
Editor: H̊akan Grahn
Blekinge Institute of Technology, Sweden

First Swedish Workshop on
Multi-Core Computing

MCC-08

November 27-28, 2008

Ronneby, Sweden

Swedish Multicore
Initiative

2 c© 2008, Copyright held by the individual authors

CONTENTS

Contents

Preface . 5
Program committee . 5
Workshop Program . 7
Paper session 1: Programming on specialized platforms . 9

A Domain-specic Approach for Software Development on Multicore Platforms
Jerker Bengtsson and Bertil Svensson . 11

On Sorting and Load-Balancing on GPUs
Daniel Cederman and Philippas Tsigas . 20

Non-blocking Programming on Multi-core Graphics Processors
Phuong Hoai Ha, Philippas Tsigas, and Otto J. Anshus 30

Paper session 2: Language and compilation techniques . 41
OpenDF - A Dataflow Toolset for Reconfigurable Hardware and Multicore Systems

Shuvra S. Bhattacharyya, Gordon Brebner, Johan Eker, Jörn W. Janneck, Marco
Mattavelli, Carl von Platen, and Mickael Raulet . 43

Optimized On-Chip Pipelining of Memory-Intensive Computations on the Cell BE
Christoph W. Kessler and Jörg Keller . 50

Automatic Parallelization of Simulation Code for Equation-based Models with Software Pipelin-
ing and Measurements on Three Platforms
H̊akan Lundvall, Kristian Stav̊aker, Peter Fritzson, and Christoph Kessler 60

Paper session 3: Coherence and consistency . 71
A Scalable Directory Architecture for Distributed Shared Memory Chip Multiprocessors

Huan Fang and Mats Brorsson . 73
State-Space Exploration for Concurrent Algorithms under Weak Memory Orderings

Bengt Jonsson . 82
Model Checking Race-Freeness

Parosh Aziz Abdulla, Frédéric Haziza, and Mats Kindahl 89
Paper session 4: Library suppport for multicore computing . 97

NOBLE: Non-Blocking Programming Support via Lock-Free Shared Abstract Data Types
H̊akan Sundell and Philippas Tsigas . 99

LFTHREADS: A lock-free thread library
Anders Gidenstam and Marina Papatriantafilou . 107

Wool - A Work Stealing Library
Karl-Filip Faxén . 117

c© 2008, Copyright held by the individual authors 3

CONTENTS

4 c© 2008, Copyright held by the individual authors

PREFACE

Preface

Multicore processors have become the main computing platform for current and future com-
puter systems. This calls for a forum to discuss the challenges and opportunities of both
designing and using multicore systems. The objective of this workshop is to bring together
researchers and practitioners from academia and industry to present and discuss the recent
work in the area of multicore computing. The workshop is the first of its kind in Sweden, and
it is co-organized by Blekinge Institute of Technology and the Swedish Multicore Initiative
(http://www.sics.se/multicore/).

The technical program was put together by a distinguished program committee consist-
ing of people from both from academia and industry in Sweden. We received 16 extended
abstracts. Each abstract was sent to four members of the program committee. In total, we
collected 64 review reports. The abstracts were judged based on their merits in terms of
relevance to the workshop, significance and originality, as well as the scientific and presenta-
tion quality. Based on the reviews, the program committee decided to accept 12 papers for
inclusion in the workshop, giving an acceptance rate of 75%. The accepted papers cover a
broad range of topics, such as programming techniques and languages, compiler and library
support, coherence and consistency issues, and verification techniques for multicore systems.

This workshop is the result of several people’s effort. First of all, I would like to thank
Monica Nilsson and Madeleine Roveg̊ard for their help with many practical arrangements
and organizational issues around the workshop. Then, I would like to thank the program
committee for their dedicated and hard work, especially finishing all reviews on time despite
the short time frame so we could send out author notifications as scheduled. Finally, I would
like to thank the people in the steering committee for the Sweden Multicore Initiative for
valuable and fruitful discussions about how to make this workshop successful.

With these words, I welcome you to the workshop!

H̊akan Grahn
Organizer and Program Chair MCC-08
Blekinge Institute of Technology

Program committee

Mats Brorsson, Royal Institute of Technology
Jakob Engblom, Virtutech AB
Karl-Filip Faxén, Swedish Institute of Computer Science
H̊akan Grahn, Blekinge Institute of Technology (program chair)
Erik Hagersten, Uppsala University
Per Holmberg, Ericsson AB
Sverker Janson, Swedish Institute of Computer Science
Magnus Karlsson, Enea AB
Christoph Kessler, Linköping University
Krzysztof Kuchcinski, Lund University
Björn Lisper, Mälardalen University
Per Stenström, Chalmers University of Technology
Andras Vajda, Ericsson Software Research

c© 2008, Copyright held by the individual authors 5

PROGRAM COMMITTEE

6 c© 2008, Copyright held by the individual authors

WORKSHOP PROGRAM

Workshop Program

Thursday 27/11
10.00 - 10.30 Registration etc
10.30 - 10.45 Welcome address
10.45 - 12.15 Paper session 1: Programming on specialized platforms

A Domain-specic Approach for Software Development on Multicore Platforms
Jerker Bengtsson and Bertil Svensson

On Sorting and Load-Balancing on GPUs
Daniel Cederman and Philippas Tsigas

Non-blocking Programming on Multi-core Graphics Processors
Phuong Hoai Ha, Philippas Tsigas, and Otto J. Anshus

12.15 - 13.30 Lunch
13.30 - 14.30 Keynote speaker: Dr. Joakim M. Persson, Ericsson AB
14.30 - 15.00 Coffee break
15.00 - 16.30 Paper session 2: Language and compilation techniques

OpenDF - A Dataflow Toolset for Reconfigurable Hardware and Multicore Systems
Shuvra S. Bhattacharyya, Gordon Brebner, Johan Eker, Jörn W. Janneck, Marco Mattavelli, Carl
von Platen, and Mickael Raulet

Optimized On-Chip Pipelining of Memory-Intensive Computations on the Cell BE
Christoph W. Kessler and Jörg Keller

Automatic Parallelization of Simulation Code for Equation-based Models with Software Pipelining and
Measurements on Three Platforms
H̊akan Lundvall, Kristian Stav̊aker, Peter Fritzson, and Christoph Kessler

19.00 Dinner

Friday 28/11
8.30 - 10.00 Paper session 3: Coherence and consistency

A Scalable Directory Architecture for Distributed Shared-Memory Chip Multiprocessors
Huan Fang and Mats Brorsson

State-Space Exploration for Concurrent Algorithms under Weak Memory Orderings
Bengt Jonsson

Model Checking Race-Freeness
Parosh Aziz Abdulla, Frédéric Haziza, and Mats Kindahl

10.00 - 10.30 Coffee break
10.30 - 12.00 Paper session 4: Library suppport for multicore computing

NOBLE: Non-Blocking Programming Support via Lock-Free Shared Abstract Data Types
H̊akan Sundell and Philippas Tsigas

LFTHREADS: A lock-free thread library
Anders Gidenstam and Marina Papatriantafilou

Wool - A Work Stealing Library
Karl-Filip Faxén

12.00 Closing remarks
12.15 Lunch

c© 2008, Copyright held by the individual authors 7

WORKSHOP PROGRAM

8 c© 2008, Copyright held by the individual authors

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

Paper session 1: Programming on specialized platforms

c© 2008, Copyright held by the individual authors 9

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

10 c© 2008, Copyright held by the individual authors

A Domain-specific Approach for Software Development on Manycore Platforms

Jerker Bengtsson and Bertil Svensson
Centre for Research on Embedded Systems

Halmstad University
PO Box 823, SE-301 18 Halmstad, Sweden

Jerker.Bengtsson@hh.se

Abstract

The programming complexity of increasingly parallel
processors calls for new tools that assist programmers in
utilising the parallel hardware resources. In this paper we
present a set of models that we have developed as part of a
tool for mapping dataflow graphs onto manycores. One of
the models captures the essentials of manycores identified
as suitable for signal processing, and which we use as tar-
get for our algorithms. As an intermediate representation
we introduce timed configuration graphs, which describe
the mapping of a model of an application onto a machine
model. Moreover, we show how a timed configuration graph
by very simple means can be evaluated using an abstract
interpretation to obtain performance feedback. This infor-
mation can be used by our tool and by the programmer in
order to discover improved mappings.

1. Introduction

To be able to handle the rapidly increasing programming
complexity of manycore processors, we argue thatdomain
specific development tools are needed. The signal process-
ing required in radio base stations (RBS), see figure 1, is
naturally highly parallel and described by computations on
streams of data [9]. Each module in the figure encapsulates
a set of functions, further exposing more pipeline-, data-
and task level parallelism as a function of the number of
connected users. Many radio channels have to be processed
concurrently, each including fast and adaptive coding and
decoding of digital signals. Hard real-time constraints im-
ply that parallel hardware, including processors and accel-
erators is a prerequisite for coping with these tasks in a sat-
isfactory manner.

One candidate technology for building baseband plat-
forms is manycores. However, there are many issues that
have to be solved regarding development of complex signal
processing software for manycore hardware. One such is

Radio RX

Receiver

filter

AGC

Remove

prefix

FFT

Extract

user #1

Extract

user #2

Extract

user #2

Extract

user #N

Demodulate
 Decode

Demodulate

Demodulate

Demodulate

Decode

Decode

Decode

User data

User data

User data

User data

Scheduler

Figure 1. A simplified modular view of the
principal functions of the baseband receiver
in long term evolution (LTE) RBS.

the need for tools that reduce the programming complexity
and abstract the hardware details of a particular manycore
processor. We believe that if industry is to adopt manycore
technologythe application software, the tools and the pro-
gramming models need to be portable.

Research has produced efficient compiler heuristics for
programming languages based on streaming models of
computation (MoC), achieving good speedup and high
throughput for parallel benchmarks [3]. However, even
though a compiler can generate optimized code the pro-
grammer is left with very little control of how the source
program is transformed and mapped on the cores. This
means that if the resulting code output does not comply
with the system timing requirements, the only choice is to
try to restructure the source program. We argue thatexperi-
enced application programmers must be able to direct and
specialize the parallel mapping strategy by giving directive
tool input.

For complex real-time systems, such as baseband
processing platforms, we see a need for tunable code
parallelization- and mapping tools, allowing programmers
to take the system’s real-time properties into account dur-
ing the optimization process. Therefore, complementary to

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 11

fully automatized parallel compilers, we are proposing an
iterative code parallelization- and mapping tool flow that
allows the programmer to tune mapping by:

• analyzing the result of a parallel code map using per-
formance feedback

• giving timing constraints, clustering and core alloca-
tion directives as input to the tool

In our work we address the design and construction
of one such tool. We focus on suitable well defined
dataflow models of computation for modeling applications
and manycore targets, as well as the base for our intermedi-
ate representation for manycore code-generation. One such
model, synchronous dataflow (SDF), is very suitable for de-
scribing signal processing flows. It is also a good source for
code-generation, given that it has a natural form of paral-
lelism that is a good match to manycores. The goal of our
work is a tool chain that allows the software developer to
specify a manycore architecture (using ourmachine model),
to describe the application (using SDF) and to obtain a gen-
erated mapping that can be evaluated (using ourtimed con-
figuration graph). Such a tool allows the programmer to
explore the run time behaviour of the system and to find
successively better mappings. We believe that this iterative,
machine assisted, workflow, is good in order to keep the ap-
plication portable while being able to make trade-offs con-
cerning throughput, latency and compliance with real-time
constraint on different platforms.

In this paper we present our set of models and show how
we can analyze the mapping of an application onto a many-
core. More specifically, the contributions of this paper are
as follows:

• A parallel machine model usable for modelling array-
structured, tightly coupled manycore processors. The
model is presented in Section 2, and in Section 3 we
demonstrate modeling of one target processor.

• A graph-based intermediate representation (IR), used
to describe a mapping of an application on a particu-
lar manycore in the form of a (a timed configuration
graph). The use of this IR is twofold. We can perform
an abstract interpretation that gives us feedback about
the dynamic behaviour of the system. Also, we can use
it to generate target code. We present the IR in Section
4.

• We show in Section 5 how parallel performance can be
evaluated through abstract interpretation of the timed
configuration graph. As a proof of concept we have
implemented our interpreter in the Ptolemy II software
framework using dataflow process networks.

We conclude our paper with a discussion of our achieve-
ments and future work.

2 Model Set

In this section we present the model set for constructing
timed configuration graphs. First we discuss the application
model, which describes the application processing require-
ments, and then the machine model, which is used to de-
scribe computational resources and performance of many-
core targets.

2.1 Application Model

We model an application using SDF, which is a special
case of a computation graph [5]. An SDF graph constitutes
a network of actors - atomic or composite of variable gran-
ularity - which asynchronously compute on data distributed
via synchronous uni-directional channels. By definition, ac-
tors in an SDF graph fire (compute) in parallel when there
are enough tokens available on the input channels. An SDF
graph is computable if there exists at least one static rep-
etition schedule. A repetition schedule specifies in which
order and how many times each actor is fired. If a repeti-
tion schedule exists, buffer boundedness and deadlock free
execution is guaranteed. A more detailed description of the
properties of SDF and how repetition schedules are calcu-
lated can be found in [6].

The Ptolemy II modelling software provides an excel-
lent framework for implementing SDF evaluation- and code
generator tools [1]. We can very well consider an applica-
tion model as an executable specification. For our work, it
is not the correctness of the implementation that is in focus.
We are interested in analyzing the dynamic, non-functional
behaviour of the system. For this we rely on measures like
worst case execution time, size of dataflows, memory re-
quirements etc. We assume that these data have been col-
lected for each of the actors in the SDF graph and are given
as a tuple

< rp, rm, Rs, Rr >

where

• rp is the worst case computation time, in number of
operations.

• rm is the requirement on local data allocation, in
words.

• Rs = [rs1
, rs2

, ..., rsn
] is a sequence wherersi

is the
number of words produced on channeli each firing.

• Rr = [rr1
, rr2

, ..., rrm
] is a sequencerrj

is the number
of words consumed on channelj each firing.

