises versa. This factor is highly
dependent of the ORB implementation used.

4.4. Diagnosing a distributed system

What measurements are important when diagnosing
distributed system? A long response time is one symptom

that there is a performance problem. Therefore, measuring
the response times under different workloads may give an
indication that a performance problem exists. However,
this kind of measurements cannot give any advise
regarding what to do about problem. It simply can’t give
any clues to where in the system the problem resides.

For getting a more precise measurement some kind of
profiling information is necessary. Profiling information
can be retrieved using an existing profiling tool as gprof
or java prof. A profiling tool is only giving information
about the current process it is running in. Profiling refers
to the measurement of program execution characteristics
of interest, e.g., execution time, message propagation
time, and memory consumption. Ordinary profiling tools
cannot give the information needed for finding the
bottlenecks in a distributed system.

One good and effective way of diagnosing distributed
systems is through monitoring communication between
the various distributed components. The problem is how
to capture the details of messages passed between
distributed objects. Such monitoring lets you observe and
record method invocations and exceptions. The
information retrieved should help in avoiding or
eliminating bottlenecks and other potential failures.
Measuring the application-level communication should
give request-reply details. Details captured about each
message could include request ID, interface name of the
target object, method being invoked, timing data, process
IDs and host IDs.

This measurement should have all the necessary
information for constructing graph representing the
different components and calls in the system. It should
give the time spent in every method and the inter-process
latency. The measurement should give useful information
for finding the best design and distribution of the system.

Other profiling principles can be very useful then
improving the performance of a certain component but not
for the overall application. The best profiling of the
system could be achieved by combining different
measurement techniques. Use different tools for different
levels of the system.

4.5. Interceptors

The interceptor architectural pattern allows services to be
added transparently to a framework and trigged
automatically when certain events occur [4]. The OMG
specifies CORBA Portable Interceptors [11]. Portable
Interceptors are hooks into the ORB through which ORB
services can intercept the normal flow of execution of the
ORB. In the OMG specification a number of interceptor
types is specified Request interceptors, IOR Interceptors
and Registering Interceptors. This paper will only look in
to the Request interceptors.

A request interceptor is designed to intercept the flow of a
request/reply sequence through the ORB. This makes it
possible to query the request information and manipulate
the service contexts, which are transported between clients
and servers. The primary use of request interceptors is to
enable ORB services to transfer context information
between clients and servers. The context information is
added by one interceptor and read by another interceptor.
This is information that is transported without being
declared in any IDL. There is two types of request
Interceptors: client-side and server-side.

The specification includes a set of design principles that
specify the interceptors [11]. An interceptor can affect the
outcome of a request by throwing a system exception or
by directing a request to a different location. An
interceptor can’t change the parameters of a request, only
read them. One interceptor is independent of an other
interceptor. This means that a call can go through a
number of interceptors on it s path to the server and back
again.

5. PROFILING TOOL

5.1. Requirements

There is a set of requirements that the tool must live up to.
These requirements are based on the demands of how to
diagnosing a distributed system for finding the
performance bottlenecks.

• The tool shall have the ability to trace and record
elapsed time for all distributed method calls in the
target application.

• The tool shall have the ability to merge the trace
information from different nodes into execution tree
or call-graph.

• The tool shall be easy to port to other ORB
implementations.

• The tool shall have a low impact on the application
execution time and not reducing the performance of
the system.

5.2. Design

There are a lot of aspects to take in consideration then
designing the tool. For making it possible to trace a call
through several nodes instrumentation for catching
information has to be added at every node. The tool shall
only profile the system, not monitor it. This means that
there is no need for merging information from several
nods in real time. This makes it feasible to write the
information to a file and later on do the merge. The
presentation of the information will be done after the
merging. The tool will work in three phases information
registering, information merging, and information
presentation.

The tool should not burden the system because that should
have impact on the result. For minimize the load of the
tool, a producer consumer technique should be. The
information register should produce an internal event
representation that could be put in a data structure that the
consumer could read from and write to file.

5.2.1. Instrumentation

For catching the information in the application an
instrumentation of the nodes has to be done. Every node
will contain one or several objects. These objects have to
be instrumented for getting the request-response
information needed. Measuring points has to be added in
the application.

For registering the information in a request-reply four
measuring points has to be added. The start of the request
(P1) is the first measuring point. The start of the execution
(P2) of the method is the second one. The finish of the
method execution (P3) is the third one and the arrival of
the response (P4) is the fourth one. These points give the
information wanted. The simple calculation principles
used with the four measuring points are shown in table 1.

Table 1: The principle for calculation of profiling data.

Calculation principles

Execution of method P2-P3

Network latency P1-P4 –(P2-P3)

Total remote call P1-P4

We have chosen to add measuring points by using
interceptors. The interceptors can easily be hooked onto
the system. An advantage is that it only registers the
CORBA specific events. Interceptors is a complete
framework with all hook on facilities already developed
and portable. Interceptors can be added to the application
without recompiling the object source code. The Portable
interceptors in the OMG standard [11] include all
necessary measuring points.

