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ABSTRACT
Thread Level Speculation at function level has been sug-
gested as a method to automatically (or semi-automatically)
extract parallelism from sequential programs. While there
have been multiple implementations in both hardware and
software, little work has been done in the context of dynamic
programming languages such as JavaScript.

In this paper we evaluate the effects of a simple Thread Level
Speculation approach, implemented on top of the Rhino1 7R2
JavaScript engine. The evalauation is done using the well-
known JavaScript benchmark suite V8. More specifically,
we have measured the effects of our null return value pre-
diction approach for function calls, conflicts with variables
in a global scope, and the effects on the execution time.

The results show that our strategy to speculate on return
values is successful, that conflicts with global variables oc-
cur, and for several applications are the execution time im-
proved, while the performance decrease for some applica-
tions due to speculation overhead.

1. INTRODUCTION
Current and future processor generations are based on mul-
ticore architectures, and it has been suggested that perfor-
mance increase will mainly come from an increasing number
of processor cores [19]. However, in order to achieve an effi-
cient utilization of an increasing number of processor cores,
the software needs to be parallel as well as scalable [1, 15,
28]. Meanwhile many applications are moved to the World
Wide Web, as so called Web Applications, and new popular
programming languages, e.g., JavaScript [11], have emerged.
JavaScript is a dynamically typed, object-based scripting
language with run-time evaluation, where execution is done
in a JavaScript engine. It has also been stated from the
language’s designers that JavaScript was created with web
designers in mind, giving the designers a mean to quickly
add interactivity to web pages without too much complex-
ity. Distribution of programs in the form of source-text files

have also been advantageous with respect to platform in-
dependence. However, currently no JavaScript engine fully
supports parallel execution of threads.

Developing parallel applications is difficult, time consum-
ing and error-prone and therefore we would like to ease the
burden of the programmer. To hide some of the details,
an approach is to dynamically extract parallelism from a
sequential program using Thread-Level Speculation (TLS)
techniques [4, 13, 18, 21, 25, 6]. For example, software TLS
approaches often extract parallelism from loops or functions.
A number of consecutive loop iterations or function calls are
speculatively executed in parallel, where a data dependency
check mechanism detects dependency violations which forces
us to restart the program from a certain point in the exe-
cution flow (a rollback). The performance potential of TLS
has been shown for applications with static loops, statically
typed languages, and in byte code environments.

In this paper we describe an approach to apply TLS to the
Rhino JavaScript engine [17] and evaluate the performance
of the V8 benchmark [10]. In our study, JavaScript function
calls are under certain conditions executed as a threads, and
dependency violations are detected and solved at runtime.
Initial results indicate some promises for TLS in JavaScript
engines if the number of function calls is large enough. This
paper makes the following contributions:

• Demonstrates that speculating on return values based
on historical data in a dynamically typed language
such as JavaScript is fruitful.

• Global variables are likely to cause conflicts in function
calls executed as a thread.

• Demonstrates some performance increases by specula-
tion on null-returning function calls.

The rest of the paper is organized as follows. Section 2
provides some background on thread-level speculation and
JavaScript. Then, we present our method in Section 3. Our
experimental setup is presented in Section 4, while the ex-
perimental results are presented in Section 5. The paper
ends with the conclusions in Section 6.

2. BACKGROUND
In Section 2.1 we present the general principles of thread-
level speculation and some previous implementation propos-



als. Then, we discuss the JavaScript language, that is our
target in this study, in Section 2.2.

2.1 Thread-Level Speculation
2.1.1 Thread-Level Speculation Principles
Thread-level speculation (TLS) aims at dynamically extract-
ing parallelism from a sequential program. This can be done
in many ways: in hardware, e.g., [5, 23, 27], and software,
e.g., [4, 13, 18, 21, 25]. In most cases, the main target of the
techniques is for-loops and the main idea is to allocate each
loop iteration to a thread. Then, ideally, we can execute as
many iterations in parallel as we have processors.

There are, however, some limitations. Data dependencies
between loop iterations may limit the number of iterations
that can be executed in parallel. Further, the memory re-
quirements and run-time overhead for managing the nec-
essary information for detecting data dependencies can be
considerable.

Between two consecutive loop iterations we can have three
types of data dependencies: Read-After-Write (RAW), Write-

After-Read (WAR), and Write-After-Write (WAW). There-
fore must a TLS implementation be able to detect these de-
pendecies during run-time using dynamic information about
read and write addresses from each loop iteration. A key de-
sign parameter here is the precision in the detection mech-
nism, i.e., at what granularity can a TLS system detect data
dependency violations. High dependence detection precision
usually require high memory overhead in a TLS implemen-
tation.

