The Effect of Thread-Level Speculation on a Set of
Well-known Web Applications

Jan Kasper Martinsen and Hakan Grahn
School of Computing
Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

Anders Isberg
Sony Ericsson Mobile Communications AB
SE-221 88 Lund, Sweden
Anders.Isberg@sonyericsson.com

{Jan.Kasper.Martinsen,Hakan.Grahn}@bth.se

ABSTRACT

Previous studies have shown that there are large differences
between the workload of established JavaScript benchmarks
and popular Web Applications. It has also been shown that
popular optimization techniques, such as just-in-time com-
pilation, many times degrade the performance of Web Ap-
plications. Further, since JavaScript is a sequential language
it cannot take advantage of multicore processors.

In this paper, we propose to use Thread-Level Speculation
(TLS) as an alternative optimization technique for Web Ap-
plications written in JavaScript. Our TLS approach is based
on speculation at the function level. We have implemented
TLS in WebKit, a state-of-the-art web browser and JavaScript
engine. Our results show speedups between 2 and 8 on
eight cores for seven popular Web Applications, without any
JavaScript source code changes at all. The results also show
few roll-backs and the additional memory requirements for
our speculation is up to 17.8 MB for the studied Web Ap-
plications.

1. INTRODUCTION

During the last years have many applications moved to or
evolved on the World Wide Web. Such applications are of-
ten referred to as web applications. Web applications can
be defined in different ways, e.g., as an application that is
accessed over the network from a web browser, as a com-
plete application that is solely executed in a web browser,
and of course various combinations thereof. Social network-
ing web applications, such as Facebook [17], Twitter [12],
and Blogger [3], have turned out to be popular, being in the
top-25 web sites on the Alexa list [1] of most popular web
sites. All these three applications use the interpreted lan-
guage JavaScript [10] extensively for their implementation.
In fact, almost all of the top-100 sites on the Alexa list use
JavaScript to some extent.

JavaScript is a dynamically typed, object-based scripting
language with run-time evaluation, where execution is done

in a JavaScript engine [9, 25, 16], i.e., an interpreter/virtual
machine that parses and executes the JavaScript program.
Due to a higher demand for performance, several optimiza-
tion techniques have been suggested along with sets of bench-
marks. However, these benchmarks have been reported as
unrepresentative [14, 21, 22], and current optimization tech-
niques could degrade the performance of popular Web Ap-
plications [15].

JavaScript is a sequential language and cannot take advan-
tage of multicore processors. This is unfortunate, since For-
tuna et al. [8] showed that there exist significant potential
parallelism in many JavaScript applications, up to 45x was
reported. However, they have not implemented support for
parallel execution in any JavaScript engine. Many browsers
support "Web Workers’ [24] that allow parallel execution
of tasks in Web Applications based on a message passing
paradigm, but it is still the programmer who is responsible
for finding and expressing the parallelism.

To hide some of the details of the under-laying parallel hard-
ware, an approach is to dynamically extract parallelism from
a sequential program using Thread-Level Speculation (TLS)
techniques [23]. The performance potential of TLS has been
shown for applications with static loops, statically typed
languages, and in Java bytecode environments. In an earlier
work [13], we proposed to use TLS in a JavaScript context.

In this paper, we extend the previous work with mainly two
contributions: (i) an implementation of TLS in the state-of-
the-art SquirrelFish JavaScript engine [25] found in WebKit,
and (ii) a performance evaluation of TLS for JavaScript on
seven popular Web Applications, e.g., BlogSpot, Facebook,
and YouTube, rather than on established benchmarks. The
execution and behaviour of a Web Application is dependent
not only of the JavaScript code, but also of the interaction
with the web browser and the DOM tree. However, we de-
liberately focus only on the JavaScript part in this study.

Our results show that there is a potential to execute a large
number of functions as threads, that the JavaScript in Web
Applications might be well suited for such an optimization
technique, and that we are able to improve the performance
by between 2 and 8 times on a dual quad-core machine as
compared to a of sequential execution. However there are
also a number of challenges; The memory requirements in-
creases by up to 17.8 MB in our measurements and the fea-
tures of dynamical languages add additional challenges.