5.2.2. Information processing

The measurement results in several files containing the
data of run system. There is one file for each node in the
system. For reducing the complexity the information
processing is divided into two phases: parsing and
merging.

In order to make the information manageable an internal
representation is constructed. The first phase, i.e., parsing,
is responsible for translate the file information into the
internal representation. The internal representation have to
support the merging of information and work as input for
the presentation. For answering to these demands a tree
representation is chosen. A tree representation is not

preferable in handling a lot of data but for this prototype is
it sufficient. When constructing a large-scale commercial
tool this has to be replaced with a database backbone.

The root of the tree is the system. A system has a number
of nodes. A node represents one ORB, i.e., one
instrumentation set and one data file. The node has
Objects and unbound threads. An Orb can act as a client, a
server or both. When an ORB acts as a client can it make
requests from code outside a distributed object. This kind
of requests will be placed under the object
UnboundThread. If an ORB only acts as a client all of its
calls will be in this entity. An UnboundThread has a list of
Calls. Calls will be explained later. Objects are the
distributed objects in the node. An Object has a list of
methods. A method entity is created for every method
executed on the Object. The Method entity has a list of
executions. An execution is created for every time the
method is executed. An execution entity has a list of calls,
this calls is the same entity that an UnboundThread holds.
The call entity represent a distributed call made from the
current execution or from the current UnboundThread.

After the parsing is done, the merging phase can start. The
merging phase is responsible for finding the relationship
between calls and executions. For every Call entity the
target Execution will be searched for. If it is found a
relation to it is made. There can be nodes in the system
that aren’t instrumented and that result in that the
execution of the target method may not be found. After
the merging is performed all distributed calls in the
instrumented system will be registered.

After the merging is done there is a complete internal
representation of the execution in the system. This internal
representation is easily parsed and searched in for all kind
of information not only call graph profiling.

The presentation component will not be fully
implemented in the scope of this work. With the use of the
internal representation is it easy to write presentation
programs that make a lot of different information
extraction. However, in this paper the results will only be
outputted as flat files since no graphic representation is
implemented.

5.3. Implementation

In this study, we have used JacORB, an object request
broker written in Java which implements OMG's CORBA
2.0-2.3 standard. JacORB is a fully multithreaded ORB
with support for IIOP, POA, Portable Interceptors and
OMG Interoperable Naming Service. It also includes an
IDL compiler that supports OMG IDL/Java language
mapping rev. 2.3. JacORB can be obtained at
http://www.inf.fu-berlin.de/~jacorb/

For handling the file writing an application called log4j is
used. It can be retrieved at http://jakarte.apache.org/log4j/.

Log4j includes a lots of functionalities for logging. One of
the features of log4j is asynchronous logging. The
asynchronous logging will collect the events sent to it and
then dispatch them to all the appenders that are attached to
it. An appender is a class that writes the event to some
media or stream. Log4J also has features for logging
message design with functionalities for time stamps and
thread information registering. The use of log4j has
improved the measuring tool construction and removed
the need of implementing a threaded producer-consumer
communication described earlier. This functionality
already exists in the log4j asynchronous logging

Information for making it possible to connect client and
server to each other has to be registered. This is
implemented with the use of the CORBA Portable
Interceptors [11].

The purpose with the instrumentation is to add measuring
points for the registration of the distributed calls. When
the interceptor hooks on and catches the information for a
client request, it gets a ClientRequestInfo object. In
ClientRequestInfo the target is represented as an Object
reference. For resolving the object reference to an object
the interceptor has to call the naming service. This results
in a new distributed call. This is not acceptable because it
have a severe impact on the measurement. It results in two
distributed calls instead of one. What is even worse is if
the calls to the naming service also are intercepted this
call will generate a new naming service call and a
recursive loop is started with no end.

For making the callgraph it is necessary to know which
client is calling which server. The time for the call isn’t
enough because the nodes have individual clocks end
execution environments.

The only way to connect the client interceptor
send_request to the server interceptor receive_request is to
register the IOR in both measuring points. The IOR can be
retrieved in the client interceptor from target attribute in
the ClientRequestInfo object. And in the server side can
the attribute object_id in the ServerRequestInfo object be
used for getting the IOR from the POA that has created it.

It isn’t enough to know which client that calls which
method for making a call graph. It is necessary to know
which request on a method that is made from which client.
For making it possible to connect the client request to the
server execution of the request the request ID in the struct
RequestInfo can be recorder see Appendix B. According
to the OMG specification shall the request ID be a unique
id for the request on a particular request/response
sequence [11]. It also says, “ Once a request/reply
sequence is concluded this ID may be reused”. In the
CORBA implementation used (JacORB1_3_11) has the
developer chosen to make the requestID unique only for a
request/response between two ORB’s. This means that the

requestID is only unique for the request between two
nods. If a new nod calls the same server the id will be
reset to zero. This makes it impossible to know which
node makes which request.