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

12 c© 2008, Copyright held by the individual authors

2.2 Machine Model

One of the early, reasonably realistic, models for dis-
tributed memory multiprocessors, is the LogP model [2].
Work has been done to to refine this model, for example
taking into account hardware support for long messaging,
and to capture memory hierarchies. A more recent paral-
lel machine model for multicores, which considers different
core granularities and requirements on on-chip and off-chip
communication is Simplefit [7]. However, this model was
derived with the purpose of exploring optimal grain size and
balance between memory, processing, communication and
global I/O, given a VLSI budget and a set of computation
problems. Since it is not intended for modeling dynamic
behaviour of a program, it does not include a fine-granular
model of the communication. Taylor et al. propose a tax-
onomy (AsTrO) for comparison of scalar operand networks
[11]. They also provide a tuple based model for comparing
and evaluating performance sensitivity of on-chip network
properties.

We propose a manycore machine model based on Sim-
plefit and the AsTrO taxonomy, which allows a fairly fine-
grained modeling of parallel computation performance in-
cluding the overhead of operations associated with commu-
nication. The machine model comprises a set of parameters
describing the computational resources and a set of abstract
performance functions, which describe the computational
performance of computations, communication and memory
transactions. We will later show in Section 5 how we can
can model dynamic, non-functional behavior of a dataflow
graph mapped on a manycore target, by incorporating the
machine model in a dataflow process network.

2.2.1 Machine Specification

We assume that cores are connected in a mesh structured
network. Further that each core has individual instruction
decoding capability and software managed memory load
and store functionality, to replace the contents of core lo-
cal memory. We describe the resources of such a manycore
architecture using two tuples,M andF . M consists of a set
of parameters describing the processors resources:

M =< (x, y), p, bg, gw, gr, o, so, sl, c, hl, rl, ro >

where

• (x, y) is the number of rows and columns of cores.

• p is the processing power (instruction throughput) of
each core, inoperations per clock cycle.

• bg is global memory bandwidth, inwords per clock
cycle

• gw is the penalty for global memory write, inwords
per clock cycle

• gr is the penalty for global memory read, inwords per
clock cycle

• o is software overhead for initiation of a network trans-
fer, in clock cycles

• so is core send occupancy, inclock cycles, when send-
ing a message.

• sl is the latency for a sent message to reach the net-
work, in clock cycles

• c is the bandwidth of each interconnection link, in
words per clock cycle.

• hl is network hop latency, inclock cycles.

• rl is the latency from network to receiving core, in
clock cycles.

• ro is core receive occupancy, inclock cycles, when re-
ceiving a message

F is a set of abstract functions describing the performance
of computations, global memory transactions and local
communication:

F (M) =< tp, ts, tr, tc, tgw, tgr >

where

• tp is a function evaluating the time to compute a list of
instructions

• ts is a function evaluating the core occupancy when
sending a data stream

• tr is a function evaluating the core occupancy when
receiving a data stream

• tc is a function evaluating network propagation delay
for a data stream

• tgw is a function evaluating the time for writing a
stream to global memory

• tgr is a function evaluating the time for reading a
stream from global memory

A specifc manycore processor is modeled by giving val-
ues to the parameters ofM and by defining the functions
F (M).

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 13

3 Modeling the RAW Processor

In this section we demonstrate how we configure our ma-
chine model in order to model the RAW processor [10].
RAW is a tiled, moderately parallel MIMD architecture
with 16 programmable tiles, which are tightly connected
via two different types of communication networks: two
statically- and two dynamically routed. Each tile has a
MIPS-type pipeline and is equipped with 32 KB of data and
96 KB instruction caches.

3.1 Parameter Settings

We are assuming a RAW setup with non-coherent
off-chip global memory (four concurrently accessible
DRAM banks), and that software managed cache mode
is used. Furthermore, we concentrate on modeling usage
of the dynamic networks, which are dimension-ordered,
wormhole-routed, message-passing type of networks. The
parameters ofM for RAW with this configuration are as
follows:

M =< (x, y) = (4, 4),
p = 1,

bg = 1,

gw = 1,

gr = 6,

o = 2,

so = 1,

sl = 1,

c = 1,

hl = 1,

rl = 1,

ro = 1 >

In our model, we assume a core instruction throughput of
p operations per clock cycle. Each RAW tile has an eight-
stage, single-issue, in-order RISC pipeline. Thus, we set
p = 1. An uncertainty here is that in our current analyses,
we cannot account for pipeline stalls due to dependencies
between instructions having non-equal instruction latencies.
We need to make further practical experiments, but we be-
lieve that this in general will be averaged out equally on
cores and thereby not have too large effects on the estimated
parallel performance.

There are four shared off-chip DRAMs connected to the
four east-side I/O ports on the chip. The DRAMs can be
accessed in parallel, each having a bandwidth ofbg = 1
words per clock cycle per DRAM. The penalty for a DRAM
write is gw = 1 cycle and correspondingly for read opera-
tion gr = 6 cycles.

Since the communication patterns for dataflow graphs
are known at compile time, message headers can be pre-
computed when generating the communication code. The

overhead includes sending the header and possibly an ad-
dress (when addressing off-chip memory). We therefore set
o = 2 for header and address overhead when initiating a
message.

The networks on RAW are mapped to the core’s register
files, meaning that after a header has been sent, the network
can be treated as destination or source operand of an instruc-
tion. Ideally, this means that the receive and send occupancy
is zero. In practice, when multiple input and output dataflow
channels are merged and physically mapped on a single net-
work link, data needs to be buffered locally. Therefore we
model send and receive occupancy – for each word to be
sent or received – byso = 1 andro = 1 respectively. The
network hop-latency ishl = 1 cycles per hop and the link
bandwidth isc = 1. Furthermore, the send and receive la-
tency is one clock cycle when injecting and extracting data
to and from the network:sl = 1 andrl = 1 respectively.

3.2 Performance Functions

We have derived the performance functions by studying
the hardware specification and by making small comparable
experiments on RAW. We will now show how the perfor-
mance functions for RAW are defined.

Compute The time required to process the fire code of an
actor on a core is expressed as

tp(rp, p) =

⌈

rp

p

⌉

which is a function of the requested number of operations
rp and core processing powerp. To rp we count all in-
structions except those related to network send- and receive
operations.

Send The time required for a core to issue a network send
operation is expressed as

ts(Rs, o, so) =

⌈

Rs

framesize

⌉

× o + Rs × so

Send is a function of the requested amount of words to be
sent,Rs, the software overheado ∈ M when initiating a
network transfer, and a possible send occupancyso ∈ M .
Theframesize is a RAW specific parameter. The dynamic
networks allow message frames of length within the interval
[0, 31] words. For global memory read and write operations,
we use RAWs cache line protocol withframesize = 8
words per message. Thus, the first term ofts captures the
software overhead for the number of messages required to
send the complete stream of data. For connected actors that
are mapped on the same core, we can choose to map chan-
nels in local memory. In that case we setts to o zero time.

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

14 c© 2008, Copyright held by the individual authors

Receive The time required for a core to issue a network
receive operation is expressed as

tr(Rr, o, ro) =

⌈

Rr

framesize

⌉

× o + Rr × ro

The receive overhead is calculated in a similar way as the
send overhead, except that parameters of the receiving core
replace the parameters of the sending core.

Network Propagation Time Modeling shared resources
accurately with respect to contention effects is very difficult.
Currently, we assume that SDF graphs are mapped so that
the communication will suffer from no or a minimum of
contention. In the network propagation time, we consider
a possible network injection- and extraction latency at the
source and destination as well as the link propagation time.
The propagation time is expressed as

tc(Rs, d, sl, hl, rl) = sl + d× hl + nturns + rl

Network injection- and extraction latency is captured by
sl andrl respectively. Further, the propagation time is de-
pendent on the network hop latencyhl and the number of
network hopsd, which are determined from the source and
destination coordinates as|xs − xd| + |ys − yd|. Routing
turns add an extra cost of one clock cycle. This is captured
by the value ofnturns which, similar tod, is calculated us-
ing the source and destination coordinates.

Streamed Global Memory Read Reading from global
memory on the RAW machine requires first one send op-
eration (the core overhead which is captured byts), in or-
der to configure the DRAM controller and set the address of
memory to be read. The second step is to issue a receive op-
eration to receive the memory contents on that address. The
propagation time when streaming data from global memory
to the receiving core is expressed as

tgr = rl + d× hl + nturns

Note that memory read penalty is not included in this
expression. This is accounted for in the memory model in-
cluded in the IR. This is further discussed in Section 4

Streamed Global Memory Write Similarly to the mem-
ory read operation, writing to global memory require two
send operations: one for configuring the DRAM controller
(set write mode and address) and one for sending the data
to be stored. The time required for streaming data from the
sending core to global memory is evaluated by

tgw = sl + d× hl + nturns

Like in stream memory read, the memory write penalty
is accounted for in the memory model.

4 Timed Configuration Graphs

In this section we describe our manycore intermediate
representation (IR). We call the IR atimed configuration
graphbecause the usage of the IR is twofold:

• Firstly, the IR is a graph representing an SDF applica-
tion graph, after it has been clustered and partitioned
for a specific manycore target. We can use the IR as
input to a code generator, in order to configure each
core as well as the interconnection network and plan
global memory usage of a specific manycore target.

• Secondly, by introducing the notion of time in the
graph, we can use the same IR as input to an abstract
interpreter, in order to evaluate the dynamic behaviour
of the application when executed on a specific many-
core target. The output of the evaluator can be used ei-
ther directly by the programmer or to extract informa-
tion feedback to the tool for suggesting a better map-
ping.

4.1 Relations Between Models and Con-
figuration Graphs

A configuration graphGA
M (V, E) describes an applica-

tion A mapped on the abstract machineM . The set of ver-
ticesV = P∪B consists of coresp ∈ P and global memory
buffersb ∈ B. Edgese ∈ E represent dataflow channels
mapped onto the interconnection network. To obtain aGA

M ,
the SDF forA is partitioned into subgraphs and each sub-
graph is assigned to a core inM . The edges of the SDF that
end up in one subgraph are implemented using local mem-
ory in the core, so they do not appear as edges inGA

M . The
edges of the SDF that reach between subgraphs can be dealt
with in two different ways:

1. A network connection between the two cores is used
and this appears as an edge inGA

M

2. Global memory is used as a buffer. In this case, a ver-
tex b (and associated input- and output edges) is intro-
duced between the two cores inGA

M .

WhenGA
M has been constructed, eachv ∈ V ande ∈ E

has been assigned computation times and communication
delays, calculated using the parameters ofM and the per-
formance functionsF (M) introduced in Section 2.2. These
annotations reflect the performance when computing the ap-
plicationA on the machineM . We will now discuss how
we useA andM to configure the vertices, edges and then
computational delays ofGA

M .

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 15

4.1.1 Vertices.

We distinguish between two types of vertices inGA
M : mem-

ory vertices andcorevertices. Introducingmemoryvertices
allows us to represent global memory. Amemoryvertex can
be specified by the programmer, for example to store ini-
tial data. More typically,memoryvertices are automatically
generated when mapping channel buffers in global memory.

For core vertices, we abstract the firing of an actor by
means of a sequenceS of abstractreceive, computeand
sendoperations:

S = tr1
, tr2

. . . trn
, tp, ts1

, ts2
, . . . , tsm

Thereceiveoperation has a delay corresponding to the tim-
ing expressiontr, representing the time for an actor to re-
ceive data through a channel. The delay of acomputeoper-
ation corresponds to the timing expressiontp, representing
the time required to execute the computations of an actor
when it fires. Finally, thesendoperation has a delay corre-
sponding to the timing expressionts, representing the time
for an actor to send data through a channel.

For amemorytype of vertex, we assign delays specified
by gr andgw in the machine model to account for memory
read- and write latencies respectively.

When buildingGA
M , multiple channels sharing the same

source and destination can be merged and represented by
a single edge, treating them as a single block or stream of
data. Thus, there is always only one edgeei,j connecting
the pair(vi, vj). We add onereceiveoperation and onesend
operation to the sequenceS for each input and output edge
respectively.

4.1.2 Edges.

Edges represent dataflow channels mapped onto the inter-
connection network. The weightw of an edgeei,j corre-
sponds to the communication delay between vertexvi and
vertexvj . The weightw depends on whether we map the
channel as a point-to-point data stream over the network, or
in shared memory using amemoryvertex.

In the first case we assign the edge a weight correspond-
ing totc. When a channel buffer is placed in global memory,
we substitute the edge inA by a pair of input- and output
edges connected to amemoryactor. We illustrate this by
Figure 2. We assign a delay oftgr andtgw to the input and
output edges of thememoryvertex.

Figure 3 shows an example of a simpleA transformed
to one possibleGA

M . A repetition schedule forA in this
example is3(2ABCD)E. The repetition schedule should
be interpreted as: actorA fires 6 times, actorsB, C and
D fire 3 times, and actorE 1 time. The firing ofA is re-
peated indefinitly by this schedule. We use dashed lines for
actors ofA mapped and translated toS inside each core ver-
tex of GA

M . The feedback channel from C to B is mapped

A B

B
M

gw gr
A

e
1

e
2

e
3

w=tgw w=tgr

ts
tr

Figure 2. The lower graph (GA
M) in the fig-

ure illustrates how the unmapped channel e1,
connecting actor A and actor B, in the up-
per graph (A), has been transformed and re-
placed by a global memory actor and edges
e2 and e3.

A

B C

E

2

D

20

4

40

1 1

20 20

3

9

15

5

6A 3B 3C

E3D

12 12

120

120

9 9

15

15

120

120

Figure 3. The graph to the right is one possi-
ble GA

M for the graph A to the left.

in local memory. The edge from A to D is mapped via a
global buffer and the others are mapped as point-to-point
data streams. The integer values represent the send and
receive rates of the channels (rs andrr), before and after
A has been clustered and transformed toGA

M , respectively.
Note that these values inGA

M are the values inA multiplied
by the number of the repetition schedule.

5 Interpretation of Timed Configuration
Graphs

In this section we show how we can make an abstract
interpretation of the IR and how an interpreter can be im-
plemented by very simple means on top of a dataflow pro-
cess network. We have implemented such an interpreter us-
ing the dataflow process networks (PN) domain in Ptolemy.
The PN domain in Ptolemy is a super set of the SDF do-
main. The main difference in PN, compared to SDF, is that
PN processes fire asynchronously. If a process tries to read
from an empty channel, it will block until there is new data
available. The PN domain implemented in Ptolemy is a spe-
cial case of Kahn process networks [4]. Unlike in a Kahn
process network, PN channels have bounded buffer capac-
ity, which implies that a process also temporarily blocks

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

16 c© 2008, Copyright held by the individual authors

when attempting to write to a buffer that is full [8]. This
property makes it possible to easily model link occupancy
on the network. Conclusively, a dataflow process network
model perfectly mimics the behavior of the types of parallel
hardware we are studying. Thus, a PN model is a highly
suitable base for an intermediate abstraction for the proces-
sor we are targetting.