2. THREAD-LEVEL SPECULATION FOR
WEB APPLICATIONS

2.1 Thread-Level Speculation Principles

TLS aims to dynamically extract parallelism from a sequen-
tial program. This can be done both in hardware and soft-
ware. One popular approach is to allocate each loop itera-
tion to a thread. Then, we can (ideally) execute as many
iterations in parallel as we have processors. However, data
dependencies may limit the number of iterations that can
be executed in parallel. Further, the memory requirements
and run-time overhead for detecting data dependencies can
be considerable.

Between two consecutive loop iterations we can have three
types of data dependencies: Read-After- Write (RAW), Write-
After-Read (WAR), and Write-After-Write (WAW). A TLS
implementation must be able to detect these dependencies
during run-time using information about read and write ad-
dresses from each loop iteration. A key design parameter is
the precision of what granularity the TLS system can detect
data dependency violations.

When a data dependency violation is detected, the execu-
tion must be aborted and rolled back to safe point in the
execution. Thus, all TLS systems need a roll-back mecha-
nism. The book-keeping related to this functionality results
in both memory overhead as well as run-time overhead. In
order for TLS systems to be efficient, the number of roll-
backs should be low.

A key design parameter for a TLS system is the data struc-
tures used to track and detect data dependence violations.
The more precise tracking of data dependencies, the more
memory overhead is required. TLS implementations can
differ depending on whether they update data speculatively
’in-place’, i.e., moving the old value to a buffer and writing
the new value directly, or in a special speculation buffer.

2.2 Software-Based Thread-Level Speculation
There exists a number of different software-based TLS pro-
posals, and we review some of the most important ones here.
It should be noted that all these studies have worked with
applications written in C, Fortran, or Java.

Bruening et al. [4] proposed a TLS system that targets loops
where the memory references are stride-predictable. Fur-
ther, it is one of the first techniques that is applicable to
while-loops where the loop exit condition is unknown un-
til the last iteration. The results show speed-ups of up to
almost five on 8 processors.

Rundberg and Stenstréom [23] proposed a TLS implementa-
tion that resembles the behaviour of a hardware-based TLS
system. The main advantage with their approach is that it
precisely tracks data dependencies, thereby minimizing the
number of unnecessary roll-backs cased by false-positive vi-
olations. The downside is high memory overhead. They
show a speedup of up to ten times on 16 processors for three
applications.

Kazi and Lilja developed the course-grained thread pipelin-
ing model [11] exploiting coarse-grained parallelism. On

an 8-processor machine they achieved speed-ups of between
5 and 7. Bhowmik and Franklin [2] developed a compiler
framework for extracting parallel threads from a sequential
program for execution on a TLS system yielding speed-ups
between 1.64 and 5.77 on 6 processors.

Cintra and Llanos [7] present a software-based TLS sys-
tem that speculatively executes loop iterations in parallel
within a sliding window. By using optimized data struc-
tures, scheduling mechanisms, and synchronization policies
they manage to reach in average 71% of the performance of
hand-parallelized code for six applications.

Chen and Olukotun present two studies on [5, 6] how method-
level parallelism can be exploited using speculative tech-
niques. On four processors, their results show speed-ups of
3—4,2—-3, and 1.5—2.5 for floating point applications, mul-
timedia applications, and integer applications, respectively.

Picket and Verbrugge [19, 20] developed SableSpMT, a frame-
work for method-level speculation and return value predic-
tion in Java programs. Their solution is implemented in a
Java Virtual Machine and they obtain at most a two-fold
speed-up on a 4-way multi-core processor.

Oancea et al. [18] present a novel software-based TLS pro-
posal that supports in-place updates. Further, their pro-
posal has a low memory overhead with a constant instruc-
tion overhead, at the price of slightly lower precision in
the dependence violation detection mechanism. However,
the scalability of their approach is superior due to the fact
that they avoid serial commits of speculative values, which
in many other proposals limit the scalability. The results
show that their TLS approach reaches in average 77% of
the speed-up of hand-parallelized, non-speculative versions
of the programs.