It is absolutely necessary to record which client request is
connected to which execution of a method for making a
callgraph. For connecting the client side send_request
with the server side receive_request the ServiceContext
function is used. The ServiceContext functionality is for
letting data being added to the request in one Interceptor
and become read in an other [11]. A unique
instrumentationRequestID is created in the
ClientRequestInterceptor and added to the
ServiceContext. The ServerRequestInterceptor reads the
instrumentationRequestID and record the information.
This makes it possible to register which send_request is
connected to which receive_request.

In the client side two measuring points is added using the
send_request interception point and receive_reply. Table 2
shows which data recorder at the points.

Table 2: Data recorded at the client side.

Client Measuring points
Data recorded Send_request receive_reply
Target Address Yes Yes
Target IOR Yes Yes
Method name Yes Yes
RequestID Yes Yes
InstrumentationRequestID Yes No
Time point Yes Yes
Thread name Yes Yes

At the server side two measuring points are added using
the receive_request interception point and send_reply
interception point. Table 3 shows which data that are
recorded at the points.

Table 3: The Data recorded at the server side.

Server Measuring points
Data recorded Receive_request send_reply
Address Yes Yes
IOR Yes Yes
Interface Yes Yes
Method name Yes Yes
RequestID Yes Yes
InstrumentationRequestID Yes No
Time point Yes Yes
Thread name Yes Yes

The time point recorded is made with a built in function in
java System.currentTimeMillis: The functions gives the
difference, measured in milliseconds, between the current
time and midnight, January 1, 1970 UTC. But the
resolution of the function on a Windows NT machine is
10 ms.

The internal representation described earlier gives the
possibilities to make a lot of calculations and presentation
of the execution of the system. For showing that the

profiling principles of the constructed tool can give
sufficient information some presentation programs has
been implemented. The presentation programs are also
examples of what kind of calculations and presentations
that can be performed on the internal representation. In
section 6, where we present our experimental results, we
use the following presentation views.

The first presentation implemented is a client call graph.
This presentation writes the different call graphs to a file.
Only the calls that start from an UnboundThread will be
traced and recorded in this presentation. This will trace
down the calls and the execution of distributed methods
recursively. Every new step in the call graph will be
visualized with an insertion. The end of an execution will
be marked with a line with the same insertion as the start
of the execution and with the text “End execution”. This
presentation gives the ability to get some profiling
information from some specific calls. A drawback of this
presentation is that if there are a lot of calls in the system
it gives a lot of information that can be hard to get a grip
on. Every call made from a client will give one call graph.

The second presentation is some call statistics. It gives a
summarized picture of what calls that has been done in the
system. It presents the information in ordinary profiling
style. The information presented is the number of calls
made from one method to another, the total time this calls
took and the total latency for this calls.

The third presentation program is call statistics grouped
into one call statistics per nod. Some additional
information has been added to the identification of the
callee. The added information is the node address of the
node that holds the called object. This extra information
increases the resolution of the presented information.

The fourth presentation is call statistics summarized on
node level. It shows how many calls that have been done
between two nodes. It also shows the summary of all calls
done within a node. This presentation has been
constructed for giving hints on that distribution will give
the best performance. All three call-statistic presentations
have been implemented in similar way. The difference is
in what level the summery of the calls will be performed.
This kind of calculation becomes misleading for the calls
inside a node. If several components are placed within the
node and they are calling each other some execution times
will be double registered. This phenomenon doesn’t arise
for the latency only for the total call time. This
presentation should be mainly used for getting an
overview of the inter node communication.

This last implemented presentation shows the summarized
execution paths from on method. The presentation
program walks all paths evolved from the start method
and summarizes the data. The information is presented as
a call graph. This presentations shows of where calls

through the start method spends it time and what is the
usual path for this method. This presentation is done for
all executed distributed methods. If the interface of the
called method is unknown the method is described as
address of the component. The interface is unknown if the
target node for a call isn’t instrumented and due to that
isn’t it possible to calculate the effective time of the
execution.

The merging and presentation program is constructed so
that it is easy to implement new calculations and
presentations for further measurements and experiments.
For example it should be straight forward to implement a
graphical user interface to our system.

5.4. Running the profiling tool

Configuration of the instrumentation is done using Java
system properties. The easiest way to hook on and
configure the instrumentation is to add following on the
commando line then starting the application-node that
shall be profiled presented in figure 1.

-Dorg.omg.PortableInterceptor.ORBInitializerClass.Instrument=
exam.profTool.instrumentation.interceptors.InstrumentInitializer
-DInstrumentLogFile=ServerLog.txt
-DInstrumentNodeName=Server1

Figure 1: The additional properties for adding the
instrumentation on a node.

The first property tells the ORB to hook on the
interceptors. The second property configures the name of
the log file for the current node. The third property is for
giving the node a name. This property isn’t necessary
since the node will get an auto generated name if no name
is given.

After the execution of the system is done all data-files is
moved to a directory for information processing. The run
of the program produces five files containing the
presentations (callGraphTyp1.txt, callGraphTyp2.txt,
callStatistics.txt, callStatisticsPerNode.txt, and
nodeStatistics.txt), one containing a printout of the entire
tree (tree.txt), and one containing the internal
representation (distrSystem.dc). The file distrSystem.dc
can be used as input parameter for other programs
performing calculations on the current execution of the
distributed system.