5.1 Parallel Interpretation using Process
Networks

Each of the core and memory vertices ofGA
M is assigned

to its own process. Each of the core and memory processes
has a local clock,t, which iteratively maps the absolute start
and stop time, as well as periods of blocking, to each oper-
ation in the sequenceS.

A core process evaluates a vertex by means of a state ma-
chine. In each clock step, the currentstateis evaluated and
then stored in thehistory. Thehistory is a chronologically
ordered list describing thestateevolution from timet = 0.

5.2 Local Clocks

The clockt is process local and stepped by means of
(not equal) time segments. The length of a time segment
corresponds to the delay bound to a certain operation or the
blocking time of a send or receive operation. The execution
of send and receive operations inS is dependent on when
data is available for reading or when a channel is free for
writing, respectively.

5.3 States

For each vertex, we record during what segments of time
computations and communication operations were issued,
as well as periods where a core has been stalled due to send-
and receive blocking. For each process, ahistory list maps
to a statetype ∈ Stateset, a start timetstart and a stop
time tstop. Thestate of a vertex is a tuple

state =< type, tstart, tstop >

TheStateSetdefines the set of possible state types:

StateSet = {receive, compute, send,

blockedreceive, blockedsend}

5.4 Clock Synchronisation

Send and receive are blocking operations. A read opera-
tion blocks until data is available on the edge and a write

receive(treceive)
tavailable = get next send event from source vertex
if(treceive >= tavailable)

tread = treceive+1

tblocked = 0
else

tread = tavailable+1

tblocked = tavailable − treceive

end if
put read event with timetread to source vertex
return tblocked

end

Figure 4. Pseudo-code of the receive func-
tion. The get and put operations block if the
event queue of the edge is empty or full, re-
spectively.

operation blocks until the edge is free for writing. Dur-
ing a time segment only one message can be sent over an
edge. Clock synchronisation between communicating pro-
cesses is managed by means ofevents. Send and receive op-
erations generate aneventcarrying a time stamp. An edge
in GA

M is implemented using channels having buffer size1
(forcing write attempts on an occupied link to block), and a
simple delay actor. It should be noted that each edge inA

needs to be represented by a pair of opposite directed edges
in GA

M to manage synchronization.

5.4.1 Synchronised Receive

Figure 4 lists pseudo code of the blockingreceivefunc-
tion. The value of the inputtreceive is the present time
at which a receiving process issues areceiveoperation.
The return value,tblocked, is the potential blocking time.
The time stamptavailable, is the time at which the mes-
sage is available at the receiving core. Iftreceive is later
or equal totavailable, the core immediately processes the
receive operation and setstblocked to 0. The receivefunc-
tion acknowledges by sending a read event to the sender,
with the time stamptread+1. Note that a channel is free
for writing as soon as the reciver has begun receiving the
previous message. Also note that blocking time, due to un-
balanced production and consumption rates, has been ac-
counted for when analysing the timing expression forsend
andreceiveoperations,Ts andTr, as was discussed in Sec-
tion 2.2. If treceive is earlier thantavailable, the receiving
core will block a number of clock cycles corresponding to
tblocked = tavailable − treceive.

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 17

5.4.2 Synchronised Send

Figure 5 lists pseudo code for the blockingsendfunction.
The value oftsend is the time at which thesendoperation
was issued. The time stamp of the read eventtavailable cor-
responds to the time at which the receiving vertex reads the
previous message and thereby also when the edge is avail-
able for sending next message. Iftsend < tavailable, asend
operation will block fortblocked = tavailable − tsend clock
cycles. Otherwisetblocked is set to0. Note that all edges
carrying receive events in theconfiguration graphmust be
initialised with a read event, otherwise interpretation will
deadlock.

send(tsend)
tavailable = get read event from sink vertex
if(tsend < tavailable)

tblocked = tavailable − tsend

else
tblocked = 0

end if
put send eventtsend + ∆e + tblocked to sink vertex
return tblocked

end

Figure 5. Pseudo-code of the send function.
The value of ∆e corresponds to the delay of
the edge.

5.5 Vertex Interpretation

Figure 6 lists the pseudo code for interpretation of a
vertex inGA

M . It should be noted that, for space reasons,
we have omitted to include the state code for global read
and write operations. The functioninterpretV ertex() is
finitely iterated by each process and the number of itera-
tions, iterations, is equally set for all vertices when pro-
cesses are initated. Each process has a local clockt and an
operation counterop cnt, both initially set to0. The opera-
tions sequenceS is a process local data structure, obtained
from the vertex to be interpreted. Furthermore, each pro-
cess has a listhistory which initially is empty. Also, each
process has a variablecurr oper which holds the currently
processed operation inS.

The vertex interpreter makes state transitions depending
on the current operationcurr oper, the associated delay
and whethersendandreceiveoperations block or not. As
discussed in Section 5.4.1, thesendand receivefunctions
are the only blocking functions that can halt the interpre-
tation in order to synchronise the clocks of the processes.

The value oftblocked is set to the return value ofsendand
receivewhen interpreting send and receive operations, re-
spectively. The value oftblocked corresponds to the length of
time asendor receiveoperation was blocked. Iftblocked has
a value> 0, a state of typeblockedsendor blockedreceive
is computed and added to thehistory.

interpretVertex()
if (list S has elements)

while(iterations > 0)
get elementop cnt in S and put incurr oper

incrementop cnt

if(curr op is a Receive operation)
settblocked = value ofreceive(t)
if(tblocked > 0)

add state ReceiveBlocked(t, tblocked) to hist.

sett = t + tblocked

end if
add state Receiving(t, ∆ of curr oper)

end if

else if(curr op is a Compute operation)
add state Computing(t, ∆ of curr oper)

end if

else if(curr op is a Send operation)
settblocked = value ofsend(t)
if(tblocked > 0)

add state SendBlocked(t, tblocked) to hist.

sett = t + tblocked

end if
add state Sending(t, ∆ of curr oper)

end if

if(op cnt reached last index ofS)
setop cnt = 0
decrementiterations

add stateEnd(t) to history

end if
sett = t + ∆ of curr oper + 1

end while
end if

end

Figure 6. Pseudo-code of the interpretVertex
function.

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

18 c© 2008, Copyright held by the individual authors

5.6 Model Calibration

We have implemented the abstract interpreter in the
Ptolemy software modeling framework [1]. Currently, we
have verified the correctness of the interpreter using a set
of simple parallel computation problems from the literature.
Regarding the accuracy of the model set, we have so far only
compared the performance functions separately against cor-
responding operations on RAW. However, to evaluate and
possibly tune the model for higher accuracy we need to do
further experimental tests with different relevant signalpro-
cessing benchmarks, especially including some more com-
plex communication- and memory access patterns.

6 Discussion

We believe that tools supporting iterative mapping and
tuning of parallel programs on manycore processors will
play a crucial role in order to maximise application per-
formance for different optimization criteria, as well as to
reduce the parallel programming complexity. We also be-
lieve that using well defined parallel models of computa-
tion, matching the application, is of high importance in this
matter.

In this paper we have presented our achievements to-
wards the building of an iterative manycore code generation
tool. We have proposed a machine model, which abstracts
the hardware details of a specific manycore and provides
a fine-grained instrument for evaluation of parallel perfor-
mance. Furthermore, we have introduced and described
an intermediate representation calledtimed configuration
graph. Such a graph is annotated with computational delays
that reflect the performance when the graph is executed on
the manycore target. We have demonstrated how we com-
pute these delays using the performance functions included
in the machine model and the computational requirements
captured in the application model. Moreover, we have in
detail demonstrated how performance of atimed configura-
tion graphcan be evaluated using abstract interpretation.

As part of future work, we need to perform further
benchmarking experiments in order to better determine the
accuracy of our machine model compared to chosen target
processors. Also, we have so far builttimed configuration
graphs by hand. We are especially interested in exploring
tuning methods, using feedback information from the eval-
uator to set constraints in order to direct and improve the
mapping of application graphs. Currently we are working
on automatising the generation of thetimed configuration
graphs in our tool-chain, implemented in the Ptolemy II
software modelling framework.

Acknowledgment

The authors would like to thank Henrik Sahlin and Peter
Brauer at the Baseband Research group at Ericsson AB, Dr.
Veronica Gaspes at Halmstad University, and Prof. Edward
A. Lee and the Ptolemy group at UC Berkeley for valu-
able input and suggestions. This work has been funded by
research grants from the Knowledge Foundation under the
CERES contract.

References

[1] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and
H. Zheng. Heterogeneous Concurrent Modeling and De-
sign in Java (Volume 1: Introduction to Ptolemy II). Techni-
cal Report UCB/EECS-2008-28, EECS Dept., University of
California, Berkeley, Apr 2008.

[2] D. Culler, R. Karp, and D. Patterson. LogP: Towards a Real-
istic Model of Parallel Computation. InProc. of ACM SIG-
PLAN Symposium on Principles and Practices of Parallel
programming, May 1993.

[3] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploit-
ing Coarse-Grained Task, Data, and Pipeline Parallelism in
stream programs. InProc. of Twelfth Int’l. Conf. on Archi-
tectural Support for Programming Languages and Operat-
ing Systems, 2006.

[4] G. Kahn. The Semantics of a Simple Language for Paral-
lel Programming. In J. L. Rosenfeld, editor,IFIP Congress
74, pages 471–475, Stockholm, Sweden, August 5-10 1974.
North-Holland Publishing Company.

[5] R. M. Karp and R. E. Miller. Properties of a Model for Par-
allel Computations:Determinancy, Termination, Queueing.
SIAM Journal of Applied Mathematics, 14(6):1390–1411,
November 1966.

[6] E. A. Lee and D. G. Messerschmitt. Static Scheduling of
Synchronous Data Flow Programs for Signal Processing.
IEEE Trans. on Computers, January 1987.

[7] C. A. Moritz, D. Yeung, and A. Agarwal. SimpleFit: A
Framework for Analyzing Design Tradeoffs in Raw Archi-
tectures.IEEE Trans. on Parallel and Distributed Systems,
12(6), June 2001.

[8] T. M. Parks. Bounded Scheduling of Process Networks.
PhD thesis, EECS Dept., University of California, Berkeley,
Berkeley, CA, USA, 1995.

[9] H. Sahlin. Introduction and overview of LTE Baseband
Algorithms. Powerpoint presentation, Baseband research
group, Ericsson AB, February 2007.

[10] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,
B. Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee,
A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal. The Raw Mi-
croprocessor: A Computational Fabric for Software Circuits
and General-Purpose Programs.IEEE Micro, 22(2):25–35,
2002.

[11] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal.
Scalar Operand Networks.IEEE Trans. on Parallel and Dis-
tributed Systems, 16(2):145–162, 2005.

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 19

On Sorting and Load-Balancing on GPUs

Daniel Cederman and Philippas Tsigas

Distributed Computing and Systems
Chalmers University of Technology

SE-412 96 Göteborg, Sweden
{cederman,tsigas}@chalmers.se

Abstract

In this paper we present GPU-Quicksort, an efficient
Quicksort algorithm suitable for highly parallel multi-core
graphics processors. Quicksort has previously been consid-
ered as an inefficient sorting solution for graphics proces-
sors, but we show that GPU-Quicksort often performs better
than the fastest known sorting implementations for graph-
ics processors, such as radix and bitonic sort. Quicksort
can thus be seen as a viable alternative for sorting large
quantities of data on graphics processors.

We also present a comparison of different load balanc-
ing schemes. To get maximum performance on the many-
core graphics processors it is important to have an even
balance of the workload so that all processing units con-
tribute equally to the task at hand. This can be hard to
achieve when the cost of a task is not known beforehand
and when new sub-tasks are created dynamically during ex-
ecution. With the recent advent of scatter operations and
atomic hardware primitives it is now possible to bring some
of the more elaborate dynamic load balancing schemes from
the conventional SMP systems domain to the graphics pro-
cessor domain.

1 Introduction

Multi-core systems are now commonly available on
desktop systems and it seems very likely that in the future
we will see an increase in the number of cores as both In-
tel and AMD targets many-core systems. But already now
there are cheap and commonly available many-core systems
in the form of modern graphics processors. Due to the

The results presented in this extended abstract appeared before in
the Proceedings of the 16th Annual European Symposium on Algorithms
(ESA 2008), Lecture Notes in Computer Science Vol.: 5193, Springer-
Verlag 2008 [2] and in the Proceedings of the 11th Graphics Hardware
(GH 2008), ACM/Eurographics Association 2008 [3].

many embarrassingly parallel problems in 3D-rendering,
the graphics processors have come quite a bit on the way to
massive parallelism and high end graphics processors cur-
rently boasts up to 240 processing cores.

Until recently the only way to take advantage of the GPU
was to transform the problem into the graphics domain and
use the tools available there. This however was a very awk-
ward abstraction layer and made it hard to use. Better tools
are now available and among these are CUDA, which is
NVIDIA’s initiative to bring general purpose computation
to their graphics processors [5]. It consists of a compiler and
a run-time for a C/C++-based language which can be used
to create kernels that can be executed on CUDA-enabled
graphics processors.

2 System Model

In CUDA you have unrestricted access to the main
graphics memory, known as the global memory. There is no
cache memory but the hardware supports coalescing mem-
ory operations so that several read operations on consecu-
tive memory locations can be merged into one big read or
write operation which will make better use of the memory
bus and provide far greater performance. Newer graphics
processors support most of the common atomic operations
such as CAS (Compare-And-Swap) and FAA (Fetch-And-
Add) when accessing the memory and these can be used to
implement efficient parallel data structures.

