
A Limit Study of Thread-Level Speculation in JavaScript
Engines — Initial Results

Jan Kasper Martinsen and Håkan Grahn
School of Computing

Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

{Jan.Kasper.Martinsen,Hakan.Grahn}@bth.se

Anders Isberg
Sony Mobile Communication AB

SE-221 88 Lund, Sweden
Anders.Isberg@sonymobile.com

ABSTRACT
JavaScript is a programming language for interactive clientside
functionalities in web applications. It is a sequential pro-
gramming language, so it cannot take advantage of multicore
processors. Previously Thread-Level Speculation has been
used to take advantage of multicore processors for JavaScript
execution in web applications with promising results execu-
tion time wise, but with a large memory overhead. In this
study we have evaluated the effects of limiting the amount
of memory, the number of threads and the depth of specula-
tion in Thread-Level Speculation. Our results indicate that
we can tune these parameters to improve execution time and
reduce the memory overhead.

1. INTRODUCTION
JavaScript is a dynamically typed, object based scripting
language with run-time evaluation typically used for dy-
namic clientside functionality in web applications. Several
optimization techniques have been suggested to decrease the
execution time [4, 14, 8]. However, the decrease in execution
time has been measured on a set of benchmarks, which have
been reported unrepresentative for JavaScript execution in
real-world web applications [5, 11, 12]. A result of this is
that optimization techniques such as just-in-time compila-
tion often fails to decrease the JavaScript execution time in
popular web applications [6].

Fortuna et al. [3] showed that there is a significant potential
for parallelism in many web applications with a potential
of a speedup up to 45 times compared to the sequential ex-
ecution time. To take advantage of this observation and
to hide the complexity of parallel programming from the
JavaScript programmer, one approach is to dynamically ex-
tract parallelism from a sequential program using Thread-
Level Speculation (TLS) [13]. The performance potential
of TLS has been shown for applications with static loops,
statically typed languages, and in Java bytecode environ-
ments [9, 10]. In [7], we used the Squirrelfish JavaScript en-
gine, which is part of WebKit, and performed experiments

on a number of popular web applications.We employed an
aggressive speculation scheme, so even if we were able to
decrease the execution time significantly, our approach had
a high memory overhead.

In this paper we extend previous studies by limiting the ex-
ecution resources for TLS, i.e., the amount of memory, the
number of threads, and the speculation depth. We imple-
ment the limitations in Squirrelfish and evaluate the effects
on the execution time using 15 web applications.

Our initial results show that we can achieve most of the
performance increase with relatively limited resources. We
find that 32-128 MB memory, 16 threads, and a specula-
tion depth of 4 is enough to reach most of the performance
increase of TLS for the studied web applications.

2. EXPERIMENTAL METHODOLOGY
Our TLS is implemented in the Squirrelfish [14] JavaScript
engine which is part of WebKit [7]. We use nested method
level speculation and all data conflicts are detected and roll-
backs are done when conflicts arise or when we perform com-
mit and we can no longer ensure the sequential semantics.

In Table 2 we selected popular web applications [1] to cover
different types of web applications, while making sure that
these were being used by a large group of users. We have
defined and recorded a set of use-cases for the selected web
applications and executed them in WebKit.

To enhance reproducibility, we automatically execute the
various use-cases in a controlled fashion [2]. As a result, we
can ensure that we spend the same amount of time on var-
ious operations. A detailed description of the methodology
for performing these experiments is found in [5].

We have extended the Squirrelfish TLS implementation with
three parameters that allow us to tune the maximum mem-
ory available (in MB), the maximum number of threads,
and the maximum depth in nested speculation. When we
encounter a JavaScript function suitable for speculation, i.e.,
that is previously unspeculated we first check the supplied
parameters. If the current amount of memory used for spec-
ulation, the maximum number of active threads or the max-
imal speculation depth is below the specified limit, we spec-
ulate. If a parameter is above the limit, we do not speculate
and continue to execute the function sequentially.