3. THREAD-LEVEL SPECULATION

IMPLEMENTATION FOR JAVASCRIPT
We have used the Squirrelfish JavaScript interpreter which
is part of WebKit [25], a state of the art web browser en-
vironment, and modified it for TLS. We have made some
modifications so it would be easier to execute as a thread.
More specifically, we use a switch statement instead of a
goto statement (where the goto labels are predefined mem-
ory locations), and disabled just-in-time compilation. In
addition, we have modified the interpreter function so it can
be executed from a thread, and the input parameters to the
interpreter were modified so they sent as a part of a struc-
ture. A general view of how the speculation is done is shown
in Figure 1. If the interpreter makes a call to a JavaScript
function, a new thread is spawned and placed in the thread
pool. Before the new thread is spawned, the state of the
threads in the thread pool, a set of writes and reads, and
the values of the JavaScript program are saved for possible
rollbacks.

Initially the entire executed JavaScript program, which in
our case is extracted from an execution in the web browser,
is sent to a thread that executes the interpreter. The first
thread is not speculated and will never be re-executed. There-
fore, we do not need to store the data that is part of this
thread’s execution. We start the thread with an initial value

=< om0
| | |

®

Figure 1: An example of TLS. First a new thread is
spawned, the state is then saved, before it spawns
another thread which in turn will have a conflict
with the thread it was spawned from. Upon a con-
flict the state is restored.

realtime set to 0. For each executed bytecode instruction,
the value of realtime is increased by 1.

When the main thread is initialized, it is given a unique id
and starts to execute. The extracted program contains the
data of Squirrelfish (which means for instance the content
of the Squirrelfish registers) and the opcodes of the byte-
codes. We have added a counter which we denote as the
sequential time. The value of sequential time starts from
0 and is equivalent to the number of executed bytecode in-
structions.

When we execute the main thread and encounter a section
that is suitable for speculation, i.e., it starts with the op-
code op_enter and ends with the opcode op_ret. This might
be a JavaScript function defined in the JavaScript program,
or it could be a function which is part of a Web Applica-
tion’s event. When we encounter this type of opcodes, we do
the following. We record the sequential time for op_enter.
We examine whether it has previously been speculated, by
looking up the sequential time counter ps in a list of pre-
vious speculations. We denote this list as previous. If the
value at this index is equal to 0 then it has not previously
been speculated, otherwise, if this value is equal to 1 then
it has previously been speculated. If ps is 1, we continue
execution in the same thread, i.e., we do not speculate, and
execute this section. However, inside this (non-speculative)
section we might encounter another section that is suitable
for speculation. If ps is 0, then this section is an candidate
for speculation and we denote ps as a fork point.

If ps is a fork point, then we set the value of its index to 1 in
previous, to be sure that this is not speculated later in case
of a rollback. We copy all the associate values which will be
used in case this speculation is unsuccessful. These values
are the following: The list of modified global values (we
describe this below), the list of associated values from each
thread (we describe this below). In addition we store the
id of the parent thread. We pass a copy of realtime, equal
to the parent thread’s realtime. We assign the program
from the sequential time op_enter to the sequential time
of op_ret for this thread. If there is no thread available,
we create a new one from a list of uninitialized threads.

If there is an available thread, e.g., available as a previous
failed speculation, this thread is repopulated from this fork
point.

In these studies, we look at conflicts between global variables
and ids. Ids are special for JavaScript as they can be cre-
ated at any point of time, and can be defined with a global
scope. During execution, we might encounter four different
opcodes which manipulate global variables or ids:
op_put_global_var, which writes a value to a specific global
variable, op_get_global_var, which reads a value from a spe-
cific global variable, op_put_by_id, which writes to a specific
globally accessible id, and op_get_by_id, which reads from a
specific globally accessible id.