The high range graphics processors currently consist of
up to 32 multiprocessors each, which can perform SIMD
(Single Instruction, Multiple Data) instructions on 8 mem-
ory positions at a time. Each multiprocessor has 16 kB
of a very fast local memory that allows information to be
communicated between threads assigned to the same thread
block. A thread block is a set of threads that are assigned to
run at the same multiprocessors. All thread blocks have the
same number of threads assigned to them and this number
is specified by the programmer. Depending on how many

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

20 c© 2008, Copyright held by the individual authors

registers and how much local memory the block of threads
requires, there could be multiple blocks assigned to a single
multiprocessor. All the threads in a scheduled thread block
are run from start to finish before the block can be swapped
out, so if more blocks are needed than there is room for on
any of the multiprocessors, the leftover blocks will be run
sequentially.

The GPU schedules threads depending on which warp
they are in. Threads with id 0..31 are assigned to the first
warp, threads with id 32..63 to the next and so on. When a
warp is scheduled for execution, the threads which perform
the same instructions are executed concurrently (limited by
the size of the multiprocessor) whereas threads that deviate
are executed sequentially.

3 Overview

Having a relatively parallel algorithm it is possible to get
really good performance out of CUDA. It is important how-
ever to try to make all threads in the same warp perform
the same instructions most of the time so that processor can
fully utilize the SIMD operations and also, since there is no
cache, to try to organize data so that memory operations co-
alesce as much as possible, something which is not always
trivial. The local memory is very fast, just as fast as ac-
cessing a register, and should be used for common data and
communication, but it is very small since it’s being shared
by a larger number of threads and there is a challenge in
how to use it optimally.

This paper is divided into two parts. In the first part we
present our Quicksort algorithm for graphics processors and
in the second we present a comparison between different
load balancing schemes.

4 GPU-Quicksort

We presented an efficient parallel algorithmic implemen-
tation of Quicksort, GPU-Quicksort, designed to take ad-
vantage of the highly parallel nature of graphics proces-
sors (GPUs) and their limited cache memory [2]. Quicksort
has long been considered as one of the fastest sorting al-
gorithms in practice for single processor systems, but until
now it has not been considered as an efficient sorting solu-
tion for GPUs . We show that GPU-Quicksort presents a
viable sorting alternative and that it can outperform other
GPU-based sorting algorithms such as GPUSort and radix
sort, considered by many to be two of the best GPU-sorting
algorithms. GPU-Quicksort is designed to take advantage
of the high bandwidth of GPUs by minimizing the amount
of bookkeeping and inter-thread synchronization needed. It
achieves this by using a two-phase design to keep the inter-
thread synchronization low and by steering the threads so

that their memory read operations are performed coalesced.
It can also take advantage of the atomic synchronization
primitives found on newer hardware, when available, to fur-
ther improve its performance.

5 The Algorithm

The following subsection gives an overview of GPU-
Quicksort. Section 5.2 will then go into the algorithm in
more detail.

5.1 Overview

The method used by the algorithm is to recursively parti-
tion the sequence to be sorted, i.e. to move all elements that
are lower than a specific pivot value to a position to the left
of the pivot and to move all elements with a higher value to
the right of the pivot. This is done until the entire sequence
has been sorted.

In each partition iteration a new pivot value is picked
and as a result two new subsequences are created that can
be sorted independently. After a while there will be enough
subsequences available that each thread block can be as-
signed one of them. But before that point is reached, the
thread blocks need to work together on the same sequences.
For this reason, we have divided up the algorithm into two,
albeit rather similar, phases.

First Phase In the first phase, several thread blocks
might be working on different parts of the same sequence
of elements to be sorted. This requires appropriate synchro-
nization between the thread blocks, since the results of the
different blocks need to be merged together to form the two
resulting subsequences.

Newer graphics processors provide access to atomic
primitives that can aid somewhat in this synchronization,
but they are not yet available on the high-end graphics pro-
cessors. Because of that, there is still a need to have a thread
block barrier-function between the partition iterations.

The reason for this is that the blocks might be executed
sequentially and we have no way of knowing in which order
they will be executed. The only way to synchronize thread
blocks is to wait until all blocks have finished executing.
Then one can assign new subsequences to them. Exiting and
reentering the GPU is not expensive, but it is also not delay-
free since parameters need to be copied from the CPU to the
GPU, which means that we want to minimize the number of
times we have to do that.

When there are enough subsequences so that each thread
block can be assigned its own subsequence, we enter the
second phase.

Second Phase In the second phase, each thread block is
assigned its own subsequence of input data, eliminating the
need for thread block synchronization. This means that the

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 21

second phase can run entirely on the graphics processor. By
using an explicit stack and always recurse on the smallest
subsequence, we minimize the shared memory required for
bookkeeping.

Hoare suggested in his paper [9] that it would be more
efficient to use another sorting method when the subse-
quences are relatively small, since the overhead of the par-
titioning gets too large when dealing with small sequences.
We decided to follow that suggestion and sort all subse-
quences that can fit in the available local shared memory
using an alternative sorting method.

In-place On conventional SMP systems it is favorable to
perform the sorting in-place, since that gives good cache
behavior. But on GPUs, because of their limited cache
memory and the expensive thread synchronization that is
required when hundreds of threads need to communicate
with each other, the advantages of sorting in-place quickly
fades away. Here it is better to aim for reads and writes to
be coalesced to increase performance, something that is not
possible on conventional SMP systems. For these reasons
it is better, performance-wise, to use an auxiliary buffer in-
stead of sorting in-place.

So, in each partition iteration, data is read from the pri-
mary buffer and the result is written to the auxiliary buffer.
Then the two buffers switch places, with the primary be-
coming the auxiliary and vice versa.

5.1.1 Partitioning

The principle of two phase partitioning is outlined in Fig-
ure 1. The sequence to be partitioned is selected and it is
then logically divided into m equally sized sections (Step
a), where m is the number of thread blocks available. Each
thread block is then assigned a section of the sequence (Step
b).

The thread block goes through its assigned data, with all
threads in the block accessing consecutive memory so that
the reads can be coalesced. This is important, since reads
being coalesced will significantly lower the memory access
time.

Synchronization The objective is to partition the se-
quence, i.e. to move all elements that are lower than the
pivot to a position to the left of the pivot in the auxiliary
buffer and to move the elements with a higher value than the
pivot to the right of the pivot. The problem here is to syn-
chronize this in an efficient way. How do we make sure that
each thread knows where to write in the auxiliary buffer?

Cumulative Sum A possible solution is to let each
thread read an element and then synchronize the threads us-
ing a barrier function. By calculating a cumulative sum of
the number of threads that want to write to the left and to the
right of the pivot respectively, each thread would know that
x threads with a lower thread id than its own are going to

write to the left of the pivot and that y threads are going to
write to the right of the pivot. Each thread then knows that
it can write its element to either bufx+1 or bufn−(y+1), de-
pending on if the element is higher or lower than the pivot.

A Two-Pass Solution But calculating a cumulative sum
is not free, so to improve performance we go through the
sequence two times. In the first pass each thread just counts
the number of elements it has seen that have value higher
(or lower) than the pivot (Step c). Then when the block has
finished going through its assigned data, we use these sums
instead to calculate the cumulative sum (Step d). Now each
thread knows how much memory the threads with a lower
id than its own needs in total, turning it into an implicit
memory-allocation scheme that only needs to run once for
every thread block, in each iteration.

In the first phase, where we have several thread blocks
accessing the same sequence, an additional cumulative sum
need to be calculated for the total memory used by each
thread block (Step e).

When each thread knows where to store its elements, we
go through the data in a second pass (Step g), storing the
elements at their new position in the auxiliary buffer. As
a final step, we store the pivot value at the gap between
the two resulting subsequences (Step h). The pivot value is
now at its final position which is why it doesn’t need to be
included in any of the two subsequences.

5.2 Detailed Description

5.2.1 The First Phase

The goal of the first phase is to divide the data into a large
enough number of subsequences that can be sorted indepen-
dently.

Work Assignment In the ideal case, each subsequence
should be of the same size, but that is often not possible,
so it is better to have some extra subsequences and let the
scheduler balance the workload. Based on that observation,
a good way to partition is to only partition subsequences
that are longer than minlength = n/maxseq and to stop
when we have maxseq number of subsequences.

In the beginning of each iteration, all subsequences that
are larger than the minlength are assigned thread blocks
relative to their size. In the first iteration, the original sub-
sequence will be assigned all available thread blocks. The
subsequences are divided so that each thread block gets an
equally large section to sort, as can be seen in Figure 1 (Step
a and b).

First Pass When a thread block is executed on the GPU,
it will iterate through all the data in its assigned sequence.
Each thread in the block will keep track of the number of
elements that are greater than the pivot and the number of
elements that are smaller than the pivot. The data is read
in chunks of T words, where T is the number of threads in

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

22 c© 2008, Copyright held by the individual authors

Figure 1. Partitioning a sequence (m thread blocks with n threads each).

each thread block. The threads read consecutive words so
that the reads coalesce as much as possible.

Space Allocation Once we have gone through all the as-
signed data, we calculate the cumulative sum of the two ar-
rays. We then use the atomic FAA-function to calculate the
cumulative sum for all blocks that have completed so far.
This information is used to give each thread a place to store
its result, as can be seen in Figure 1 (Step c-f).

FAA is as of the time of writing not available on all
GPUs. An alternative, if one wants to run the algorithm on
the older, high-end graphics processors, is to divide the ker-
nel up into two kernels and do the block cumulative sum on
the CPU instead. This would make the code more generic,
but also slightly slower on new hardware.

Second Pass Using the cumulative sum, each thread
knows where to write elements that are greater or smaller
than the pivot. Each block goes through its assigned data
again and writes it to the correct position in the current aux-
iliary array. It then fills the gap between the elements that
are greater or smaller than the pivot with the pivot value.
We now know that the pivot values are in their correct final
position, so there is no need to sort them anymore. They
are therefore not included in any of the newly created sub-
sequences.

Are We Done? If the subsequences that arise from the

partitioning are longer than minlength, they will be parti-
tioned again in the next iteration, provided we don’t already
have more than maxseq subsequences. If we do have more
than maxseq subsequences, the next phase begins. Other-
wise we go through another iteration. (See Algorithm 1).

5.2.2 The Second Phase

When we have acquired enough independent subsequences,
there is no longer any need for synchronization between
blocks. Because of this, the entire phase two can be run on
the GPU entirely. There is however still the need for syn-
chronization between threads, which means that we will use
the same method as in phase one to partition the data. That
is, we will count the number of elements that are greater
or smaller than the pivot, do a cumulative sum so that each
thread has its own location to write to and then move all
elements to their correct position in the auxiliary buffer.

Stack To minimize the amount of fast local memory
used, there is a very limited supply of it, we always recurse
on the smallest subsequence. By doing that, Hoare have
showed [9] that the maximum recursive depth can never go
below log2(n). We use an explicit stack as suggested by
Hoare and implemented by Sedgewick, always storing the
smallest subsequence at the top [12].

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 23

Overhead When a subsequence’s size goes below a cer-
tain threshold, we use an alternative sorting method on it.
This was suggested by Hoare since the overhead of Quick-
sort gets too big when sorting small sequences of data.
When a subsequence is small enough to be sorted entirely
in the fast local memory, we could use any sorting method
that can be made to sort in-place, doesn’t require much ex-
pensive thread synchronization and performs well when the
number of threads approaches the length of the sequence to
be sorted.

6 Experimental Evaluation

We ran the experiments on a dual-processor dual-core
AMD Opteron 1.8GHz machine. Two different graph-
ics processors were used, the low-end NVIDIA 8600GTS
256MiB with 4 multiprocessors and the high-end NVIDIA
8800GTX 768MiB with 16 multiprocessors. Since the
8800GTX provides no support for the atomic FAA oper-
ation we instead used an implementation of the algorithm
that exits to the CPU for block-synchronization.

We compared GPU-Quicksort to the following state-of-
the-art GPU sorting algorithms:

GPUSort Uses bitonic merge sort [6].
Radix-Merge Uses radix sort to sort blocks that are then

merged [7].
Global Radix Uses radix sort on the entire sequence

[13].
Hybridsort Uses a bucket sort followed by a merge sort

[16].
STL-Introsort This is the Introsort implementation

found in the C++ Standard Library. Introsort is based on
Quicksort, but switches to heap-sort when the recursion
depth gets too large. Since it is highly dependent on the
computer system and compiler used, we only included it to
give a hint as to what could be gained by sorting on the GPU
instead of on the CPU [11].

We could not find an implementation of the Quicksort
algorithm used by Sengupta et al., but they claim in their
paper that it took over 2 seconds to sort 4M uniformly dis-
tributed elements on a 8800GTX [13].

We only measured the actual sorting phase, we did not
include in the result the time it took to setup the data struc-
tures and to transfer the data on and off the graphics mem-
ory. The reason for this is the different methods used to
transfer data which wouldn’t give a fair comparison be-
tween the GPU-based algorithms. Transfer times are also
irrelevant if the data to be sorted are already available on
the GPU. Because of those reasons, this way of measuring
has become a standard in the literature.

On the 8800GTX we used 256 thread blocks, each block
having 256 threads. When a subsequence dropped below
1024 elements in size, we sorted it using bitonic sort. On

the 8600GTS we lowered the amount of thread blocks to
128 since it has fewer multiprocessors. All implementations
were compiled with the -O3 optimization flag.

We used different pivot selection schemes for the two
phases. In the first phase we took the average of the min-
imum and maximum element in the sequence and in the
second we picked the median of the first, middle and last
element as the pivot, a method suggested by Singleton[15].

The source code of GPU-Quicksort is available for non-
commercial use [4].

For benchmarking we used a uniform, sorted, zero,
bucket, gaussian and staggered distribution which are de-
fined and motivated in [8]. These are commonly used yard-
sticks to compare the performance of different sorting al-
gorithms. The source of the random uniform values is the
Mersenne Twister [10].

6.1 Discussion

Quicksort has a worst case scenario complexity of
O(n2), but in practice, and on average when using a ran-
dom pivot, it tends to be close to O(n log(n)), which is
the lower bound for comparison sorts. In all our experi-
ments GPU-Quicksort has shown the best performance or
been among the best. There was no distribution that caused
problems to the performance of GPU-Quicksort. As can be
seen when comparing the performance on the two GPUs,
GPU-Quicksort shows a speedup of approximately 3 on the
higher-end GPU. The higher-end GPU has a memory band-
width that is 2.7 times higher and has four times the number
of multiprocessors, indicating that the algorithm is band-
width bound and not computation bound, which was the
case with the Quicksort in [13].