When a data dependency violation is detected the execu-
tion must be aborted and rolled back to safe point in the
execution. Thus, all TLS systems need a roll-back mecha-
nism. In order to be able to do roll-backs, we need to store
both speculative updates of data as well as the original data
values. As result, this book-keeping results in both memory
overhead as well as run-time overhead. In order for TLS
system to be efficient, the number of roll-backs shall be low.

A key design parameter for a TLS system is the data struc-
tures used to track and detect data dependence violations.
In general, the more precise tracking of data dependencies,
the more memory overhead is required. Unfortunately, one
effect of imprecise dependence detection is the risk of false-
positive violations. A false-positive violation is when a de-
pendence violation is detected when no actual dependence
violation is present. As a result, unnecessary roll-backs need
to be done, which decreases the performance.

TLS implementations can differ depending on whether they
update data speculatively ’in-place’, i.e., moving the old
value to a buffer and writing the new value directly in mem-
ory, or in a special speculation buffer. Updating data in-
place usually result in higher performance if the number of
roll-backs is low, but lower performane when the number of
roll-backs is high since the cost of doing roll-backs is high.

2.1.2 Software-Based Thread-Level Speculation
There exists a number of different software-based TLS pro-
posals, and we review some of the most important ones here.

Bruening et al. [4] proposed a software-based TLS systems
that targets loops where the memory references are stride-
predictable. Further, it is one of the first techniques that
is applicable to while-loops where the loop exit condition is
unknown until the last iteration. They evaluate their tech-
nique on both dense and sparse matrix applications, as well
as on linked-list traversals. The results show speed-ups of
up to almost five on 8 processors, but also show slow-downs
for some rare cases.

Rundberg and Stenström [25] proposed a TLS implementa-
tion that resembles the behavior of a hardware-based TLS
system. The main advantage with their approach is that it
precisely tracks data dependencies, thereby minimizing the
number of unnecessary roll-backs cased by false-positive vi-
olations. However, the downside of their approach is high
memory overhead. They show a speedup of up to ten times
on 16 processors for three applications written in C from the
Perfect Club Benchmarks [2].

Kazi and Lilja developed the course-grained thread pipelin-
ing model [13] for exploiting coarse-grained parallelism. They
suggest to pipeline the concurrect execution of loop itera-
tions speculatively, using run-time dependence checking. In
their evalution they used four C and Fortran applications
(two were from the Perfect Club Benchmarks [2]). On an 8-
processor machine they achieved speed-ups of between 5 and
7. They later extended their to also support Java programs
[12].

Bhowmik and Franklin [3] developed a compiler framework
for extracting parallel threads from a sequential program
for execution on a TLS system. They support both specu-
lative and non-speculative threads, and out-of-order thread
spawning. Further, their work address both loop as well
as as non-loop parallelism. Their results from 12 applica-
tions taken from three benchmark suites (SPEC CPU95,
SPEC CPU2000, and Olden) show speed-ups between 1.64
and 5.77 on 6 processors when using both speculative and
non-speculative threads.

Cintra and Llanos[9] present a software-based TLS system
that speculatively execute loop iterations in parallel within
a sliding window. As a result, given a window size of W

at most W loop iterations/threads can execute in paral-
lel at the same time. By using optimized data structures,
scheduling mechanisms, and synchronization policies they
manage to reach in average 71% of the performance of hand-
parallelized code for six applications taken from, e.g., the
SPEC CPU2000 [26] and Perfect Club [2] Benchmark suites.

Chen and Olukotun present in two studies [7, 8] how method-
level parallelism can be exploited using speculative tech-
niques. The idea is to speculatively execute method calls in
parallel with code after the method call. Their techniques
are implemented in the Java runtime parallelizing machine
(Jrpm). On four processors, their results show speed-ups of
3-4, 2-3, and 1.5-2.5 for floating point applications, multi-
media applications, and integer applications, respectively.

Picket and Verbrugge [20, 21] developed a TLS framework,
SableSpMT, for method-level speculation and return value
prediction in Java programs. Their solution is implemented



in a Java Virtual Machine, called SableVM, and thus works
mainly at the byte code level. They obtain at most a two-
fold speed-up on a 4-way multi-core processor.

Oancea et al. [18] present a novel software-based TLS pro-
posal that supports in-place updates. Further, their pro-
posal has a low memory overhead with a constant instruction
overhead, at the price of slighty lower precision in the depen-
dence violation detection mechanism. However, the scalabil-
ity of their approach is superior due to the fact that they
avoid serial commits of speculative values, which in many
other proposals limit the scalability. Oancea et al. evaluate
their approach using seven applications from three bench-
mark suites (SciMark2, BYTEmark, and JOlden). The re-
sults show that their TLS approach reaches in average 77%
of the speed-up of hand-parallelized, non-speculative ver-
sions of the programs.