Application Description

Google Search engine
Facebook Social network
YouTube Online video service
Wikipedia Online community driven encyclopedia
Blogspot Blogging social network
MSN Community service from Microsoft
LinkedIn Professional social network
Amazon Online book store
Wordpress Framework behind blogs
Ebay Online auction and shopping site
Bing Search engine from Microsoft
Imdb Online movie database
Myspace Social network
BBC News paper for BBC
Gmail Online web client from Google

Table 1: Popular web applications used in these ex-
periments

All experiments are conducted on a system running Ubuntu
10.04 that is equipped with dual quad-core processors and
16 GB main memory. The execution time measured is the
JavaScript execution time in Squirrelfish, rather than the
overall execution time of the whole web application. We
execute each case 10 times, and then take the median of the
execution time.

3. EXPERIMENTAL RESULTS
In Section 3.1, Section 3.2 and Section 3.3 we have limited
the amount of memory available for speculation, the max-
imum number of threads and the speculation depth. We
have measured the execution time relative to the sequen-
tial execution time. The horizontal line in the figures is
the sequential execution time for comparison. We have also
measure the memory usage, the number of speculations and
the number of rollbacks.

3.1 Limiting the amount of available memory
The most important results in Figure 1 are: (i) the execu-
tion time generally decreases with an increased amount of
available memory, and (ii) most of the performance increase
is achieved with a relatively small amount of memory (32MB
- 128MB).

We see that for all cases except two, the execution time does
not decrease beyond 512MB. This indicates that for most
of the cases we do not need more than 512MB in order to
decrease execution time with Thread-Level Speculation. For
wikipedia and bing there is no change in the behaviour when
we increase the allowed amount of memory. Therefore these
cases do not need more than 4MB to decrease the execution
time.

An interesting case is amazon where the execution time is
lower than the sequential execution time for 4MB, then the
execution time gradually increases up to 64MB, and from
that point it gradually decreases until it reaches a point were
there is not set any restrictions on the amount of available
memory. The execution time is only lower than the sequen-
tial execution time for 4MB and when no limitation is set

on the amount of available memory. Between 8 and 512MB,
the execution time is higher than the sequential one.

This means that the speculation process, while being able
potentially to speculate on many JavaScript functions, does
not automatically decreases the execution time. By look-
ing at the number of rollbacks, we see that for amazon the
number is quite high. For the no restriction, we see that the
number of speculations is around 2000 higher than when a
limitation of 512MB is set. Still the number of rollbacks is
the same for both. This suggest that we are able to specu-
late on a sufficiently large number of function calls, which in
turn allows us to have a decrease in the execution time, and
makes the execution time lower than the sequential execu-
tion time. For amazon we see that it is faster (or similar) to
the sequential execution time for a limitation of 4MB and
no restriction. The first one hardly speculates, and does not
have any rollbacks. The last one speculates, but the rela-
tionship between rollbacks and speculation makes it possible
to make it speculate on a sufficient number of functions mak-
ing the execution time lower than the sequential execution
time.

The relationship between increasing the amount of used mem-
ory and the decrease in execution time is however not a con-
tinuous one for all of the cases. For instance for google and
linkedin, the execution time is lower for 8MB than for 16MB,
for msn the execution time is lower for 32MB than for 64MB,
and for bcc 512MB it is lower than when no restrictions are
set.

In Figure 1 we see that there is a clearer correlation be-
tween an increase in memory size and the highest number of
threads than between an increased memory size and a de-
creased execution time. There is a limitation to the number
of threads that are possible to extract when we increase the
memory size. We see in Figure 1 that only 5 of the web
applications are able to use more than a maximum of 50
threads regardless of the amount of available memory for
speculation.

For some of the web applications there is a relationship be-
tween an increased number of threads and a decreased exe-
cution time (but this is not true for all). However, the gain
in decreased execution time when the number of threads in-
creases often becomes quite small. If we look at the average
number of threads, we see that for many of the applications
it is sufficient with 100 threads to get the lowest execution
time.