When we encounter one of the four cases during one of
the thread executions we do the following. We extract the
realtime, the sequential time, an unique identification for
the variable (which is either the index of the global variable
or the name of the id), the type of variable (either global
or id) and the type of operation (either a write or a read
operation). We then check the variable conflict against a
list previous, where earlier reads or writes are indexed by a
unique identity of the variable.

There are four kind of cases that we test against, partly
shown in Figure 2:

(i) The current operation is a read, and there is a previous
read with the same unique identification. In this case,
the order in which the variable is read does not matter.

(ii) The current operation is a read, and there is a previ-
ous write operation with the same unique identifica-
tion. In this case, we must check the realtime and the
sequential time, so that the following does not occur.
We do not accept that the read happened in realtime
before the write, if the read happened after the write in
sequential time. Likewise, we do not accept that the
read happened in realtime after the write, if the read
was happening before the write in sequential time.

(iii) The current operation is write, and there is a previous
read operation with the same unique identification. In
this case we check that the realtime together with the
sequential time, so that the following does not occur.
We do not accept that the write happens in realtime
before the read if read happens before the write in
sequential time. Likewise, we do not accept that write
happens after read in realtime, if write happens before
read in sequential time.

(iv) The current operation is a write and the previous op-
eration is a write. We do not accept that this write
happens before the previous write in realtime, if this
had the other order in sequential time. Likewise, we
do not accept that write happens after the compared
write if write happened in realtime before write in
sequentialtime. Once we have checked against all ear-
lier entries and the previous (and no conflict did occur)
that value of this operation is added to the previous
list.

In addition we could end up in a situation where several of
the threads perform a write or read operation at the same

realtime sequential time operation id)
a

123 153 read '
realtime sequential time operation id
ok ——— 119 2034 read 'a'
realtime sequential time operation id
notok L——— 125 23 write '’
realtime sequential time operation id)
123 122 write b’
realtime sequential time operation id
Ok f—— 128 2034 read 'b'

realtime sequential time operation id
notok L———» 128 121 write '’

Figure 2: Values of sequential time and realtime at
different phases of the speculation.

realtime. To handle this, we have done this check after
realtime is increased by 1, and perform the test above it-
erative for all the operations. Likewise, if the list of unique
identities is empty, we insert the value.

To get an unique identificator for id is trivial as it is simply
a string with the associated name. Global variables on the
other hand is an index of a list, the same global variable has
a different list position in this list when the function calls
are nested. To be able to track the global variable we are
tracking this global variables between function calls. From
this tracking we are able to find an unique identificator from
a global variable that is computed based on the depth of the
function call, as well as its position in the list.

Case (ii), (iii), and (iv) force us to do a rollback to en-
sure program correctness. The idea of a rollback is that the
program is re-executed from a point before the conflict oc-
curred. More specifically, we rollback to a point before the
current speculation that led to the conflict. When we en-
counter such a problem, we note the current thread where
the conflict is, and we note its parent thread (i.e, the thread
where the spawn point is found). At this point information
related to the various threads are extracted. We extract in-
formation from this point, such as previous at this point,
the number of associated threads at this point, the values
of the associated registers, the values of the global variables
and id are restored for the associated threads, and so are
variable conflicts in previous.

Even though we have a set of threads that are supposed
to be active, it is likely that there might have been created
threads after this point of time, and that these not associated
with the current state of the TLS system. Therefore, we
need to recursively go through the threads and their parent
threads that are now part of the active state. The resulting
list contains the threads which are necessary in the current
state of execution. The remainder of the threads and their
associated interpreter are stopped and set to an idle status
for later reuse.

When a thread reaches its end of execution (encounter its
associated op_ret), its modification of global variables and id
need to be committed back to its parent thread, as shown in
Figure 3. However, this can first be done after threads that
have been created from the completed thread’s fork points

have in turn completed their execution. These threads, are
denoted as child threads and their manipulations to global
variables and ids are to be committed to the current thread.
This is also the case for the main or the initial thread, after
the program completes execution after all the threads have
completed execution they are committed to the main thread.

[1

create thread / commit
create thread/‘—_(Jcommit

Figure 3: Two speculative threads are executed and
committed when no conflict occurs.