Kejariwal et al. [14] evaluated the performance potential
of TLS using the SPEC CPU2000 Benchmarks [26]. SPEC
CPU2000 consists of 26 applications written in C and For-
tran. They found that TLS has a mean speed-up potential
of approximately 40% over the applications in addition to
the true thread-level parallelism exploited.

A succeeding study by Prabhu and Olukotun [22] analyzed
what types of thread-level parallelism that can be exploited
in the SPEC CPU2000 Benchmarks. By going through each
of the application, they identified a number of useful trans-
formations, e.g., speculative pipelining, loop chunking/slicing,
and complex value prediction. They also identified a num-
ber of obstacles that hinder or limit the usefulness of TLS
parallelization.

One striking observation from all studies presented above
is that they all have worked with applications written in C,
Fortran, or Java. The Java studies have usually been done at
the bytecode level. We have found no study that addresses
the applicability and performance potential of TLS in a dy-
namically typed scripting language, such as JavaScript.

2.2 JavaScript
JavaScript [11] is a dynamically typed, object-based script-
ing language with run-time evaluation. JavaScript applica-
tion execution is done in a JavaScript engine, i.e., an in-
terpretator/virtual machine that parses and executes the
JavaScript program. Examples of JavaScript engines are
Google’s V8 engine [10], WebKit’s Squirrelfish [29], and Mozilla’s
SpiderMonkey and TraceMonkey [16].

The performance of these script engines have increased sig-
nificantly during the last years, reaching very high single-
thread performance. However, today no JavaScript engine
supports parallel execution of threads. Although this will
propably change in a near future, it is still the programmer
who is responsible of finding and expressing the parallelism.

3. METHOD
To evaluate the effects of TLS in JavaScript we have mod-
ified an existing Java based JavaScript engine Rhino1 7R2
(Rhino) [17]. Rhino takes the JavaScript source code and
compiles it into an internal byte code representation which
in turn is executed.

When we encounter an interpreted function call instruction
(rather than a native one) we consider this function call as
a candidate that could be executed as a thread. We have
made the following assumption; If a function calls returns a
null value it is more likely to be independent from the rest of
the program. To do this, we record the return value of the
function call (along with the ID of the function). If it returns
null, we will execute this function as a thread the next time
it is called. If a data dependence violation (conflict) occurs
for this function call, it is marked and will never be called
as a thread again.

If a function call violates any other parts in the program (or
similar executing functions), we perform a rollback, i.e., re-
store the engine to the point before we executed the selected
function call, and re-execute the function sequentially. The
process, both to store the state and to restore a state of the
JavaScript engine is expensive. In our experiments we uti-
lize the continuations functionality found in later versions of
Rhino. However, this also adds some limitations in a sense
that we are, e.g., not allowed to restart eval functions.

During the execution, we monitor writes and reads, both in
the active threads that execute function calls, as well as the
main program that spawned the threads. We do not yet al-
low threaded function calls to spawn new threaded function
calls. Once the threaded function call returns, changes are
committed, writes and reads are compared, and common ob-
jects are merged (the threaded function keeps track of the id
of the original object). We keep track of a counter together
with read and writes which allow us to keep track of conflicts
between threaded function calls as well as the main thread.
If a conflict is detected (e.g, both a speculative thread and
the main program have modified an object), a rollback is
performed. If we have multiple concurrent function calls,
these are ended, and we return to the first executed func-
tion call.

To evaluate the simple TLS approach implemented in the
modified Rhino JavaScript engine, we use the V8 JavaScript
benchmark suite. The different applications in the V8 suite
is listed in Table 1, along with short description. The deltablue
benchmark does not execute correctly in Rhino, so we choose
to omit it from our experiments.

Table 1: V8 Benchmark programs.

Program Description

Richards OS kernel simulation benchmark
DeltaBlue One-way constraint solver
Crypto Encryption and decryption benchmark
RayTrace Ray tracer benchmark
EarleyBoyer Classic Scheme benchmarks
RegExp Regular expression benchmark generated
Splay Data manipulation benchmark

4. EXPERIMENTS
In our experiments, we have measured and evaluated the
following aspects:

• The number of functions that return a null value.



• The effect of two strategies for return value prediction.

• The number of data dependence violations (conflicts)
with global variables.

• The relative performance improvement by enabling TLS.