On the CPU, Quicksort is normally seen as a faster al-
gorithm as it can potentially pick better pivot points and
doesn’t need an extra check to determine when the sequence
is fully sorted. The time complexity of radix sort is O(n),
but that hides a potentially high constant which is depen-
dent on the key size. Optimizations are possible to lower
this constant, such as constantly checking if the sequence
has been sorted, but that can be expensive when dealing
with longer keys. Quicksort being a comparison sort also
means that it is easier to modify it to handle different key
types.

The hybrid approach uses atomic instructions that were
only available on the 8600GTS. We can see that it outper-
forms both GPU-Quicksort and the global radix sort on the
uniform distribution. But it loses speed on the staggered
distributions and becomes immensely slow on the zero dis-
tribution. The authors state that the algorithm drops in per-
formance when faced with already sorted data, so they sug-
gest randomizing the data first, but this wouldn’t affect the
result in the zero distribution.

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

24 c© 2008, Copyright held by the individual authors

 1

 10

 100

 1000 Uniform

Quicksort Global Radix GPUSort Radix-Merge STL

 1

 10

 100

 1000 Sorted

 1

 10

 100

 1000 Zero

 1

 10

 100

 1000 Bucket

T
im

e
in

 m
ill

is
ec

on
ds

 -
 L

og
ar

ith
m

ic
 s

ca
le

 1

 10

 100

 1000 Gaussian

 1

 10

 100

 1000

1 2 4 8 16

Elements (millions)

Staggered

Figure 2. Results on the 8800GTX.

 1

 10

 100

 1000 Uniform

Quicksort Global Radix GPUSort Radix Merge STL Hybrid

 1

 10

 100

 1000 Sorted

 1

 10

 100

 1000

 10000
Zero

 1

 10

 100

 1000 Bucket

T
im

e
in

 m
ill

is
ec

on
ds

 -
 L

og
ar

ith
m

ic
 s

ca
le

 1

 10

 100

 1000 Gaussian

 1

 10

 100

 1000

1 2 4 8

Elements (millions)

Staggered

Figure 3. Results on the 8600GTS.

GPUSort doesn’t increase as much in performance as the
other algorithms when executed on the higher-end GPU.
This is an indication that the algorithm is more computa-
tionally bound than the other algorithms. It goes from be-
ing much faster than the slow radix-merge to perform on
par with and even a bit slower than it. The global radix sort
showed a 3x speed improvement, as did GPU-Quicksort.

All algorithms showed about the same performance on
the uniform, bucket and Gaussian distributions. GPUSort
always shows the same result independent of distributions

since it is a sorting network, which means it always per-
forms the same number of operations regardless of the dis-
tribution. The staggered distribution was more interesting.
On the low-end GPU the hybrid sorting was more than twice
as slow as on the uniform distribution. GPU-Quicksort also
dropped in speed and started to show the same performance
as GPUSort. This can probably be attributed to the choice
of pivot selection which was more optimized for uniform
distributions. The zero distribution, which can be seen as
an already sorted sequence, affected the algorithms to dif-

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 25

ferent extent. The STL reference implementation increased
dramatically in performance since its two-way partitioning
function always returned even partitions regardless of the
pivot chosen. GPU-Quicksort shows the best performance
as it does a three-way partitioning and can sort the sequence
in O(n) time.

7 Dynamic Load Balancing on Graphics Pro-
cessors

Load balancing play a significant role in the design of
efficient parallel algorithms and applications. In a step to-
wards understanding the new dimensions of the problem
that are introduced from the new graphics processors’ fea-
tures and capabilities, we have designed and compared four
different dynamic load balancing methods to see which one
is most suited to the highly parallel world of graphics pro-
cessors [3]. Three of these methods were lock-free and one
was lock-based. We evaluated them on the task of creating
an octree partitioning of a set of particles. The experiments
showed that synchronization can be very expensive and that
new methods that take more advantage of the graphics pro-
cessors features and capabilities might be required. They
also showed that lock-free methods achieves better perfor-
mance than blocking and that they can be made to scale with
increased numbers of processing units.

8 Load Balancing Methods

This section gives an overview of the different load bal-
ancing methods we have compared in this paper.

8.1 Static Task List

The default method for load balancing used in CUDA is
to divide the data that is to be processed into a list of blocks
or tasks. Each processing unit then takes out one task from
the list and executes it. When the list is empty all processing
units stop and control is returned to the CPU.

This is a lock-free method and it is excellent when the
work can be easily divided into chunks of similar process-
ing time, but it needs to be improved upon when this infor-
mation is not known beforehand. Any new tasks that are
created during execution will have to wait until all the stati-
cally assigned tasks are done, or be processed by the thread
block that created them, which could lead to an unbalanced
workload on the multiprocessors.

The method, as implemented in this work, consists of
two steps that are performed iteratively. The only data struc-
tures required are two arrays containing tasks to be pro-
cessed and a tail pointer. One of the arrays is called the
in-array and only allows read operations while the other,
called the out-array, only allows write operations.

In the first step of the first iteration the in-array contains
all the initial tasks. For each task in the array a thread block
is started. Each thread block then reads task i, where i is the
thread block ID. Since no writing is allowed to this array,
there is no need for any synchronization when reading.

If any new task is created by a thread block while per-
forming its assigned task, it is added to the out-array. This
is done by incrementing the tail pointer using the atomic
FAA-instruction. FAA returns the value of a variable and
increments it by a specified number atomically. Using this
instruction the tail pointer can be moved safely so that mul-
tiple thread blocks can write to the array concurrently.

The first step is over when all tasks in the in-array has
been executed. In the second step the out-array is checked to
see if it is empty or not. If it is empty the work is completed.
If not, the pointers to the out- and in-array are switched so
that they change roles. Then a new thread block for each of
the items in the new in-array is started and this process is
repeated until the out-array is empty.

8.2 Blocking Dynamic Task Queue

In order to be able to add new tasks during runtime we
designed a parallel dynamic task queue that thread blocks
can use to announce and acquire new tasks.

As several thread blocks might try to access the queue
simultaneously it is protected by a lock so that only one
thread block can access the queue at any given time. This is
a very easy and standard way to implement a shared queue,
but it lowers the available parallelism since only one thread
block can access the queue at a time, even if there is no
conflict between them.

The queue is array-based and uses the atomic CAS
(Compare-And-Swap) instruction to set a lock variable to
ensure mutual exclusion. When the work is done the lock
variable is reset so that another thread block might try to
grab it.

8.3 Lock-free Dynamic Task Queue

A lock-free implementation of a queue was implemented
to avoid the problems that comes with locking and also
in order to study the behavior of lock-free synchronization
on graphics processors. A lock-free queue guarantees that,
without using blocking at all, at least one thread block will
always succeed to enqueue or dequeue an item at any given
time even in presence of concurrent operations. Since an
operation will only have to be repeated at an actual conflict
it can deliver much more parallelism.

The implementation is based upon the simple and effi-
cient array-based lock-free queue described in a paper by
Tsigas and Zhang [17]. A tail pointer keeps track of the
tail of queue and tasks are then added to the queue using

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

26 c© 2008, Copyright held by the individual authors

CAS. If the CAS-operation fails it must be due to a conflict
with another thread block, so the operation is repeated on
the new tail until it succeeds. This way at least one thread
block is always assured to successfully enqueue an item.

The queue uses lazy updating of the tail and head point-
ers to lower contention. Instead of changing the head/tail
pointer after every enqueue/dequeue operation, something
that is done with expensive CAS-operations, it is only up-
dated every x:th time. This increases the time it takes to
find the actual head/tail since several queue positions needs
to be checked. But by reading consecutive positions in the
array, the reads will be coalesced by the hardware into one
fast read operation and the extra time can be made lower
than the time it takes to try to update the head/tail pointer x
times.

8.4 Task Stealing

Task stealing is a popular load balancing scheme. Each
processing unit is given a set of tasks and when it has com-
pleted them it tries to steal a task from another processing
unit which has not yet completed its assigned tasks. If a unit
creates a new task it is added to its own local set of tasks.

One of the most used task stealing methods is the lock-
free scheme by Arora et al. [1] with multiple array-based
double ended queues (deques). This method will be referred
to as ABP task stealing in the remainder of this paper.

In this scheme each thread block is assigned its own
deque. Tasks are then added and removed from the tail of
the deque in a LIFO manner. When the deque is empty
the process tries to steal from the head of another process’
deque.

Since only the owner of the deque is accessing the tail
of the deque there is no need for expensive synchronization
when the deque contains more than one element. Several
thread blocks might however try to steal at the same time,
requiring synchronization, but stealing is assumed to occur
less often than a normal local access. The implementation is
based on the basic non-blocking version by Arora et al. [1].
The stealing is performed in a global round robin fashion,
so thread block i looks at thread block i + 1 followed by
i + 2 and so on.

9 Octree Partitioning

To evaluate the dynamical load balancing methods de-
scribed in the previous section, they are applied to the task
of creating an octree partitioning of a set of particles [14].
An octree is a tree-based spatial data structure that recur-
sively divides the space in each direction, creating eight oc-
tants. This is done until an octant contains less than a spe-
cific number of particles. The fact that there is no informa-

tion beforehand on how deep each branch in the tree will be,
makes this a suitable problem for dynamic load balancing.

10 Experimental Evaluation

Two different graphics processors were used in the ex-
periments, the 9600GT 512MiB NVIDIA graphics proces-
sor with 64 cores and the 8800GT 512MiB NVIDIA graph-
ics processor with 112 cores.

We used two input distributions, one where all particles
were randomly picked from a cubic space and one where
they were randomly picked from a space shaped like a geo-
metrical tube.

All methods where initialized by a single iteration using
one thread block. The maximum number of particles in any
given octant was set to 20 for all experiments.

10.1 Discussion

Figure 4 shows the time it took to partition two different
particle sets on the 8800GT graphics processors using each
of the load balancing methods while varying the number of
threads per block and blocks per grid. The static method
always uses one block per task and is thus shown in a 2D
graph.

Figure 5 shows the time taken to partition particle sets
of varying size using the combination of threads per block
and blocks per grid found to be optimal in the previously
described graph.

Figure 4 (a) clearly shows that using less than 64 threads
with the blocking method gives us the worst performance in
all of the experiments. This is due to the expensive spinning
on the lock variable. These repeated attempts to acquire
the lock causes the bus to be locked for long amounts of
times during which only 32-bit memory accesses are done.
With more than 64 threads the number of concurrent thread
blocks is lowered from three to one, due to the limited num-
ber of available registers per thread, which leads to less lock
contention and much better performance. This shows that
the blocking method scales very poorly. In fact, we get the
best result when using less than ten blocks, that is, by not
using all of the multiprocessors!

The non-blocking queue-based method, shown in Fig-
ure 4 (b), can take better advantage of an increased num-
ber of blocks per grid. We see that the performance in-
creases quickly when we add more blocks, but after around
20 blocks the effect fades. It was expected that this effect
would be visible until we increased the number of blocks
beyond 42, the number of blocks that can run concurrently
when using less than 64 threads. This means that even
though its performance is much better than the its block-
ing counterpart, it still does not scale as well as we would
have wanted. This can also clearly be seen when we pass the

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 27

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 500

 1000

 1500

 2000

 2500

a) Blocking Queue

Ti
m

e
(m

s)

ThreadsBlocks

 0
 200
 400
 600
 800
 1000

Ti
m

e
(m

s)

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 150

 300

 450

 600

b) Non-Blocking Queue

Ti
m

e
(m

s)

ThreadsBlocks

 0

 100

 200

 300

Ti
m

e
(m

s)

 16
 32

 48
 64

 80
 96

 112
 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 150

 300

 450

 600

c) ABP Task Stealing

Ti
m

e
(m

s)

ThreadsBlocks

 0

 100

 200

 300

Ti
m

e
(m

s)

 40

 60

 80

 100

 120

 140

 160

 16 32 48 64 80 96 112 128
Threads

d) Static Task List

Ti
m

e
(m

s)

Figure 4. Comparison of load balancing methods on the 8800GT. Shows the time taken to partition
a Uniform (filled grid) and Tube (unfilled grid) distribution of half a million particles using different
combinations of threads/block and blocks/grid.

100

T
im

e
 (

m
s)

Uniform Distribution

10

100 150 200 250 300 350 400 450 500

Particles (thousands)

Blocking Queue Non-Blocking Queue Blocking Queue Non-Blocking Queue

Static List ABP Work Stealing Static List ABP Work Stealing

9600GT 8800GT

Figure 5. A comparison of the load balancing methods on the uniform distribution.

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

28 c© 2008, Copyright held by the individual authors

64 thread boundary and witness an increase in performance
instead of the anticipated drop.

In Figure 4 (c) we see the result from the ABP task steal-
ing and it lies more closely to the ideal. Adding more blocks
increases the performance until we get to around 30 blocks.
Adding more threads also increases performance until we
get the expected drop 64 threads per block. We also get a
slight drop after 32 threads since we passed the warp size
and now have incomplete warps being scheduled. Figure 5
shows that the work stealing gives great performance and is
not affected negatively by the increase in number of cores
on the 8800GT. When we compared the task stealing with
the other methods we used 64 threads and 32 blocks.

In Figure 4 (d) we see that the static method shows simi-
lar behavior as the task stealing. When increasing the num-
ber of threads used by the static method from 8 to 32 we get
a steady increase in performance. Then we get the expected
drops after 32 and 64, due to incomplete warps and less
concurrent thread blocks. Increasing the number of threads
further does not give any increase in speed as the synchro-
nization overhead in the octree partitioning algorithm be-
comes dominant. The optimal number of threads for the
static method is thus 32 and that is what we used when we
compared it to the other methods in Figure 5.

As can be seen in Figure 4, adding more blocks than
needed is not a problem since the only extra cost is an extra
read of the finishing condition for each additional block.

11 Conclusions

We have compared four different load balancing meth-
ods, a blocking queue, a non-blocking queue, ABP task
stealing and a static list, on the task of creating an octree
partitioning of a set of particles.

We found that the blocking queue performed poorly and
scaled badly when faced with more processing units, some-
thing which can be attributed to the inherent busy waiting.
The non-blocking queue performed better but scaled poorly
when the number of processing units got too high. Since the
number of tasks increased quickly and the tree itself was rel-
atively shallow the static queue performed well. The ABP
task stealing method perform very well and outperformed
the static method.