In Figure 2 we see the number of speculations and the num-
ber of rollbacks when we limit the memory size. There is
a clear correlation between an increased memory usage and
an increased number of speculations. Unfortunately, we see
that an increasing amount of memory, which means more
speculations, also means an increased number of rollbacks.
However, comparing the number of speculations and the
number of rollbacks in more detail, we find that very few
of the speculations result in a rollback. For example, imdb

has at most approximately 5000 speculations, while it only
has approximately 150 rollbacks at most. This corresponds
to a misspeculation rate below 3%. The results for the other
web applications are similar. If we compare the number of

Figure 1: The relative execution time (upper) and the highest number of threads (lower) when we limit the
available memory to 4, 8, 16, 32, 64, 128, 256, 512MB and with no restriction on the memory usage

speculations when the available memory increases and the
increased number of rollbacks, we see that the number of
speculations increases at a higher rate than the number of
rollbacks.

In summary, the most striking observation from limiting the
amount of memory is that in order to decrease the execu-
tion time, it is often sufficient with between 32 and 128MB
to get most of the performance improvements. Looking at
the overall results from limiting the amount of memory, we
observe that in order to have the lowest possible execution
time it is important to have a relatively large number of
threads running simultaneously, a sufficient number of spec-
ulations and a low number of rollbacks. However, it is not
necessary to use a very aggressive speculation scheme with
unlimited memory resources.

3.2 Limiting the number of available threads
In Figure 3, we present the relative execution time and mem-
ory overhead when we limit the number of parallel threads
for speculation. The most important observation is that only

a small number of threads are necessary in order to achieve
most of the performance increase. Our results indicate that
16 threads seem to be enough for the studied web applica-
tions. The optimal number of threads in order to decrease
the execution time mostly is between 8 and 32, since 13 out
of 15 have the lowest execution time with this number of
threads. The results in Figure 3 show that only youtube is
able to take advantage of more than 128 threads. However,
the decrease in execution time by increasing the number of
threads from 32 to 128 is very small. We have also observed
a clear relationship between an increased memory usage and
an increased number of threads. This can be understood by
that a large number of threads, means a larger number of
speculations, which means a larger number of information
stored incase of a rollback.

In Figure 4 we present the number of speculations and the
number of rollbacks for different maximum number of threads.
We see that the number of speculations increases with the
number of threads. However, for 12 out of 15 web appli-
cations, the number of speculations does not increase when
the maximum number of threads is over 16 threads. This

Figure 2: The number of speculations (upper) and the number of rollbacks (lower) when we limit the memory
usage to 4, 8, 16, 32, 64, 128, 256, 512MB and with no restriction on memory usage

suggests that we are not able to find a sufficient number of
functions to execute concurrently.

From the number of rollbacks we see that there is a signifi-
cant increase in the number of rollbacks from 2 to 8 threads.
However, there is often a decrease in the number of rollbacks
as the maximum number of threads increases from 16 up to
no limitation on the number of threads. This pattern is quite
common, first the number of rollbacks increases, then after
the number of rollbacks reaches a maximum, the number of
rollbacks gradually decreases as the number of threads in-
creases. If we compare the graphs in Figure 4, we see that
there is not a clear correlation between an increased number
of speculations and an increased number of rollbacks. This
suggests that a larger number of threads does not necessar-
ily mean a larger number of rollbacks. In fact, if we have
a certain number of threads it might mean the opposite, an
increased number of threads might even reduce the number
of rollbacks.

If we restrict the number of threads, we see that for 10 out
of the 15 cases, no restriction on the number of threads does
not yield the lowest execution time. This means that having

a higher number of threads does not necessarily mean a lower
execution time. Another observation is that for 11 out of the
cases, the highest execution time is with a restriction on two
threads. Which suggests that the number of threads must
be higher than two in order to take advantage of TLS and
decrease execution time.

These observations mean that uncritically increasing the
number of threads might not be beneficial to decrease exe-
cution time. The optimal number of threads to decrease the
execution time is between 8 and 32. A maximum number of
threads set to less than 8 could mean that we are not able to
create a sufficient number of threads and therefore are un-
able to decrease the execution time. Further, we have also
observed that increasing the maximum number of threads
over 32 may even decrease the execution time.