In our implementation we are rather pessimistic. When a
thread completes execution, and commits its values, we do
not remove the associated read and writes from global vari-
ables and ides that are no longer relevant. Therefore there
might be conflicts, which are not between active threads,
but rather are conflicts that were before the threads were
committed.

A challenge when using TLS in Web Applications, is the
underlying run-time system. There might be several events
linked to user interaction, timed events, or modification of
a specific element that are outside of the JavaScript inter-
preter, e.g., accesses to the DOM tree, but are sent to the
interpreter for execution. Many of these events are suit-
able candidates for speculation. However, they also pose a
problem. Assume that we speculate on a mouse click event,
that is associated with a certain JavaScript function. As-
sume also that this function manipulates something, such
that there will be a conflict, and we would need to rollback
to ensure program correctness. We are able to rollback to a
safe state in the interpreter, but the event and the executed
JavaScript could become inconsistent. In this study, we de-
liberately focus only on the JavaScript interpreter part.

4. EXPERIMENTAL METHODOLOGY
Our Thread-Level Speculation is implemented in the Squir-
relfish [25] JavaScript engine which is part of WebKit, a
state-of-the-art browser environment. We have selected seven
popular Web Applications from the Alexa list [1] of most
used web sites. Then, we have defined and recorded a set of
use-cases from Wikipedia, YouTube, Imdb, Wordpress, Face-
book, BlogSpot, and Linkedin using minimal user interaction.
The methodology is further described in [14].

To escape some of the runtime issues, we do the following;
We first execute the Web Application in a modified ver-
sion of WebKit. This modified version saves the executed
JavaScript bytecodes, together with the associated values
for each execution. This information is later re-executed in
the use cases.

All experiments are conducted on a system running Ubuntu
10.04 and equipped with two quad-core processors and 16

GB main memory. In all measurements we have measured
the execution time in the JavaScript engine, rather than the
execution time of the overall Web Application.

5. EXPERIMENTAL RESULTS

We start by comparing the execution times of the differ-
ent Web Applications without and with TLS. The execution
times shown in Figure 4, are:

Tewe(with TLS) | Tege(without TLS), i.e., a value lower
than 1 means that the execution time is lower with TLS
enabled.

Our results show that TLS improves the execution time of
the JavaScript in the selected Web Applications between
8.39 (Youtube) and 1.86 (Linkedin) as compared to the se-
quential execution time. We see further that the execution
time is improved for all of the cases.

1.2

Web Applicatons R

Relative execution time
o
o
T
.

Figure 4: Improved execution time of JavaScript
in the Web Application relative to running it as a
sequential application

In order to better understand and analyze the execution
time reduction, we have measured a number of metrics. In
Table 1 we show measurements of the number of rollbacks,
the average call depth when we need to do a rollback, the
maximum number of concurrently runnable threads, the to-
tal number of speculations, and the memory usage. The
number of rollbacks are the number of times we have to go
back to the previous fork point after we had a conflict, the
maximum number of concurrently runnable threads is the
highest number of threads running at once, the total number
of speculations is the total number of speculations we were
able to make (including the rollbacks), the average depth
of the search to remove data is how deep we had to search
to find functions that were associated with the current state
and the total of memory requirements of how much data the
various cases uses.

The results show that in general, there are many functions
that we are able to speculate successfully on. It is possible
to speculate on between 12 and 7349 JavaScript functions
in the applications. We also found that there are very few
rollbacks in general, at most 156 rollbacks are performed.
The average depth of the recursive search to remove data

from previous speculations are between 2.27 and 9.16, which
indicates that speculations are deeply nested. We also found
a very large number of concurrently runnable threads, which
is between 8 and 407 . Finally, the average memory usage
before each rollback® it is between 1.1 and 17.8 MB. This
amount to the part saved, in case of a rollback.