6. EXPERIMENTAL FRAMEWORK

In order to test and evaluate our prototype tool, a test
environment is constructed. The purpose of the test
environment is to figure out whether the principles of the
profiling tool are the right for profiling a distributed
application. Note that the purpose is to evaluate the tool
and not to test a real application.

6.1. Test application

Due to the lack of access to a real application, these first
tests of the tool are run on a fictive application. For
modeling a distributed application a set of components is
constructed. The components use methods on each other.
All inter-component calls are done using CORBA and the
components are distributed over several nodes.

A server framework for registering the components is
developed as well as a client to trigger the requests in the
distributed system. The ORB used in the test environment
is JacORB described earlier. The server is implemented in
such way that it is easy to distribute the components on
different JVMs or different machines. In addition, an
activation and registration framework is also designed.

The components shall model real components in a real
distributed application. The components shall each be an
implementation of an IDL interface. The test application is
composed of 5 components, as shown in figure 2. The
components is both client and servant the use other
components for solving the tasks. The components are
named comp_1 – comp_5. The components dependencies
are shown in figure 2. In order to simulate a real
application, the method calls are distributed randomly. For
example, comp_1 calls comp_2 with a certain probability
and comp_3 with another probability.

Figure 2: Dependencies between components in the test
application.

A client in the test environment is constructed for trigging
the requests in the application. The client will not have
any GUI and is run using the console. The client is
constructed in such way that the profiling tool can be
hooked on to it. A new version of the client is
implemented for every experiment. The different client
implementations will be discussed in the description of the
actual experiment that it is used in.

6.2. Defining the experiments

6.2.1. Tool overhead, experiment 1

Experiment 1 measures the tool overhead. The test is
performed by making request to the same server started

with the instrumentation and without the instrumentation.
There is three different degrees of instrumentation tested:
both client and server instrumented, only the client
instrumented, and no instrumentation at all. There is no
need for measuring the network latency in this test. The
application is configured with all server components on
the same server and a client making the request on the
same machine. The dependencies between methods for
this experiment are as shown in table 4.

Table 4: Dependencies in the tool overhead test.

Caller Calls

Comp_1_Meth_1 Comp_2_Meth_1

Comp_2_Meth_1 Comp_3_Meth_1 and Comp_3_Meth_2

Comp_3_Meth_1 Comp_4_Meth_1

Comp_3_Meth_2 Comp_5_Meth_1

Comp_4_Meth_1 2 *Comp5_Meth_1

The first call made isn’t a part of the test because it
involves a lot of factory methods and references lookup.
The first call has to contact the naming service for getting
a reference to the remote object. It will have a much
higher latency. The client has a timing function coded into
it requests. The client makes calls on the method
Comp_1_Meth_1 on the component Comp_1. First it
makes two calls that are timed individually. Then it makes
10 calls that are timed together and finely it makes 100
calls that are timed together. The test is run three times on
every degree of instrumentation. All three tests are done
on the same instance of the server this means that the
server will only be restarted for changing the
instrumentation. Experiment 1 is run on a machine with a
Pentium II CPU, 320 MB RAM, and Windows 98.

6.2.2. Profiling with method latency

The purpose of this test is to test if the instrumentation
works in an application with different nodes. It also tests
if the information processing and presentation works with
different nodes. A client makes 100 calls on the method
Comp_1_Meth_1 on the component Comp_1. The log
files is collected and parsed with the merging and
presentation program. The experiment is run on three
distributions shown in table 5, i.e., experiment 2, 3, and 4.
All nodes run on the same machine, which runs Windows
98 and has a Pentium II CPU and 320 MB RAM.

Table 5: The different distributions in experiment 2 – 4.

Exp. Node 1 Node 2 Node 3 Node 4 Node 5

2 Comp [1-5]

3 Comp [1-3] Comp [4] Comp [5]

4 Comp [1] Comp [2] Comp [3] Comp [4] Comp [5]

Client Comp_1

Comp_2 Comp_3

Comp_4 Comp_5

6.2.3. Profiling in a distributed environment

The purpose of this experiment is to test if the
instrumentation and presentation can function in a
distributed system in a real distributed environment. The
nodes are distributed on one machine each, and the
machines are connected to a 100 Mbit/s LAN. The
machines used are Pentium III 660 Hz with 128 RAM
running Windows NT.

The naming service will be placed on the same computer
as node 1 and the client will placed on a sixth computer.
Client will make 100 calls on the method
Comp_1_Meth_1 on the component Comp_1.

7. EXPERIMENTAL RESULTS

7.1. Experiment 1

The results of the tests in experiment 1 indicate that the
tool has negligible overhead in the test application. The
measured overhead is lower then one percent, both in the
case with both client and server as well with only the
client. Therefore, we conclude that the instrumentation
does not excessively distort the performance profile.