The experiments showed that synchronization can be
very expensive and that new methods that take more ad-
vantage of the graphics processors features and capabilities
might be required. They also showed that lock-free meth-
ods achieves better performance than blocking and that they
can be made to scale with increased numbers of processing
units.

References

[1] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
Scheduling for Multiprogrammed Multiprocessors. In Pro-
ceedings of the ACM Symposium on Parallel Algorithms and
Architectures, pages 119–129, 1998.

[2] D. Cederman and P. Tsigas. A Practical Quicksort Algo-
rithm for Graphics Processors. In Proceedings of the 16th
Annual European Symposium on Algorithms (ESA 2008),
Lecture Notes in Computer Science Vol.: 5193, pages 246–
258. Springer-Verlag, 2008.

[3] D. Cederman and P. Tsigas. On Dynamic Load Balancing on
Graphics Processors. In Proceedings of the 11th Graphics
Hardware (GH 2008), pages 57 – 64. ACM press, 2008.

[4] D. Cederman and P. Tsigas. GPU Quicksort Library. www.
cs.chalmers.se/˜dcs/gpuqsortdcs.html, De-
cember 2007.

[5] N. CUDA. www.nvidia.com/cuda.
[6] N. Govindaraju, N. Raghuvanshi, M. Henson, and

D. Manocha. A Cache-Efficient Sorting Algorithm for
Database and Data Mining Computations using Graphics
Processors. Technical report, University of North Carolina-
Chapel Hill, 2005.

[7] M. Harris, S. Sengupta, and J. D. Owens. Parallel Prefix
Sum (Scan) with CUDA. In H. Nguyen, editor, GPU Gems
3. Addison Wesley, Aug. 2007.

[8] D. R. Helman, D. A. Bader, and J. JáJá. A Random-
ized Parallel Sorting Algorithm with an Experimental Study.
Journal of Parallel and Distributed Computing, 52(1):1–23,
1998.

[9] C. A. R. Hoare. Quicksort. Computer Journal, 5(4):10–15,
1962.

[10] M. Matsumoto and T. Nishimura. Mersenne Twister: a 623-
Dimensionally Equidistributed Uniform Pseudo-Random
Number Generator. Transactions on Modeling and Com-
puter Simulation, 8(1):3–30, 1998.

[11] D. R. Musser. Introspective Sorting and Selection Algo-
rithms. Software - Practice and Experience, 27(8):983–993,
1997.

[12] R. Sedgewick. Implementing Quicksort Programs. Commu-
nications of the ACM, 21(10):847–857, 1978.

[13] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan
Primitives for GPU Computing. In Proceedings of the 22nd
ACM SIGGRAPH/EUROGRAPHICS Symposium on Graph-
ics Hardware, pages 97–106, 2007.

[14] M. Shephard and M. Georges. Automatic three-dimensional
mesh generation by the finite Octree technique. Inter-
national Journal for Numerical Methods in Engineering,
32:709–749, 1991.

[15] R. C. Singleton. Algorithm 347: an Efficient Algorithm
for Sorting with Minimal Storage. Communications of the
ACM, 12(3):185–186, 1969.

[16] E. Sintorn and U. Assarsson. Fast Parallel GPU-Sorting Us-
ing a Hybrid Algorithm. In Workshop on General Purpose
Processing on Graphics Processing Units, 2007.

[17] P. Tsigas and Y. Zhang. A simple, fast and scalable non-
blocking concurrent FIFO queue for shared memory multi-
processor systems. In Proceedings of the thirteenth Annual
ACM Symposium on Parallel Algorithms and Architectures,
pages 134–143, 2001.

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 29

Non-blocking Programming on Multi-core Graphics Processors
(Extended Asbtract) ∗

Phuong Hoai Ha
University of Tromsø

Department of Computer Science
Faculty of Science, NO-9037 Tromsø, Norway

phuong@cs.uit.no

Philippas Tsigas
Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Göteborg, Sweden

tsigas@chalmers.se

Otto J. Anshus
University of Tromsø

Department of Computer Science
Faculty of Science, NO-9037 Tromsø, Norway

otto@cs.uit.no

Abstract

This paper investigates the synchronization power of coa-
lesced memory accesses, a family of memory access mecha-
nisms introduced in recent large multicore architectures like
the CUDA graphics processors. We first design three mem-
ory access models to capture the fundamental features of the
new memory access mechanisms. Subsequently, we prove
the exact synchronization power of these models in terms of
their consensus numbers. These tight results show that the
coalesced memory access mechanisms can facilitate strong
synchronization between the threads of multicore processors,
without the need of synchronization primitives other than
reads and writes.

Moreover, based on the intrinsic features of recent GPU
architectures, we construct strong synchronization objects
like wait-free and t-resilient read-modify-write objects for a
general model of recent GPU architectures without strong
hardware synchronization primitives like test-and-set and
compare-and-swap. Accesses to the wait-free objects have
time complexity O(N), where N is the number of processes.
Our result demonstrates that it is possible to construct wait-
free synchronization mechanisms for GPUs without the need
of strong synchronization primitives in hardware and that
wait-free programming is possible for GPUs.

∗The results presented in this extended abstract appeared in the Proceed-
ings of the 22nd International Symposium on Distributed Computing (DISC
’08), c©Springer 2008 [12] and the Proceedings of the 22nd IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS ’08), c©IEEE
2008 [14].

1 Introduction

One of the fastest evolving multicore architectures is the
graphics processor one. The computational power of graph-
ics processors (GPUs) doubles every ten months, surpassing
the Moore’s Law for traditional microprocessors [21]. Un-
like previous GPU architectures, which are single-instruction
multiple-data (SIMD), recent GPU architectures (e.g. Com-
pute Unified Device Architecture (CUDA) [2]) are single-
program multiple-data (SPMD). The latter consists of multi-
ple SIMD multiprocessors of which each, at the same time,
can execute a different instruction. This extends the set of
applications on GPUs, which are no longer restricted to fol-
low the SIMD-programming model. Consequently, GPUs
are emerging as powerful computational co-processors for
general-purpose computations.

Along with their advances in computational power, GPUs
memory access mechanisms have also evolved rapidly. Sev-
eral new memory access mechanisms have been imple-
mented in current commodity graphics/media processors like
the Compute Unified Device Architecture (CUDA) [2] and
Cell BE architecture [1]. For instance, in CUDA, single-
word write instructions can write to words of different size
and their size (in bytes) is no longer restricted to be a power
of two [2]. Another advanced memory access mechanism
implemented in CUDA is the coalesced global memory ac-
cess mechanism. The simultaneous global memory accesses
by each thread of a SIMD multiprocessor, during the execu-
tion of a single read/write instruction, are coalesced into a
single aligned memory access if the simultaneous accesses
follow the coalescence constraint [2]. The access coales-
cence takes place even if some of the threads do not actually
access memory. It is well-known that memory access mech-
anisms, by devising how processing cores access the shared
memory, directly influence the synchronization capabilities

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

30 c© 2008, Copyright held by the individual authors

of multicore processors. Therefore, it is crucial to investi-
gate the synchronization power of the new memory access
mechanisms.

Research on the synchronization power of memory access
operations (or objects) in conventional architectures has re-
ceived a great amount of attention in the literature. The syn-
chronization power of memory access objects/mechanisms is
conventionally determined by their consensus-solving abil-
ity, namely their consensus number [16]. The consensus
number of an object type is either the maximum number of
processes for which the consensus problem can be solved us-
ing only objects of this type and registers, or infinity if such
a maximum does not exist.

1.1 The Synchronization Power of Coa-
lesced Memory Accesses

We first investigate the consensus number of the new
memory access mechanisms implemented in current graph-
ics processor architectures. We design three new memory ac-
cess models to capture the fundamental features of the new
memory access mechanisms. Then we prove the exact syn-
chronization power of these models in terms of their respec-
tive consensus number. These tight results show that the new
memory access mechanisms can facilitate strong synchro-
nization between the threads of multicore processors, with-
out the need of synchronization primitives other than reads
and writes [12].

Particularly, we design a new memory access model, the
svword model where svword stands for the size-varying word
access, the first of the two aforementioned advanced memory
access mechanisms implemented in CUDA. Unlike single-
word assignments in conventional processor architectures,
the new single-word assignments can write to words of size b
(in bytes), where b can vary from 1 to an upper bound B and
b is no longer restricted to be a power of 2 (e.g. type float3
in [2]). By carefully choosing b for the single-word assign-
ments, we can partly overlap the bytes written by two assign-
ments, namely each of the two assignments has some byte(s)
that is not overwritten by the other overlapping assignment
Note that words of different size must be aligned from the ad-
dress base of the memory. This memory alignment constraint
prevents single-word assignments in conventional architec-
tures from partly overlapping each other since the word-size
is restricted to be a power of two. On the other hand, since
the new single-word assignment can write to a subset of bytes
of a big word (e.g. up to 16 bytes) and leave the other bytes
of the word intact, the size of values to be written becomes
a significant factor. The assignment can atomically write B
values of size 1 (instead of just one value of size B) to B
consecutive memory locations. The observation has moti-
vated us to develop the svword model.

Inspired by the coalesced memory accesses, the second of
the aforementioned advanced memory access mechanisms,
we design two other models, the aiword and asvword mod-
els, to capture the fundamental features of the mechanism.
The mechanism coalesces simultaneous read/write instruc-

tions by each thread of a SIMD multiprocessor into a single
aligned memory access even if some of the threads do not ac-
tually access memory [2]. This allows each SIMD multipro-
cessor (or process) to atomically write to an arbitrary subset
of the aligned memory units that can be written by a single
coalesced memory access. We generally model this mech-
anism as an aligned-inconsecutive-word access, aiword, in
which the memory is aligned to A-unit words and a single-
word assignment can write to an arbitrary non-empty subset
of the A units of a word. Note that the single-aiword assign-
ment is not the atomic m-register assignment [16] due to the
memory alignment restriction1. Our third model, asvword, is
an extension of the second model aiword in which aiword’s
A memory units are now replaced by A svwords of the same
size b. This model is inspired by the fact that the read/write
instructions of different coalesced global memory accesses
can access words of different size [2].

1.2 Universal Synchronization Objects for
GPUs

Subsequently, we design a set of universal synchroniza-
tion objects capable of empowering the programmer with the
necessary and sufficient tools for wait-free programming on
graphics processors [14]. Based on the intrinsic features of
recent GPU architectures, we first generalize the architec-
tures to an abstract model of a chip with multiple SIMD cores
sharing a memory. Each core can process many threads (in
a SIMD manner) in one clock cycle. Each thread of a core
accesses the shared memory using (atomic) read/write oper-
ations. Then, we construct wait-free and t-resilient synchro-
nization objects [5, 16] for this model. The wait-free and
t-resilient objects can be deployed as building blocks in par-
allel programming to help parallel applications tolerate crash
failures and gain performance [19, 20, 25, 26].

We observe that due to SIMD architecture each SIMD
core can read/write many memory locations in one atomic
step. Using M -register read/write operations we construct a
wait-free (long-lived) read-modify-write (RMW) objects in
the case the number N of cores is not greater than (2M −2).
In the case N > (2M − 2), we construct (2M − 3)-
resilient RMW objects using only the M -register operations
and read/write registers. It has been proved that (2M − 3) is
the maximum number of crash failures that a system with
M -register assignments and read/write registers can toler-
ate while ensuring consensus for correct processes2 [8, 16].
Therefore, from a fault-tolerant point of view, these wait-
free/resilient objects are the best we can achieve. To the
best of our knowledge, research on constructing wait-free
and (2M − 3)-resilient long-lived RMW objects using only
M -register read/write operations and read/write registers has
not been reported previously.

1In this paper, we use term “single” in single-*word assignment when we
want to emphasize that the assignment is not the multiple assignment [16].

2Correct processes are processes that do not crash in the execution.

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 31

2 Coalesced Memory Accesses

2.1 Models

Before describing the details of each of the three new
memory access models, we present the common properties of
all these three models. The shared memory in the three new
models is sequentially consistent [3, 18], which is weaker
than the linearizable one [4] assumed in most of the previous
research on the synchronization power of the conventional
memory access models [16]. Processes are asynchronous.
The new models use the conventional 1-dimensional mem-
ory address space. In these models, one memory unit is
a minimum number of consecutive bytes/bits which a basic
read/write operation can atomically read from/write to (with-
out overwriting other unintended bytes/bits). These memory
models address individual memory units. Memory is orga-
nized so that a group of n consecutive memory units called
word can be stored or retrieved in a single basic write or read
operation, respectively, and n is called word size. Words of
size n must always start at addresses that are multiples of n,
which is called alignment restriction as defined in the con-
ventional computer architecture.

The first model is a size-varying-word access model (sv-
word) in which a single read/write operation can atomically
read from/write to a word consisting of b consecutive mem-
ory units, where b can be any integer between 1 and an up-
per bound B and is called svword size. The upper bound B
is the maximum number of consecutive units which a basic
read/write operation can atomically read from/write to. Sv-
words of size b must always start at addresses that are multi-
ples of b due to the memory alignment restriction. We de-
note b-svword to be an svword consisting of b units, b-svwrite
to be a b-svword assignment and b-svread to be a b-svword
read operation. Reading a unit U is denoted by 1-svread(U)
or just by U for short. This model is inspired by the CUDA
graphics processor architecture in which basic read/write op-
erations can atomically read from/write to words of different
size (cf. types float1, float2, float3 and float4 in [2], Section
4.3.1.1). Figure 1(a) illustrates how 2-svwrite, 3-svwrite and
5-svwrite can partly overlap their units with addresses from
14 to 20, with respect to the memory alignment restriction.

The second model is an aligned-inconsecutive-word ac-
cess model (aiword) in which the memory is aligned to A-
unit words and a single read/write operation can atomically
read from/write to an arbitrary non-empty subset of the A
units of a word, where A is a constant. Aiwords must al-
ways start at addresses that are multiples of A due to the
memory alignment restriction. We denote A-aiword to be an
aiword consisting of A units, A-aiwrite to be an A-aiword
assignment and A-airead to be an A-aiword read operation.
Reading only one unit U (using airead) is denoted by U for
short. In the aiword model, an aiwrite operation executed by
a process cannot atomically write to units located in different
aiwords due to the memory alignment restriction.

