
m
rouble
ore,
emand

perat-
te and
g sys-

arious
h. The
the

g sys-
infra-

f

ABOS - an Agent-Based Operating System1

Mikael Svahnberg, Paul Davidsson, and Håkan Grahn
Department of Software Engineering and Computer Science

University of Karlskrona/Ronneby, Soft-Center, S-372 25 Ronneby, SWEDEN
{msv, pdv, hgr}@ipd.hk-r.se

1. INTRODUCTION

Modern operating systems should beextensibleandflexible. This means that the operating syste
should be able to accept new behaviour and change existing behaviour without too much t
and that it should ideally also be able to do this without any, or very little, downtime. Furtherm
during the past years the importance of the network has increased drastically, creating a d
for operating systems to function in a distributed environment.

Since agents are autonomous and can potentially adapt over time we argue that flexible o
ing systems can be realized by using agents in the kernel. The ability to easily communica
coordinate work according to well-specified standards is something that we believe operatin
tems can benefit immensely from.

Further, the trends in the operating system community today seems to be focused on v
schemes for supporting objects and object infrastructure for migration, persistence, and suc
overall aim of this research is to achieve flexibility, maintainability, and extensibility. However,
focus seems to be more inhowto support the infrastructure rather thanwhatto do with it once it is
in place. This paper attempts to bridge this gap by presenting a design solution of an operatin
tem kernel, called ABOS (Agent-Based Operating System), utilizing the ideas in such an
structure.

2. GENERAL LAYOUT OF ABOS

ABOS consists of a set of small and auton-
omous modules, or agents. Unlike tradi-
tional kernels where all modules share the
same memory space, the agents in ABOS
are run as separate processes. This yields
great opportunities to modify and extend
the behaviour of the system without having
to recompile or even restart the operating
system. ABOS is structured as a set of lay-
ers around the core (see Figure 1). The level
of the services provided increases for each
layer. The hardware is accessed wherever it
is feasible, not forcing calls to propagate
through more layers than necessary.

The core provides basic memory, pro-
cess, and communication management.
There is no intelligent behavior in this part,
and its sole function is to act as an interface
to the most central hardware, such as the

1. For further details, see: Svahnberg, M.“Background Analysis and Design of ABOS, an Agent-Based Operating Sys-
tem”, Master Thesis, University of Karlskrona/Ronneby, August 1998, http://www.ipd.hk-r.se/~msv/thesis/ABOS.pd

Core

Memory
Manager

Process
Manager

Communication
Manager

Process
Manager

File System
Manager

Communication
Manager

Kernel
Advanced

Advanced

I/O
Manager

Network
Manager

Devices
Device
Drivers

Devices
agents

Services
User

Application

Figure 1. The layout of ABOS

Resource
Allocation
Manager

Other kernel

Encryptation
services

Process
Migration
Manager

User
Manager

Time
Synchron.
Manager

Devices
agents

Other service

User
Application

User
Application

User
Application

Memory
Manager

Advanced



kernel
file

on and

s, as a
ntext

but
min-
t the
s to
ernel
omous

een
mple-
for the
ree of
and
even

ent,
spect

ething
ssibil-

re the
con-

o dif-
to carry
handle
flex-

to this
perat-
plica-
OS
tems,

omiz-
is.
CPU and the MMU. Outside of the core, thekernelprovides the algorithmic behaviour for the
core. Each of the managers in the core can have several corresponding managers at the
level, to provide application-tailored intelligence for their particular task. Device drivers and
systems are also managed at the kernel level. Theservicelayer provides additional functionality
that are not part of the kernel but still part of the operating systems, such as process migrati
user management. Finally,user applications are run on top of the service layer.

3. EVALUATION

Looking at the performance of ABOS, we see that the number of context switches increase
result of the increased number of IPC calls. However, in contemporary machines the co
switch time is so small that we believe that it has very little impact on the performance.

A comparison of the design of ABOS with that of a microkernel yields some similarities
also a number of interesting differences. A traditional microkernel operating system provides
imal functionality, much like the core layer of ABOS, and lets the user applications implemen
rest. In ABOS this extra functionality resides in the kernel, which allows other application
share the same kernel modules. This, in turn, allows for more intelligent behavior in the k
modules for example when scheduling requests. Furthermore, the modules are run as auton
units which enables mobility and easy plug-and-replace of functionality.

The main goal of ABOS was to increase flexibility, and this, in our humble opinion, has b
achieved to a greater extent than we could have hoped for. System functionality, being i
mented by autonomous agents in the kernel, can be replaced and extended transparently
user processes that are currently running in the system. This gives an extremely high deg
flexibility while at the same time retaining an equally high degree of availability. Moreover,
this we find very interesting, you can install a new release of the operating system without
having to restart the computer!

A particularly interesting part of ABOS is the file system. Each file is embedded in an ag
through which all calls to the file are filtered. This file agent can also, as all agents, react in re
to its environment, and thus update the file or notify other entities on the system when som
happens. By embedding each file in an agent, the files are given more responsibility and a po
ity to influence the way they are stored and handled. Among the benefits of this solution a
possibility to migrate and replicate, which improves performance. Security, including access
trol and encryption, can be tailored for every file. The files can even present different views t
ferent users. The most obvious disadvantages are that the files increase in size to be able
around its code and state, and that a file access will result in more code executed in order to
the specific behaviour of a file. A prototype of the file system has been implemented, and the
ibility and benefits discussed above are confirmed by this implementation.

4. CONCLUSIONS

Traditionally the structure of the operating system is static, and applications need to adjust
structure. In some cases this implies a trade-off between what you want to do and what the o
ing system allows. ABOS allows developers to adjust the operating system kernel to the ap
tions running on it, while still being able to run more than one program concurrently. Also, AB
has the potential to deliver new and more powerful services than traditional operating sys
such as those provided by the file system.

We are convinced that future operating system kernels will be more modularized and cust
able than they are today. Our work shows that agents provide a promising way to achieve th


	ABOS - an Agent-Based Operating System
	Mikael Svahnberg, Paul Davidsson, and Håkan Grahn
	Department of Software Engineering and Computer Science University of Karlskrona/Ronneby, Soft-Ce...
	1. Introduction
	2. General layout of ABOS
	Figure 1. The layout of ABOS

	3. Evaluation
	4. Conclusions