7.2. Summary of experiments 2, 3, and 4

Due to the limited number of pages, we do not present the
results from experiments 2, 3, and 4 here. The results from
all our experiments are available in [12]. In essence, those
results are complementary to those from experiment 5.
The difference is that in experiment 5, the objects are
distributed on several different machines, while in
experiments 2, 3, and 4 the objects reside on one single
machine. The results from experiments 2, 3, and 4 have
convinced us that the instrumentation works and gives
valuable information for a distributed system based on
several components on a single server. As expected, we
found that the experiments indicate that it results in better
performance with a more distributed application over
several servers. One of the indications is that the overall
execution time for the calls from the client to the server is
lower for experiment 3 then experiment 2.

7.3. Experiment 5

The results from experiment 5 is presented in this section
and examples of all five presentation views are shown.

The result in figure 3 is one of several call graphs
produced by the presentation program. The first line
represents the initiating call from the client. If the target
node is instrumented the execution of the called method
will be registred as shown at line 2. If the execution of the
method involves new distributed calls it will be written
with the same indentation, e.g., see line 3.

The result shows that the tool can instrument, register and
trace calls and executions in an application that is

distributed over several machines. In the address field of
the calls can one read that the components residues on
different machines because they have different IP. The
network used in the experiment has very low latency. It is
less then the resolution of the timing function used as we
will discuss later.

Call Comp_1_Meth_1 on node 194.47.139.228:1054 time 1332
network latency 0
 Execution Comp_1_Meth_1 on IDL:Comp_1:1.0 time 1332
effective time 70
 Call Comp_2_Meth_1 on node 194.47.139.231:1064 time 1262
network latency 0
 Execution Comp_2_Meth_1 on IDL:Comp_2:1.0 time 1262
effective time 130
 Call Comp_3_Meth_1 on node 194.47.139.225:1036 time
671 network latency 10
 Execution Comp_3_Meth_1 on IDL:Comp_3:1.0 time 661
effective time 150
 Call Comp_4_Meth_1 on node 194.47.139.229:1033 time
511 network latency 0
 Execution Comp_4_Meth_1 on IDL:Comp_4:1.0 time
511 effective time 100
 Call Comp_5_Meth_1 on node 194.47.139.223:1039
time 200 network latency 0
 Execution Comp_5_Meth_1 on IDL:Comp_5:1.0 time
200 effective time 200
 End execution
 Call Comp_5_Meth_1 on node 194.47.139.223:1039
time 211 network latency 10
 Execution Comp_5_Meth_1 on IDL:Comp_5:1.0 time
201 effective time 201
 End execution
 End execution
 End execution
 Call Comp_3_Meth_2 on node 194.47.139.225:1036 time
461 network latency 10
 Execution Comp_3_Meth_2 on IDL:Comp_3:1.0 time 451
effective time 250
 Call Comp_5_Meth_1 on node 194.47.139.223:1039 time
201 network latency 1
 Execution Comp_5_Meth_1 on IDL:Comp_5:1.0 time
200 effective time 200
 End execution
 End execution
 End execution
 End execution

Figure 3:A example of the result of experiment 5
presented as call graph type 1.

For getting a better overview of the execution of the
application a summarized call statistics is presented in
figure 4. The call statistics gives information about what
method that has been called and what time spent in them.
In line 3 is the summery of the calls made from the client
to the first component. The time this call spent is near the
total time spent in the execution of the application. The
caller UnBoundThread is the Client in this application. If
it had been several clients, all had been registered under
unbound thread in this execution. The callee in unknown
127.0.0.1:1590 is the naming service. The naming service
isn’t instrumented.

In this presentation view, some figures can seem a little
odd. Some summarized calls have a negative latency as in
line five. This phenomenon arises due to that the latency
of the network is less then the resolution of the timing
function. The latency is calculated by the principles
presented in table 1. If the target machines timing gives a
little higher execution time then the calling machine and
the network does not give a measurable latency the
calculated latency becomes negative.