14 15 16 17 18 19 20
2-svwrite

5-svwrite

Units

3-svwrite

(a) The first model svword

... 10 11 12 13 14 15 ...98

aiword
Units

aiwrite2

aiwrite1

(b) The second model aiword

0 1 2 3 4 5 6 7

...
t0 t1 t2 t3 t4 t5 t6 t7t0 t1 t2 t3 t4 t5 t6 t7

8 9 10 11 12 13 14 15 ...

SIMD core 2
ThreadsThreads

SIMD core 1

aiword aiword

Memory locations

(c) The coalesced memory access

Figure 1. Illustrations for the first model,
size-varying-word access (svword), the second
model, aligned-inconsecutive-word access (ai-
word) and the coalesced memory access.

Figure 1(b) illustrates the aiword model with A = 8 in
which the aiword consists of eight consecutive units with ad-
dresses from 8 to 15. Unlike in the svword model, the as-
signment in the aiword model can atomically write to incon-
secutive units of the eight units: aiwrite1 atomically writes
to four units 8, 11, 13 and 15; aiwrite2 writes to three units
12, 13 and 15.

This model is inspired by the coalesced global memory
accesses in the CUDA architecture [2]. The CUDA archi-
tecture can be generalized to an abstract model of a MIMD3

chip with multiple SIMD cores sharing memory. Each core
can process A threads simultaneously in a SIMD manner,
but different cores can simultaneously execute different in-
structions. The instance of a program that is being sequen-
tially executed by one SIMD core is called process. Namely,
each process consists of A parallel threads that are running in
SIMD manner. The process accesses the shared memory us-
ing the CUDA memory access models. In CUDA, the simul-
taneous global memory accesses by each thread of a SIMD
core during the execution of a single read/write instruction
can be coalesced into a single aligned memory access. The
coalescence happens even if some of the threads do not actu-
ally access memory (cf. [2], Figure 5-1). This allows a SIMD
core (or a process consisting of A parallel threads running in
a SIMD manner) to atomically access multiple memory lo-
cations that are not at consecutive addresses.

Figure 1(c) illustrates the coalesced memory access,
where A = 8. The left SIMD core can write atomically to
four memory locations 0, 3, 5 and 7 by letting only four of

3MIMD: Multiple-Instruction-Multiple-Data

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

32 c© 2008, Copyright held by the individual authors

its eight threads, t0, t3, t5 and t7, simultaneously execute a
write operation (i.e. divergent threads). The right SIMD core
can write atomically to its own memory location 1 and shared
memory locations 3, 5 and 7 by letting only four threads
t1, t3, t5 and t7 simultaneously execute a write operation.
Note that the CUDA architecture allows threads from differ-
ent SIMD cores to communicate through the global shared
memory [7].

The third model is a coalesced memory access model
(asvword), an extension of the second model aiword in which
aiword’s A units are now replaced by A svwords of the same
size b, b ∈ [1, B]. Namely, the second model aiword is a
special case of the third model asvword where B = 1. This
model is inspired by the fact that in CUDA the read/write
instructions of different coalesced global memory accesses
can access words of different size. Let Axb-asvword be the
asvword that is composed of A svwords of which each con-
sists of b memory units. Axb-asvwords whose size is A · b
must always start at addresses that are multiples of A · b
due to the memory alignment restriction. We denote Axb-
asvwrite to be an Axb-asvword assignment and Axb-asvread
to be an Axb-asvword read operation. Reading only one unit
U (using Ax1-asvread) is denoted by U for short. Due
to the memory alignment restriction, an Axb-asvwrite opera-
tion cannot atomically write to b-svwords located in different
Axb-asvwords. Since in reality A and B are a power of 2,
in this model we assume that either B = k · A, k ∈ N∗ (in
the case of B ≥ A) or A = k · B, k ∈ N∗ (in the case of
B < A). (At the moment, CUDA supports the atomic co-
alesced memory access to only words of size 4 and 8 bytes
(i.e. only svwords consisting of 1 and 2 units in our defini-
tion), cf. Section 5.1.2.1 in [2]). For the sake of simplicity,
we assume that b ∈ {1, B} holds. A more general model
with b = 2c, c = 0, 1, · · · , log2 B, can be established from
this model. Since both Ax1-asvwords and AxB-asvwords
are aligned from the address base of the memory space,
any AxB-asvword can be aligned with B Ax1-asvwords as
shown in Figure 2.

Figure 2 illustrates the asvword model in which each
dash-dotted rectangle/square represents an svword and each
red/solid rectangle represents an asvword composed of eight
svwords (i.e. A = 8). The two rows show the memory align-
ment corresponding to the size b of svwords, where b is 1
or 2 (i.e. B = 2), on the same sixteen consecutive mem-
ory units with addresses from 0 to 15. An asvwrite operation
can atomically write to some or all of the eight svwords of an
asvword. Unlike the aiwrite assignment in the second model,
which can atomically write to at most 8 units (or A units), the
asvwrite assignment in the third model can atomically write
to 16 units (or A · B units) using a single 8x2-asvwrite op-
eration (i.e. write to the whole set of eight 2-svwords, cf.
row b = 2). For an 8x1-asvword on row b = 1, there are two
methods to update it atomically using the asvwrite operation:
i) writing to the whole set of eight 1-svwords using a single
8x1-asvwrite (cf. SIMD core 1) or ii) writing to a subset
consisting of four 2-svwords using a single 8x2-asvwrite (cf.

t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7

t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7

1514131211109876543210

0 1 2 3 4 5 6 7

Threads

SIMD core 1

Threads

SIMD core 3

Threads
SIMD core 2

Threads
SIMD core 4

b=1

b=2

8x1-asvword 8x1-asvword

8x2-asvword

Figure 2. An illustration for the asvword model.

SIMD core 2). However, if only one of the eight units of an
8x1-asvword (e.g. unit 14) needs to be updated and the other
units (e.g. unit 15) must remain untouched, the only possi-
ble method is to write to the unit using a single 8x1-asvwrite
(cf. SIMD core 3). The other method, which writes to one
2-svword using a single 8x2-asvwrite, will have to overwrite
another unit that is required to stay untouched (cf. SIMD
core 4).

Terminology This section uses the conventional terminol-
ogy from bivalency arguments [11, 16, 24]. The configura-
tion of an algorithm at a moment in its execution consists of
the state of every shared object and the internal state of every
process. A configuration is univalent if all executions contin-
uing from this configuration yield the same consensus value
and multivalent otherwise. A configuration is critical if the
next operation opi by any process pi will carry the algorithm
from a multivalent to a univalent configuration. The opera-
tions opi are called critical operations. The critical value of
a process is the value that would get decided if that process
takes the next step after the critical configuration.

2.2 Consensus number of the svword model

Before proving the consensus number of the single-
svword assignment, we present the essential features of any
wait-free consensus algorithm ALG for N processes using
only single-*word assignments and registers, where *word
can be svword, aiword or asvword. It has been proven that
such an algorithm must have a critical configuration, C0, and
the next assignment opi (i.e. the critical operation) by each
process pi must write to the same object O [16]. The object
O consists of memory units.

Lemma 2.1. The critical assignment opi by each process pi

must atomically write to

• a “single-writer” unit (or 1W-unit for short) ui written
only by pi and

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 33

Algorithm 1 SVW_CONSENSUS(bufi: proposal) invoked
by process pi, i ∈ {0, 1, 2}
PROPOSAL[0, 1, 2]: contains proposals of 3 processes. PROPOSAL[i] is
only written by process pi but can be read by all processes.
WR1 = set {u0, u1, u2} of units: initialized to Init and used in the first
phase. WR1[0] and WR1[2] are 1W-units written only by p0 and p1, respectively.
WR1[1] is a 2W-unit written by both processes
WR2 = set {v0, · · · , v4} of units: initialized to Init and used in the second
phase. WR2[0], WR2[2] and WR2[4] are 1W-units written only by p0, p2 and
p1, respectively. WR2[1] and WR2[3] are 2W-units written by pairs {p0, p2} and
{p2, p1}, respectively.
Input: process pi’s proposal value, bufi.
Output: the value upon which all 3 processes (will) agree.
1V: PROPOSAL[i] ← bufi; // Declare pi’s proposal

// Phase 1: Achieve an agreement between p0 and p1.
2V: if i = 0 or i = 1 then
3V: first ← SVW_FIRSTAGREEMENT(i);
4V: end if

// Phase II: Achieve an agreement between all three processes.
5V: winner ← SVW_SECONDAGREEMENT(i, firstref); // firstref is the

reference to first
6V: return PROPOSAL[winner]

• “two-writer” units (or 2W-units for short) ui,j written
only by two processes pi and pj , where pj’s critical value
is different from pi’s, ∀j 6= i.

Proof. The proof is similar to the bivalency argument of The-
orem 13 in [16].

In this section, we first present a wait-free consensus al-
gorithm for 3 processes using only the single-svword assign-
ment with B ≥ 5 and registers. Then, we prove that we can-
not construct any wait-free consensus algorithms for more
than 3 processes using only the single-svword assignment
and registers regardless of how large B is.

The new wait-free consensus algorithm
SVW_CONSENSUS is presented in Algorithm 1. The
main idea of the algorithm is to utilize the size-variation
feature of the svwrite operation. Since b-svwrite can atomi-
cally write b values of size 1 unit (instead of just one value
of size b units) to b consecutive memory units, keeping the
size of values to be atomically written as small as 1 unit
will maximize the number of processes for which b-svwrite,
together with registers, can solve the consensus problem.
Unlike the seminal wait-free consensus algorithm using the
m-word assignment by Herlihy [16], which requires the
word size to be large enough to accommodate a proposal
value, the new algorithm stores proposal values in shared
memory and uses only two bits (or one unit) to determine
the preceding order between two processes. This allows a
single-svword assignment to write atomically up to B (or
B
2 if units are single bits) ordering-related values. The new
algorithm utilizes process unique identifiers, which are an
implicit assumption in Herlihy’s consensus model [6].

The SVW_CONSENSUS algorithm has two phases. In the
first phase, two processes p0 and p1 will achieve an agree-
ment on their proposal values (cf. Algorithm 2). The agreed
value, PROPOSAL[first], is the proposal value of the pre-
ceding process, whose SVWRITE (lines 2SF and 4SF) pre-
cedes that of the other process (lines 6SF-11SF).

Due to the memory alignment restriction, in order to be
able to allocate memory for the WR1 variable (cf. Algo-

Algorithm 2 SVW_FIRSTAGREEMENT(i: bit) invoked by
process pi, i ∈ {0, 1}
Output: the preceding process of {p0, p1}
1SF: if i = 0 then
2SF: SVWRITE({WR1[0], WR1[1]}, {Lower, Lower}); // atomically

write to 2 units
3SF: else
4SF: SVWRITE({WR1[1], WR1[2]}, {Higher, Higher}); // i = 1
5SF: end if
6SF: if WR1[(¬i) ∗ 2] =⊥ then
7SF: return i; // The other process hasn’t written its value
8SF: else if (WR1[1] = Higher and i = 0) or (WR[1] = Lower and i = 1)

then
9SF: return i; // The other process comes later and overwrites pi’s value in

WR1[1]
10SF: else
11SF: return (¬i);
12SF: end if

Algorithm 3 SVW_SECONDAGREEMENT(i: index;
firstref : reference) invoked by process pi, i ∈ {0, 1, 2}
1SS: if i = 0 then
2SS: SVWRITE({WR2[0], WR2[1]}, {Lower, Lower});
3SS: else if i = 1 then
4SS: SVWRITE({WR2[3], WR2[4]}, {Lower, Lower});
5SS: else
6SS: SVWRITE({WR2[1], WR2[2], WR2[3]}, {Higher, Higher, Higher});

7SS: end if
8SS: if ((WR2[0] 6=⊥ or WR2[4] 6=⊥) and WR2[2] =⊥) or // The predicates

are checked in the writing order.
(WR2[0] 6=⊥ and WR2[1] = Higher) or
(WR2[4] 6=⊥ and WR2[3] = Higher) then

9SS: return first; // p2 is preceded by either p0 or p1. first is obtained by
dereferencing firstref .

10SS: else
11SS: return 2;
12SS: end if

rithm 1) on which p0’s and p1’s SVWRITEs can partly over-
lap, p0’s and p1’s SVWRITEs are chosen as 2-svwrite and 3-
svwrite, respectively. The WR1 variable is located in a mem-
ory region consisting of 4 consecutive units {u0, u1, u2, u3}
of which u0 is at an address multiple of 2 and u1 at an ad-
dress multiple of 3. This memory allocation allows p0 and
p1 to write atomically to the first two units {u0, u1} and the
last 3 units {u1, u2, u3}, respectively (cf. Figure 3(a)). The
WR1 variable is the set {u0, u1, u2} (cf. the solid squares in
Figure 3(a)), namely p1 ignores u3 (cf. line 4SF in Algorithm
2).

Subsequently, the agreed value will be used as the criti-
cal value of both p0 and p1 in the second phase in order to
achieve an agreement with the other process p2 (cf. Algo-
rithm 3). Let pfirst be the preceding process of p0 and p1

in the first phase. The second phase returns pfirst’s proposal
value if either p0 or p1 precedes p2 (line 9SS) and returns
p2’s proposal value otherwise.

Units written by processes’ SVWRITE are illustrated in
Figure 3(b). In order to be able to allocate memory for the
WR2 variable, process p0’s, p1’s and p2’s SVWRITEs are
chosen as 2-svwrite, 3-svwrite and 5-svwrite, respectively.
The WR2 variable is located in a memory region consist-
ing of 7 consecutive units {u0, · · · , u6} of which u0 is at
an address multiple of 2, u4 at an address multiple of 3 and
u1 at an address multiple of 5. Since 2, 3 and 5 are prime
numbers, we always can find such a memory region. For in-

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

34 c© 2008, Copyright held by the individual authors

0 1 2 3

p0

p1

WR1

(a) SVW_1stAgreement.

0 1 2 3 4 65WR2

p0 p1

p2

(b) SVW_2ndAgreement.

Figure 3. Illustrations for
SVW_FIRSTAGREEMENT and
SVW_SECONDAGREEMENT.

stance, if the memory address space starts from the unit with
index 0, the memory region from unit 14 to unit 20 can be
used for WR2 (cf. Figure 1(a)). This memory allocation al-
lows p0, p1 and p2 to write atomically to the first two units
{u0, u1}, the last three units {u4, u5, u6} and the five middle
units {u1, · · · , u5}, respectively. The WR2 variable is the
set {u0, u1, u2, u5, u6} (cf. the solid squares in Figure 3(b)).