In Figure 7 we have measured the relative increase in max-
imum number of threads when we tune the limit on the
number of threads and we see that for up to 32 threads
most cases are able to double the maximum number by tun-
ing the amount of available threads. This suggest that exe-
cution wise there is a limitation on increasing the available

Figure 3: The relative execution time (upper) and the memory usage (lower) when we limit the number of
threads to 2, 4, 8, 16, 32, 64, 128 and with no restriction on the maximum number of threads.

threads beyond 32. For youtube, we are able to increase it
beyond a factor 2 going from 128 to 407 threads. Execution
time wise, the increase in the number of threads in this case
does not make any real difference.

3.3 Limiting the depth of speculation
From Figure 5 we see that the execution time is the highest
at depth 1 (i.e., no nested speculation). This observation
indicates that nested speculation is necessary to decrease
the execution time. However, the execution time increases
compared to the lowest execution time when we speculate
too deep, so the largest depth does not mean the lowest
execution time. For example, we are often not able to take
advantage of very deep nested speculation, and for most of
the cases we are not able to gain anything by decreasing the
speculation depth below 16. Therefore, there is a penalty to
speculating too deep, and the optimal speculation depth in
relation to execution time is between 4 and 16.

In Figure 6 we have measured the relative increase in the
maximum number of threads running simultaneously when
we tune the speculation depth and we see the relationship
between the depth and the maximum number of threads

that we are able to use. We see that the number of threads
increases together with the depth, before it flattens around
depth 16. This suggests that there is a limitation to the
number of speculations, and thereby the function calls we
are able to extract with the nested speculation. However in-
terestingly this limit is not at depth 1, so nested speculation
is important in order to find a sufficient number of function
calls to speculate on.

In Figure 8 we see that the number of speculations (and to
a certain degree the number of rollbacks) decreases as the
speculation depth increases. This suggests that the number
of rollbacks, and the conflicts does not increase with an in-
creased speculation depth. This means that with an higher
depth on speculations, functions that will run as threads will
have less chance of a conflict with one another, which in turn
means less likeliness for a rollback. This, in addition to find-
ing a larger number of functions to speculate on, is one of
the advantages of nested speculation. We also see that there
is a clear relationship between an increasing depth and an
increased memory usage.

Figure 4: The number of speculations (upper) and the number of rollbacks (lower) when we limit the
maximum number of threads to 2, 4, 8, 16, 32, 64, 128, and with no restrictions on the number of threads.

4. CONCLUSION
In this study, we have evaluated the performance effects
when limiting the available memory, the number of threads,
and the depth of nested speculations. The results indicate
that for the majority of the cases, it is not beneficial to use a
too aggressive speculation scheme, since tuning these three
parameters can decrease the execution time while decreas-
ing the available memory. We have found that 16 threads,
32MB–128 MB of memory, and a speculation depth of be-
tween 4–16 often result in the best performance. Finally, our
results show that nested speculation is necessary in order for
Thread-Level Speculation to be beneficial.

Our results show that TLS is a suitable technique for increas-
ing the performance of web applications on embedded de-
vices with multicore processors, and where a limited amount
of memory is available. The experimental evaluation is per-
formed with eight cores on a dual quad core processor. From
the number of speculations and the number of threads run-
ning concurrently, there is a clear indication that there is
a large potential for an even higher performance with an
increased number of cores.

Acknowledgments
This work was partly funded by the Industrial Excellence
Center EASE - Embedded Applications Software Engineer-
ing, (http://ease.cs.lth.se).

5. REFERENCES
[1] Alexa. Top 500 sites on the web, 2010.

http://www.alexa.com/topsites.
[2] J. Brand and J. Balvanz. Automation is a breeze with

autoit. In SIGUCCS ’05: Proc. of the 33rd Annual ACM
SIGUCCS Conf. on User services, pages 12–15, New York,
NY, USA, 2005. ACM.