count callee caller time latency
178 IDL:Comp_5:1.0 Comp_5_Meth_1 IDL:Comp_4:1.0
Comp_4_Meth_1 35767 103
100 IDL:Comp_1:1.0 Comp_1_Meth_1 UnBoundThread
90560 160
89 IDL:Comp_4:1.0 Comp_4_Meth_1 IDL:Comp_3:1.0
Comp_3_Meth_1 44891 44
50 IDL:Comp_2:1.0 Comp_2_Meth_1 IDL:Comp_1:1.0
Comp_1_Meth_1 52516 -109
39 IDL:Comp_3:1.0 Comp_3_Meth_1 IDL:Comp_2:1.0
Comp_2_Meth_1 31686 21
34 IDL:Comp_3:1.0 Comp_3_Meth_1 IDL:Comp_1:1.0
Comp_1_Meth_1 26055 31
34 IDL:Comp_3:1.0 Comp_3_Meth_2 IDL:Comp_2:1.0
Comp_2_Meth_1 13357 186
23 IDL:Comp_5:1.0 Comp_5_Meth_1 IDL:Comp_3:1.0
Comp_3_Meth_2 4618 -1
11 IDL:Comp_5:1.0 Comp_5_Meth_2 IDL:Comp_3:1.0
Comp_3_Meth_2 10 0
8 IDL:Comp_5:1.0 Comp_5_Meth_1 IDL:Comp_3:1.0
Comp_3_Meth_1 1603 1
6 unknown 194.47.139.228:1053 _is_a UnBoundThread 540
unknown
6 unknown 194.47.139.228:1053 to_name UnBoundThread
41 unknown
5 unknown 194.47.139.228:1053 bind UnBoundThread 30
unknown
2 unknown 194.47.139.228:1053 to_name IDL:Comp_1:1.0
Comp_1_Meth_1 0 unknown
2 unknown 194.47.139.228:1053 resolve IDL:Comp_1:1.0
Comp_1_Meth_1 110 unknown
1 unknown 194.47.139.228:1053 resolve UnBoundThread
80 unknown
1 unknown 194.47.139.228:1053 to_name IDL:Comp_2:1.0
Comp_2_Meth_1 0 unknown
1 unknown 194.47.139.228:1053 resolve IDL:Comp_2:1.0
Comp_2_Meth_1 10 unknown
1 unknown 194.47.139.228:1053 to_name IDL:Comp_3:1.0
Comp_3_Meth_1 0 unknown
1 unknown 194.47.139.228:1053 resolve IDL:Comp_3:1.0
Comp_3_Meth_1 70 unknown
1 unknown 194.47.139.228:1053 to_name IDL:Comp_3:1.0
Comp_3_Meth_2 0 unknown
1 unknown 194.47.139.228:1053 resolve IDL:Comp_3:1.0
Comp_3_Meth_2 20 unknown
1 unknown 194.47.139.228:1053 to_name IDL:Comp_4:1.0
Comp_4_Meth_1 0 unknown
1 unknown 194.47.139.228:1053 resolve IDL:Comp_4:1.0
Comp_4_Meth_1 60 unknown

Figure 4: The result of experiment 5 presented as some
call statistics.

In figure 5 is the call statistics per node presented. This
presentation gives a rough picture of the amount of work
performed on each node. It shows the number of calls

initiated from the node and their execution times and
latencies. This figures can be compared between the
different nodes for getting a estimation of the load on
different nodes. Also in this presentation view, the
negative latency occurs occasionally.

== Node Client1 ==
count callee caller time latency
100 IDL:Comp_1:1.0 194.47.139.228:1054 Comp_1_Meth_1
UnBoundThread 90560 160
1 unknown 194.47.139.228:1053 _is_a UnBoundThread 70
unknown
1 unknown 194.47.139.228:1053 to_name UnBoundThread
11 unknown
1 unknown 194.47.139.228:1053 resolve UnBoundThread
80 unknown
======================

== Node ServerComp1 194.47.139.228:1054 ==
count callee caller time latency
50 IDL:Comp_2:1.0 194.47.139.231:1064 Comp_2_Meth_1
IDL:Comp_1:1.0 Comp_1_Meth_1 52516 -109
34 IDL:Comp_3:1.0 194.47.139.225:1036 Comp_3_Meth_1
IDL:Comp_1:1.0 Comp_1_Meth_1 26055 31
2 unknown 194.47.139.228:1053 to_name IDL:Comp_1:1.0
Comp_1_Meth_1 0 unknown
2 unknown 194.47.139.228:1053 resolve IDL:Comp_1:1.0
Comp_1_Meth_1 110 unknown
1 unknown 194.47.139.228:1053 _is_a UnBoundThread 190
unknown
1 unknown 194.47.139.228:1053 to_name UnBoundThread
10 unknown
1 unknown 194.47.139.228:1053 bind UnBoundThread 10
unknown
======================

== Node ServerComp2 194.47.139.231:1064 ==
count callee caller time latency
39 IDL:Comp_3:1.0 194.47.139.225:1036 Comp_3_Meth_1
IDL:Comp_2:1.0 Comp_2_Meth_1 31686 21
34 IDL:Comp_3:1.0 194.47.139.225:1036 Comp_3_Meth_2
IDL:Comp_2:1.0 Comp_2_Meth_1 13357 186
1 unknown 194.47.139.228:1053 _is_a UnBoundThread 80
unknown
1 unknown 194.47.139.228:1053 to_name UnBoundThread
0 unknown
1 unknown 194.47.139.228:1053 bind UnBoundThread 0
unknown
1 unknown 194.47.139.228:1053 to_name IDL:Comp_2:1.0
Comp_2_Meth_1 0 unknown
1 unknown 194.47.139.228:1053 resolve IDL:Comp_2:1.0
Comp_2_Meth_1 10 unknown
======================

== Node ServerComp3 194.47.139.225:1036 ==
count callee caller time latency
89 IDL:Comp_4:1.0 194.47.139.229:1033 Comp_4_Meth_1
IDL:Comp_3:1.0 Comp_3_Meth_1 44891 44
23 IDL:Comp_5:1.0 194.47.139.223:1039 Comp_5_Meth_1
IDL:Comp_3:1.0 Comp_3_Meth_2 4618 -1
11 IDL:Comp_5:1.0 194.47.139.223:1039 Comp_5_Meth_2
IDL:Comp_3:1.0 Comp_3_Meth_2 10 0
8 IDL:Comp_5:1.0 194.47.139.223:1039 Comp_5_Meth_1
IDL:Comp_3:1.0 Comp_3_Meth_1 1603 1
1 unknown 194.47.139.228:1053 _is_a UnBoundThread 60
unknown
1 unknown 194.47.139.228:1053 to_name UnBoundThread
0 unknown