The worst execution time is 1.86 times faster than the exe-
cution time of the sequential version, while the best is 8.39
times faster (Youtube). For the Youtube case there is a much
higher number of functions running as threads, potential
functions for speculations, together with a low number of
rollbacks. We also notice that the average depth of search to
remove data associated with previous speculations is fairly
low relative to the number of speculations. For the Facebook
case it is different, there is a relative small number of specu-
lations, a relative high number of rollbacks, and the recursive
searches for data associated with previous speculations are
fairly deep, which affects the execution time negatively.

We see that conflicts between functions are relatively rare.
The worst ratio (rollbacks/speculation) between rollbacks

and speculations are 0.05, while the best (ignoring the Wikipedia

case without any rollbacks) is 0.003. There is also a poten-
tial for running a large number of threads simultaneously
from 8 (Wikipedia) to 407 (Youtube).

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an implementation of thread-
level speculation in the Squirrelfish JavaScript engine. Our
results shows that TLS is an appropriate method for signifi-
cantly reducing the execution time of JavaScript in Web Ap-
plications. Speedups of between 1.86 and 8.39 were achieved
as compared to a sequential execution, and for all of the cases
the execution time is improved. For most of the cases the
improved execution speed is close to two-fold or less.

We speculate on JavaScript function calls, and JavaScript
functions in Web Applications are often bound to events.
Our results indicate that these functions rarely access the
same variables (being either global variables or ids). One
challenge of using TLS for Web Applications is that there
is a large number of functions that we are able to success-
fully speculate on. On beforehand we do not know which
one will cause a rollback. This means that the memory re-
quirements may be high due to a small number of rollbacks.
For example, for the Youtube case we have a small num-
ber of rollbacks, so we continuously accumulate information
to handle potential rollbacks (on average 17.8 MB), even
though it seldom happens.

We outline four paths for future work on thread-level spec-
ulation in Web Applications: (i) We need to develop better,
maybe adaptive, heuristics for deciding when to speculate
on a particular function. (ii) Just-in-time compilation is a
common technique in web browsers, but it has been shown
to be unsuitable for many Web Applications [15]. A pos-
sible approach can be to combine just-in-time compilation
and TLS. (iii) The memory requirements for TLS is rather

The Wikipedia case has no rollbacks, therefore we present
the amount of memory upon completion of the program in
that case.

Table 1: Number of rollbacks, average depth for recursive search deleting associated values with previous
speculations, maximum number of threads, number of speculations for the 7 selected applications, and average

memory usage before each rollback (in megabytes).

Application | Number of | Average | Maximum number | Number of Memory
of rollbacks depth of threads speculations | usage (MB)
facebook 51 9.16 27 968 7.1
linkedin 51 2.27 36 1815 7.1
imdb 156 6.85 54 5300 17.8
youtube 25 5.44 407 7349 17.1
wordpress 63 4.55 99 5852 9.7
blogspot 15 2.6 16 778 1.6
wikipedia 0 0 8 12 1.1
high. We have observed that rollbacks rarely occur, so in [12] B. Krishnamurthy, P. Gill, and M. Arlitt. A few chirps

most cases we don’t really need the information saved. (iv)
Finally, the interaction between the JavaScript engine and
the runtime system (web browser) needs to be studied. For
example, how does the JavaScript execution interact with

the

DOM tree, and how do we perform speculations and

potential rollbacks in this context.

Acknowledgments

This work was partly funded by the Industrial Excellence
Center EASE - Embedded Applications Software Engineer-
ing, (http://ease.cs.lth.se).

7.
(1]

2]

(3]

(4]

(5]

[6]

[7]

(8]

[9

(10]

(11]

REFERENCES

Alexa. Top 500 sites on the web, 2010.
http://www.alexa.com/topsites.

A. Bhowmik and M. Franklin. A general compiler
framework for speculative multithreading. In SPAA ’02:
Proceedings of the fourteenth annual ACM Symposium on
Parallel Algorithms and Architectures, pages 99-108, New
York, NY, USA, 2002. ACM.

Blogger: Create your free blog, 2010.
http://www.blogger.com/.

D. Bruening, S. Devabhaktuni, and S. Amarasinghe.
Softspec: Software-based speculative parallelism. In
FDDO-3: Proceedings of the 3rd ACM Workshop on
Feedback-Directed and Dynamic Optimization, 2000.