[3] E. Fortuna, O. Anderson, L. Ceze, and S. Eggers. A limit
study of javascript parallelism. In 2010 IEEE Int’l Symp.
on Workload Characterization (IISWC), pages 1–10, Dec.
2010.

[4] Google. V8 JavaScript Engine, 2010.
http://code.google.com/p/v8/.

[5] J. K. Martinsen and H. Grahn. A methodology for
evaluating JavaScript execution behavior in interactive web
applications. In Proc. of the 9th ACS/IEEE Int’l Conf. On
Computer Systems And Applications, pages 241–248,
December 2011.

[6] J. K. Martinsen, H. Grahn, and A. Isberg. A comparative
evaluation of JavaScript execution behavior. In Proc. of the

Figure 5: The relative execution (upper) time and memory usage (lower) when we limit the speculation depth
to 1, 2, 4, 8, 16, 32, and with no restriction on the depth.

11th Int’l Conf. on Web Engineering (ICWE 2011), pages
399–402, June 2011.

[7] J. K. Martinsen, H. Grahn, and A. Isberg. The effect of
thread-level speculation on a set of well–known web
applications. In Fourth Swedish Workshop on Multi-Core
Computing (MCC-11), November 2011.

[8] Mozilla. What is SpiderMonkey?, 2010.
http://www.mozilla.org/js/spidermonkey/.

[9] C. E. Oancea, A. Mycroft, and T. Harris. A lightweight
in-place implementation for software thread-level
speculation. In SPAA ’09: Proc. of the 21st Symp. on
Parallelism in Algorithms and Architectures, pages
223–232, August 2009.

[10] C. J. F. Pickett and C. Verbrugge. Software thread level
speculation for the Java language and virtual machine
environment. In LCPC ’05: Proc. of the 18th Int’l
Workshop on Languages and Compilers for Parallel
Computing, pages 304–318, October 2005. LNCS 4339.

[11] P. Ratanaworabhan, B. Livshits, and B. G. Zorn. JSMeter:
Comparing the behavior of JavaScript benchmarks with
real web applications. In WebApps’10: Proc. of the 2010
USENIX Conf. on Web Application Development, pages
3–3, 2010.

[12] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
analysis of the dynamic behavior of JavaScript programs.
In PLDI ’10: Proc. of the 2010 ACM SIGPLAN Conf. on

Programming Language Design and Implementation, pages
1–12, 2010.

[13] P. Rundberg and P. Stenström. An all-software thread-level
data dependence speculation system for multiprocessors.
Journal of Instruction-Level Parallelism, pages 1–28, 2001.

[14] WebKit. The WebKit open source project, 2010.
http://www.webkit.org/.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 / 1
 4 / 2

 8 / 4
 16 / 8

 32 / 16

no restriction / 32

In
c
re

a
s
e
 i
n
 n

u
m

b
e
r

o
f
th

re
a
d
s

depth

blogspot
google

bbc
ebay

mailgoogle

bing
imdb

myspace
wikipedia
youtube

linkedin
msn

amazon
facebook

wordpress

Figure 6: The number of threads we are able to
use, and the difference going from one depth to
another when we limit the depth to 2, 4, 8, 16, 32
and no limitation

 0

 1

 2

 3

 4

 5

4 / 2
8 / 4

16 / 8

32 / 16

64 / 32

128 / 64

no restriction / 128

In
c
re

a
s
e
 i
n
 n

u
m

b
e
r

o
f
th

re
a
d
s

threads

blogspot
google

bbc
ebay

mailgoogle

bing
imdb

myspace
wikipedia
youtube

linkedin
msn

amazon
facebook

wordpress

Figure 7: The relative differences going from 2 to
4, 4 to 8, 8 to 16, 16 to 32, 32 to 64, 64 to 128 and
128 to no limitation when we limit the number of
threads to 2, 4, 8, 16, 32, 64, 128 and no limitation

Figure 8: The number of speculations (upper) and the number of rollbacks (lower) when we limit the depth
to 2, 4, 8, 16, 32, and with no restriction on the depth.