1 unknown 194.47.139.228:1053 bind UnBoundThread 10
unknown
1 unknown 194.47.139.228:1053 to_name IDL:Comp_3:1.0
Comp_3_Meth_1 0 unknown
1 unknown 194.47.139.228:1053 resolve IDL:Comp_3:1.0
Comp_3_Meth_1 70 unknown
1 unknown 194.47.139.228:1053 to_name IDL:Comp_3:1.0
Comp_3_Meth_2 0 unknown
1 unknown 194.47.139.228:1053 resolve IDL:Comp_3:1.0
Comp_3_Meth_2 20 unknown
======================

== Node ServerComp4 194.47.139.229:1033 ==
count callee caller time latency
178 IDL:Comp_5:1.0 194.47.139.223:1039 Comp_5_Meth_1
IDL:Comp_4:1.0 Comp_4_Meth_1 35767 103
1 unknown 194.47.139.228:1053 _is_a UnBoundThread 70
unknown
1 unknown 194.47.139.228:1053 to_name UnBoundThread
10 unknown
1 unknown 194.47.139.228:1053 bind UnBoundThread 0
unknown
1 unknown 194.47.139.228:1053 to_name IDL:Comp_4:1.0
Comp_4_Meth_1 0 unknown
1 unknown 194.47.139.228:1053 resolve IDL:Comp_4:1.0
Comp_4_Meth_1 60 unknown
======================

== Node ServerComp5 194.47.139.223:1039 ==
count callee caller time latency
1 unknown 194.47.139.228:1053 _is_a UnBoundThread 70
unknown
1 unknown 194.47.139.228:1053 to_name UnBoundThread
10 unknown
1 unknown 194.47.139.228:1053 bind UnBoundThread 10
unknown
======================

Figure 5: The result of experiment 5 presented as call
statistics per node.

In figure 6, the call statistics based on the communication
between the nodes are presented. This presentation view is
for investigating if the distribution of components is
satisfying. This kind of presentation shows that the tool
can capture and present the information necessary for
finding bottlenecks caused by poor distribution design.
The same negative network latency occurs in this
presentation as in the presentations before.

count callee caller time latency
178 ServerComp5 194.47.139.223:1039 ServerComp4
194.47.139.229:1033 35767 103
100 ServerComp1 194.47.139.228:1054 Client1 90560 160
89 ServerComp4 194.47.139.229:1033 ServerComp3
194.47.139.225:1036 44891 44
73 ServerComp3 194.47.139.225:1036 ServerComp2
194.47.139.231:1064 45043 207
50 ServerComp2 194.47.139.231:1064 ServerComp1
194.47.139.228:1054 52516 -109
42 ServerComp5 194.47.139.223:1039 ServerComp3
194.47.139.225:1036 6231 0
34 ServerComp3 194.47.139.225:1036 ServerComp1
194.47.139.228:1054 26055 31
7 unknown 194.47.139.228:1053 ServerComp1
194.47.139.228:1054 320 unknown

7 unknown 194.47.139.228:1053 ServerComp3
194.47.139.225:1036 160 unknown
5 unknown 194.47.139.228:1053 ServerComp2
194.47.139.231:1064 90 unknown
5 unknown 194.47.139.228:1053 ServerComp4
194.47.139.229:1033 140 unknown
3 unknown 194.47.139.228:1053 Client1 161 unknown
3 unknown 194.47.139.228:1053 ServerComp5
194.47.139.223:1039 90 unknown

Figure 6: The results of experiment 5 presented as call
statistics between nodes.

The resolution of the timing function used
(currentTimeMillis) is 10 ms for the platform used
(Windows NT). When the application is run on a LAN,
the latency is less then the resolution of the timing
function. That explains why some latencies are less then 0
in the results presented. We have also run the experiment
several times and found that this effect is not a systematic
error. Instead we have found that the latencies for calls
between the nodes differ between the different runs of the
application. This result indicates that it is not a systematic
error. The negative latency occurs randomly and is due to
the low resolution of the timing function and the very low
network latency of the test environment.

The results of experiment 5 shows that the tool presented
in this paper can function in a distributed environment that
is physically distributed over several machines. The result
also shows that all necessary data is recorded and that it is
possible to get sufficient information for profiling a
distributed system.

8. DISCUSSION AND RELATED WORK

The profiling gives a good picture of the distributed
system. If the application profiled is run on a high
performance network the timing resolution is to low as
seen in experiment 5. For getting a correct picture of the
distributed system on a high performance network a
timing principle with higher resolution has to be
developed.