If the interpreted function call does not return a value (or re-
turns a null value), it indicates less dependencies with other
parts of the executed program. We have counted the num-
ber of functions that return a null value and the number of
functions that return a non-null value, respectively.

The first time we encounter a function call we do not know
its return value. We have made two approaches to predict if
the function returns a null or not. First we count the number
of return null instructions in the byte code associated with
the given function call. If the number of return null instruc-
tions is larger or equal to 1 and the number of null return
instructions are higher than the other return instructions,
we predict that the function will return a null value.

The second approach is an extension of the first approach.
Each time a function returns, we store: the name of the func-
tion and the function’s return value. When we encounter a
function call instruction, we first search the associated byte
code for return null instructions, and then a previous re-
turn value. If this function has been executed previously,
we override the decision made from the findings in the asso-
ciated byte code, and then choose null return or not based
on historical data.

We have measured each time a threaded function call ac-
cesses a global variable, when this variable is manipulated
also by the main program. We have measured the amount
of functions that accesses a global variable, while the main
program at the same time manipulates the same variable.

We have evaluated the effects of TLS on the execution time
on two different systems. One dual-core laptop with a Win-
dows Vista operating system and a quad core workstation
with an Ubuntu Linux operating system. We ran Rhino with
Java 1.7.0. In the experiments, we speculate on all function
calls with a null return value that are called the first time or
that have previously been successfully executed as a thread.

5. RESULTS
We see in Figure 1 that functions with null return account
for a relatively small fraction (at most 16% in the Richards
benchmark) of the total number of function calls in the
benchmarks. However, the number of function calls do not
completely reflect the workload of these functions. We have
studied the benchmark code, and found that some functions
that return null also encapsulate a large amount of value
returning function calls.

Figure 2 and Figure 3 show the results from the extended
prediction strategy, where we also predict on the function
return value. In the figures we show how often the predic-
tion is correct, for both static and dymanic guesses. We see
that the extension to predicting the return value based on a
function significantly improves the chances for predicting if
the return value is null or not.
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For most of the cases this strategy seems to almost always
make a correct prediction. However, this is not the case
when making a prediction based on the associated byte code.
We have denoted the percentage of the correct static predic-
tions and correct dynamic predictions after the name of the
benchmark in the Figure 2. We also see in Figure 3 that the
prediction of ”not-null” value based on the associated byte
code performs very badly. The reason seems to be that for
functions with a large amount of null returning instructions,
this does not necessarily imply that it is more likely that a
null returning instruction is executed.

The results presented in Figure 4 show that conflicts be-
tween function calls executed speculatively and the main
program’s global variables happen for approximately half of
the functions. Therefore, accesses to global variables from
functions pose a threat.

While the functions with a null return value do not account
for so many of the total number of function calls, we have
found some performance gain for some of the benchmarks.
In Figure 5 we present the relative execution times for the
applications running with and without TLS on two different
computer systems. The execution times are normalize to
the sequential execution time without TLS. We see that the
execution time is improved for 4 of the cases. However, the
improvement is relatively small, only a 22% reduction in the
best case.

6. CONCLUDING REMARKS
Figure 5 shows that the V8 benchmarks do not offer much of
a performance improvement with the TLS technique. The
largest gain in execution time is 22% on a quad core com-
puter for the Richards benchmark. This can be explained
by looking at Figure 1, where we see that the number of
interpreted functions with a null value is low. However, for
the Richard case, there is a larger improvement than the
number of null return values indicates. This suggests that
null value functions perhaps also encapsulates return value
functions.
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We also observe for the Earley benchmark, that there could
be a relationship between the difficulties to speculate on the
return values. For instance, we see in Figure 1 that there is
a large amount of non-null return values, and a small num-
ber of null return values for the Earley benchmark. This
suggests that is harder to speculate on return values. In ad-
dition, we see in Figure 4 that the number of global conflicts
is especially high for the Earley benchmark. The raytracing
benchmark in Figure 4 has a large amount of conflicts with
global variables, but still there are some improvemens when
the benchmark is run on a dual core PC. This illustrates the
penalty of creating and handling a large amount of threads,
and that a large number of speculations also increases the
risk for rollbacks which are demanding to administrate.

Even though the execution time is not significantly improved
it have been suggested that benchmarks such as V8 might
not be representative for the workload of real-world web ap-
plications [24]. We know from previous studies that real
world web application’s workloads consist of a large num-
ber of anonymous function calls (which return a null value).
The event-driven model found in web browsers, also sug-
gests that these functions might be even more important
than the V8 benchmark suite suggests. This suggests that a
TLS technique could be more powerful, with a different set
of benchmark, or perhaps in a real-life context.
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