M. K. Chen and K. Olukotun. Exploiting method-level
parallelism in single-threaded Java programs. In Proc. of
the 1998 Int’l Conf. on Parallel Architectures and
Compilation Techniques, page 176, 1998.

M. K. Chen and K. Olukotun. The Jrpm system for
dynamically parallelizing Java programs. In ISCA ’03:
Proc. of the 30th Int’l Symp. on Computer Architecture,
pages 434-446, 2003.

M. Cintra and D. R. Llanos. Toward efficient and robust
software speculative parallelization on multiprocessors. In
PPoPP ’03: Proc. of the 9th ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming, pages
13-24, 2003.

E. Fortuna, O. Anderson, L. Ceze, and S. Eggers. A limit
study of javascript parallelism. In 2010 IEEE Int’l Symp.
on Workload Characterization (IISWC), pages 1-10, Dec.
2010.

Google. V8 JavaScript Engine, 2010.
http://code.google.com/p/v8/.

JavaScript. http://en.wikipedia.org/wiki/JavaScript,
2010.

I. H. Kazi and D. J. Lilja. Coarse-grained thread pipelining:
A speculative parallel execution model for shared-memory
multiprocessors. IEEE Trans. on Parallel and Distributed
Systems, 12(9):952-966, 2001.

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

[25]

about twitter. In WOSP ’08: Proc. of the 1st Workshop on
Online Social Networks, pages 19-24, 2008.

J. K. Martinsen and H. Grahn. An alternative optimization
technique for JavaScript engines. In Third Swedish
Workshop on Multi-Core Computing (MCC-10), pages
155-160, 2010.

J. K. Martinsen and H. Grahn. A methodology for
evaluating JavaScript execution behavior in interactive web
applications. In The 9th ACS/IEEE Int’l Conf. On
Computer Systems And Applications, 2011.

J. K. Martinsen, H. Grahn, and A. Isberg. A comparative
evaluation of JavaScript execution behavior. In Proc. of the
11th Int’l Conf. on Web Engineering (ICWE 2011), pages
399-402, June 2011.

Mozilla. What is SpiderMonkey?, 2010.
http://www.mozilla.org/js/spidermonkey/.

A. Nazir, S. Raza, and C.-N. Chuah. Unveiling Facebook:
A measurement study of social network based applications.
In IMC ’08: Proc. of the 8th ACM SIGCOMM Conf. on
Internet Measurement, pages 43-56, 2008.

C. E. Oancea, A. Mycroft, and T. Harris. A lightweight
in-place implementation for software thread-level
speculation. In SPAA ’09: Proc. of the 21st Symp. on
Parallelism in Algorithms and Architectures, pages
223-232, August 2009.

C. J. F. Pickett and C. Verbrugge. SableSpMT: a software
framework for analysing speculative multithreading in java.
In PASTE ’05: Proc. of the 6th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pages 59—66, 2005.

C. J. F. Pickett and C. Verbrugge. Software thread level
speculation for the Java language and virtual machine
environment. In LCPC ’05: Proc. of the 18th Int’l
Workshop on Languages and Compilers for Parallel
Computing, pages 304—318, October 2005. LNCS 4339.

P. Ratanaworabhan, B. Livshits, and B. G. Zorn. JSMeter:
Comparing the behavior of JavaScript benchmarks with
real web applications. In WebApps’10: Proc. of the 2010
USENIX Conf. on Web Application Development, pages
3-3, 2010.

G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
analysis of the dynamic behavior of JavaScript programs.
In PLDI ’10: Proc. of the 2010 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages
1-12, 2010.

P. Rundberg and P. Stenstrém. An all-software thread-level
data dependence speculation system for multiprocessors.
Journal of Instruction-Level Parallelism, pages 1-28, 2001.
W3C. Web Workers — W3C Working Draft 01 September
2011, Sep. 2011. http://www.w3.org/TR/workers/.
‘WebKit. The WebKit open source project, 2010.
http://www.webkit.org/.