For getting an even better understanding of profiling in
distributed environments further experiments could be
performed. It could be tested in a more distributed
application or on an application with high workload. The
next natural step would be to test the tool on a real live
application. This would also gives proof for if the
presentations is sufficient for finding the bottlenecks

In real distributed systems it is common to use
asynchronous calls and event channels. The
instrumentation doesn’t support these features today.
Some work should also be put down to expand the tool for
handling asynchronous calls and event channels.

Most of the papers on CORBA performance compare the
performance and scalability of competing CORBA-
compliant ORBS (an example of this is [1, 3]). Further,

many performance studies of CORBA objects focus
mainly on identifying the performance constraints of an
Object Request Broker (ORB). For example, Schmidt
analyzed the performance of Orbix and VisiBroker over
high speed ATM networks and pointed out several key
sources of overhead in middleware ORBs [4].

In [7], the authors say that a pilot study with the actual
ORB in the actual application environment is the only
measurement that gives a trustworthy result. They
experience that an automated testing is the key factor. The
article provides some guidelines on what measures to use
when estimating an ORB’s performance and on how to
build CORBA applications.

IBM has developed a performance tool for distributed
applications using RMI called javiz [6]. It uses an
instrumented JVM and catches the profiling data in a file
in every node. After the execution is done the tool merge
the files and present the result. The profiling is presented
with one graph for each client call.

9. CONCLUSIONS

Finding performance problems in a distributed application
is often a very difficult problem. Therefore, a distributed
profiling tool is very useful and a great help. There is
many different ways such tool can be constructed. One
approach to construct a profiling tool for distributed
CORBA applications is to use interceptors to capture
performance information. In this paper, we propose an
approach based on interceptors that can give sufficient
information for identifying and handling performance
problems in distributed CORBA applications.

In order to evaluate our approach, we designed and
implemented a profiling tool based on interceptors. It has
many benefits; the registration framework is implemented,
the interception points are sufficiently placed, it is
portable between CORBA implementations, and it doesn’t
require source code changes in the profiled application.

The tool and presentation programs constructed give the
execution flow of the system in two different types of call
graphs. The first call graph type presents the flow of the
system with one call graph for each client call from a non-
distributed object. The other type of call graph
summarizes all the execution paths evolved from each
distributed method. The data from the execution paths are
presented with one graph for each executed distributed
method in the application. These two types of graphs give
an overview of the execution flow in the system.

The presentation program also produces call statistics at
three different levels: one for all the calls in the whole
system, one for the calls within a node, and one for calls
between nodes. These statistics make it possible to find
performance bottlenecks at different levels in the system,
track the problem to which type of distributed method that

caused it, and on which node the method resides. The
possibility to make several different presentations of the
data indicates that sufficient information needed for
finding bottlenecks and getting an overview of the
performance of the application is gathered.

When running the tool on a number of test application, we
showed that it was possible to use the performance tool
without changing the target application, not even a
recompilation was needed. The overhead tests showed that
the tool had less then one percent overhead on the
application. Our experiments with distributed test
applications showed that a profiling tool using
interceptors works in a distributed system and gives
sufficient profiling information. The implementation
experience and the experiments performed show that
interceptors is a promising instrumentation technique for
profiling tools for distributed CORBA applications.

Due to the easy way of using the tool and the amount of
information presented by it, the tool can be very useful. It
can be useful in developing, debugging, and maintaining a
distributed system. We believe that even if the resolution
is poor, profiling tools of the type presented in this paper
will become common in the software industry for
handling distributed systems.

REFERENCES
1. A. Buble, “Comparing CORBA Implementations,” Master

Thesis, Charles Universitet, Parg 1999.
2. B. McCarty and L. Cassady-Dorion. “Java Distributed

Objects The Authoritative solution,” Sams,1999.
3. Distributed Systems Research Group, “CORBA Comparison

Project,” Dept. Software Eng, Charles Univ., Prague, 1998.
http://nenya.ms.mff.cuni.cz/thegroup/COMP/index.html.

4. D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
”Pattern-oriented software architecture, Volume 2, patterns
for concurrent and networked object,” John Wiley & Sons,
2000 England.

5. G. Rackl, I. Zoraja, and A. Bonde, “Distributed object
computing:Concepts and Trends,” LRR_TUM, Institut für
Informatik, Technische Universytät München,Germany.

6. I.H. Kazi, D.P. Jose, and B. Ben-Hamida , “JaViz: A
client/server Java profiling tool,” IBM SYSTEMS
JOURNAL, VOL 39, NO 1, 2000.

7. M.Vilich, s. Aslam-Mir, ”Benchmark metrics for enterprise
Object Request Brokers,” http://www.expersoft.com/
Resources/WPapers/bencmetric.htm

8. M. Henning and S. Vinoski, ”Advanced CORBA Program-
ming with C++,” Reading, MA: Addison-Wesley, 1999.

9. Object Management Group. CORBA v2.3 June 1999
10. Object Management Group. The Common Object Request

Broker: Architecture and Specification, 2.2 ed., Feb. 1998.
11. Object Management Group, “Portable Interceptors,” OMG

TC Document orbos/99-12-02.
12. M. Holgersson, “An approach for performance

measurements in distributed CORBA applications,”
Bachelor thesis, Blekinge Institute of Technology, June
2001.