Theorem 2.1. The single-svword assignment has consensus
number 3 when B ≥ 5 and three is the upper bound of con-
sensus numbers of single-svword assignments ∀B ≥ 2.

Proof. The full proof is in [13].

2.3 Consensus number of the aiword model

In this section, we prove that the single-aiword assign-
ment (or aiwrite for short) has consensus number exactly
bA+1

2 c. First, we prove that the aiwrite operation has con-
sensus number at least bA+1

2 c. We prove this by present-
ing a wait-free consensus algorithm AIW_CONSENSUS for
N = bA+1

2 c processes (cf. Algorithm 4) using only the ai-
write operation and registers. Subsequently, we prove that
there is no wait-free consensus algorithm for N +1 processes
using only the aiwrite operation and registers.

The main idea of the AIW_CONSENSUS algorithm is to
gradually extend the set S of processes agreeing on the same
value by one at a time. This is to minimize the number of 1W-
and 2W-units that must be written atomically by the aiword
operation. The algorithm consists of N rounds and a process
pi, i ∈ [1, N], participates from round ri to round rN . A
process pi leaves a round rj , j ≥ i, and enters the next round
rj+1 when it reads the value upon which all processes in the
round rj (will) agree. A round rj starts with the first process
that enters the round, and ends when all j processes pi, 1 ≤
i ≤ j, have left the round. At the end of a round rj , the set S
consists of j processes pi, 1 ≤ i ≤ j.

Lemma 2.2. All correct processes4 pi agree on the same
value in round rj , where 1 ≤ i ≤ j ≤ N .

4A correct process is a process that does not crash.

Algorithm 4 AIW_CONSENSUS(bufi: proposal) invoked
by process pi, i ∈ [1, N]
Ar[i]: pi’s agreed value in round r;
Ur

i,j : the 2W-unit written only by processes pi and pj in round r. Ur
i : the 1W-unit

written only by process pi in round r;
Input: process pi’s proposal value, bufi.
Output: the value upon which all N processes (will) agree.

// pi starts from round i
1I: Ai[i] ← bufi; // Initialized pi’s agreed value for round i

2I: AIWRITE({Ui
i , Ui

i,1, · · · , Ui
i,i−1}, {Higher, Higher, · · · , Higher})

// Atomic assignment
3I: for k = 1 to (i− 1) do
4I: if Ui

k 6=⊥ and Ui
i,k = Higher then

5I: Ai[i] ← Ai[k]; // Update pi’s agreed value to the set S’s agreed value
6I: break;
7I: end if
8I: end for

// Participate rounds from (i + 1) to N
9I: for j = i + 1 to N do
10I: Aj [i] ← Aj−1[i]; // Initialized pi’s agreed value for round j

11I: AIWRITE({Uj
i , Uj

j,i}, {Lower, Lower}; // Atomic assignment

12I: if Uj
j 6=⊥ and Uj

j,i = Lower then
13I: WinnerIsJ ← true; // Check if pj precedes pk, ∀k < j.
14I: for k = 1 to j − 1 do
15I: if Uj

k 6=⊥ and Uj
j,k = Higher then

16I: WinnerIsJ ← false; // pk precedes pj ;
17I: break;
18I: end if
19I: end for
20I: if WinnerIsJ = true then
21I: Aj [i] ← Aj [j]; // pj precedes pk, ∀k < j,⇒ pj ’s value is the

agreed value in round j.
22I: end if
23I: end if
24I: end for
25I: return AN [i];

... 2W+2W1W 1W1W 1W 2W 2W 1W 1W 2W2W

A1 ABB-svword

AxB-asvword

Figure 4. An illustration for grouping units in
the asvword model.

With the assumption that AIWRITE can atomically write
to pj’s units at line 2I and pi’s units at line 11I, it follows di-
rectly from Lemma 2.2 that all the N processes will achieve
an agreement in round rN .

Lemma 2.3. The AIW_CONSENSUS algorithm is wait-free
and can solve the consensus problem for N = bA+1

2 c pro-
cesses.

Theorem 2.2. The single-aiword assignment has consensus
number exactly bA+1

2 c.
Proof. The full proof is in [13].

2.4 Consensus number of the asvword model

The intuition behind the higher consensus number of the
asvword model compared with the aiword model (cf. Equa-
tion (1)) is that process pN in Algorithm 4 can atomically
write to A · B units using AxB-asvwrite instead of only A
units using A-aiwrite. To prevent pN from overwriting un-
intended units (as illustrated by SIMD core 4 in Figure 2),

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 35

SIMD core SIMD core SIMD core...

Shared Memory

Figure 5. The abstract model of a chip with
multiple SIMD-cores

each B-svword located in Al, 1 ≤ l ≤ B, contains either
1W-units or 2W-units but not both as illustrated in Figure 4,
where B-svwords labeled “1W” contain only 1W-units and
B-svwords labeled “2W” contain only 2W-units. This al-
lows pN to atomically write to only B-svwords with 2W-
units UN

N,i (and keep 1W-unit UN
i , i 6= N, untouched) us-

ing AxB-asvwrite. For each process pi, i 6= N , its 1W-unit
UN

i and 2W-unit UN
N,i are located in two B-svwords labeled

"1W" and "2W", respectively, that belong to the same Al.
This allows pi to atomically write to only its two units us-
ing Ax1-asvwrite. A complete proof of the exact consensus
number can be found in the full version of this paper [13].

N =





AB
2 , if A = 2tB, t ∈ N∗ (positive integers)

(A−B)B
2 + 1, if A = (2t + 1)B, t ∈ N∗

bA+1
2 c, if B = tA, t ∈ N∗

(1)

3 Universal Synchronization Objects

3.1 The Model

Inspired by emerging media/graphics processing unit ar-
chitectures like CUDA [2] and Cell BE [23], the abstract sys-
tem model we consider in this paper is illustrated in Fig. 5.
The model consists of N SIMD-cores sharing a shared mem-
ory and each core can process M threads (in a SIMD man-
ner) in one clock cycle. For instance, the GeForce 8800GTX
graphics processor, which is the flagship of the CUDA archi-
tecture family, has 16 SIMD-cores/SIMD-multiprocessors,
each of which processes up to 16 concurrent threads in one
clock cycle.

Since powerful media/graphics processing units with
many cores (e.g. NVIDIA Tesla series with up to 64 cores
and GeForce 8800 series with 16 cores) do not support strong
synchronization primitives like test-and-set and compare-
and-swap [2], we make no assumption on the existence of
such strong synchronization primitives in this model. In
this model, each of the M threads of one SIMD core can
read/write one memory location in one atomic step. Due
to SIMD architecture, each SIMD core can read/write M
different memory locations in one atomic step or, in or-
der words, each SIMD core can execute M_READ and
M_ASSIGNMENT (atomic) operations.

Different cores can concurrently execute different user
programs and a process, which sequentially executes instruc-
tions of a program on one core, can crash due to the program
errors. The failure category considered in this model is the
crash failure: a failed process cannot take another step in the
execution. This model supports the strongly t-resilient for-
mulation in which the access procedure at some port5 of an
object is infinite only if the access procedures in more than t
other ports of the object are finite, nonempty and incomplete
in the object execution [8].

Terminology Synchronization objects are conventionally
classified by consensus number, the maximum number of
processes for which the object can solve a consensus prob-
lem [16]. An n-consensus object allows n processes to pro-
pose their values and subsequently returns only one of these
values to all the n processes. A short-lived (resp. long-lived)
consensus object is a consensus object in which the object
variables are used once (resp. many times) during the object
life-time. An object implementation is wait-free if any pro-
cess can complete any operation on the object in a finite num-
ber of steps regardless of the execution speeds of other pro-
cesses [16, 17, 22]. An object implementation is t-resilient
if non-faulty processes can complete their operations as long
as no more than t processes fail [9, 11].

3.2 Wait-free Long-lived Consensus Ob-
jects Using M ˙assignment for N = 2M−2

In this section, we consider the following consensus prob-
lem. Each process is associated with a round number before
participating in a consensus protocol. The round number
must satisfy Requirement 3.1. The problem is to construct
a long-lived object that guarantees consensus among pro-
cesses with the same consensus number (or processes within
the same round) using M_ASSIGNMENT operation. Since i)
the adversary can arrange all N processes to be in the same
round and ii) the M_ASSIGNMENT operation has consensus
number (2M − 2), we cannot construct any wait-free ob-
jects that guarantee consensus for more than (2M − 2) pro-
cesses using only the operation and read/write registers [16],
or N ≤ (2M − 2) must hold. The constructed wait-free
long-lived consensus object will be used as a building block
to construct wait-free read-modify-write objects in Section
3.3.

Requirement 3.1. The requirements for processes’ round
number:

• a process’ round number must be increasing and be
updated only by this process,
• processes get a round number r only if the round (r −
1) has finished, and
• processes declare their current round number in

shared variables before participating in a consensus
protocol.

5An object that allows N processes to access concurrently is considered
having N ports.

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

36 c© 2008, Copyright held by the individual authors

Algorithm 5 LONGLIVEDCONSENSUS(bufi: proposal) in-
voked by process pi

ROUND[1...N] : contains current round numbers of N processes.
ROUND[i] is written by only process pi and can be read by all N pro-
cesses. ROUND[i] must be set before pi calls this LONGLIVEDCONSEN-
SUS procedure.
REG[][]: 2-writer registers. REG[i][j] can be written by processes pi and
pj . For the sake of simplicity, we use a virtual array 2WR[1..M][1..M]

that is mapped to REG of size M(M−1)
2

as follows

2WR[i][j] =

{
REG[i][j] if i > j
REG[j][i] if i < j

1WR[1...M][0...1]: 1-writer registers. 1WR[i] can be written by
only process pi. For implementation simplicity, 1WR[i] may contain
ROUND[i]

Input: a unique proposal bufi for pi and pi’s round number ROUND[i]
Output: a proposal or ⊥
1L: gId ← b i

M−1
c // Divide processes into 2 groups of size (M−1) with

group ID gId ∈ {0, 1}
// Phase I:Find an agreement in pi’s group with indices {gId(M−1)+
1, · · · , gId(M − 1) + M − 1}

2L: first ← FIRSTAGREEMENT(bufi, gId) // first is the proposal of
the earliest process of group gId in pi’s round

3L: if first =⊥ then
4L: return ⊥ // pi’s round had finished and a new round started
5L: end if

// Phase II: Find an agreement with the other group with indices
{(¬gId)(M − 1) + 1, · · · , (¬gId)(M − 1) + M − 1}

6L: winner ← SECONDAGREEMENT(first, gId)
7L: if winner =⊥ then
8L: return ⊥ // pId’s round had finished and a new round started
9L: end if
10L: return winner

At this moment, round numbers are assumed to be un-
bounded for the sake of simplicity. Solutions to make the
round numbers bounded are presented in Section 3.5.

In the rest of this section, we presents a wait-free long-
lived consensus (LLC) object for N = (2M − 2) processes
using M_ASSIGNMENT operations. The LLC object is de-
veloped from the short-lived consensus (SLC) object using
M_ASSIGNMENT in [16]. The LLC object will be used to
achieve an agreement among processes in the same round.
Unlike the SLC object, variables in the LLC object that are
used in the current round can be reused in the next rounds.
The LLC object, moreover, must handle the case that some
processes (e.g. slow processes) belonging to other rounds try
to modify the shared data/variables that are being used in the
current round.

The algorithm of the wait-free LLC object using
M_ASSIGNMENT is presented in Algo. 5. Before a pro-
cess pi invokes the LONGLIVEDCONSENSUS procedure,
pi’s round number must be declared in the shared variable
ROUND[i]. The procedure returns i) ⊥ if pi’s round had
finished and a newer round started or ii) one of the proposal
data proposed in pi’s round.

A process pi proposes its data by passing its proposal data
to the procedure. Like the SLC object in [16], when the pro-
posal data is unique for each process and can be stored in a
register, the LLC object can work directly on the proposal
data. However, when the proposal data is either not unique

Algorithm 6 FIRSTAGREEMENT(bufi: proposal; gId: bit)
invoked by process pi

Output: ⊥ or the proposal of the earliest process in pi’s round
1F: M_ASSIGNMENT({1WR[i][gId], 2WR[i][α+1], · · · , 2WR[i][α+

M − 1]}, {bufi, · · · , bufi}), where α = gId(M − 1)
2F: first ← i // Initialize the winner first of pi’s group to pi

3F: for k in α + 1, · · · , α + M − 1 do
4F: {first, ref} ← ORDERING(first, k, gId) // Find the earliest

process first of pi’s group in pi’s round
5F: if first =⊥ then
6F: return ⊥ // pId’s round had finished and a new round started
7F: end if
8F: end for
9F: return ref // first’s proposal in pi’s round

for each process or larger than the register size, which makes
M_ASSIGNMENT no longer able to atomically write M pro-
posal data, our LLC object works on the references to (or
addresses of) the proposal data with the condition that pro-
cesses allocate their own memory to contain their proposal
data. In this case, applications using the LLC object must en-
sure that processes, after achieving an agreed reference ref ,
read the correct proposal data matching ref . Even though
processes get the same reference ref via the LLC object, the
data to which the reference refers may change, making pro-
cesses get different data.

Like the SLC algorithm [16], the LLC algorithm divides
the group of (2M − 2) processes into two fixed equal sub-
groups of (M − 1) processes (line 1L). In the first phase, the
invoking process pi finds the proposal of the earliest process
of its group in its current round (line 2L). Then in the second
phase, pi uses the agreement achieved among its group in the
first phase as its proposal for finding an agreement with its
opposite group in its round (line 6L).

Note that pi’s round number is unchanged when pi is
executing the LONGLIVEDCONSENSUS procedure. If pi’s
round already finished, the procedure returns ⊥ since pi is
not allowed to participate in a consensus protocol of a round
to which it doesn’t belong (lines 4L and 8L).

The FIRSTAGREEMENT procedure (cf. Algo. 6) simply
scans all members of pi’s group to find the earliest process
using the ORDERING procedure. The ORDERING procedure
receives as input two processes and returns the preceding one
together with its proposal in pi’s round. Since the preceding
order is transitive, the variable first after the for-loop is the
first process of pi’s group in pi’s round.

The SECONDAGREEMENT procedure (cf. Algo. 7) is
an innovative improvement of the abstract idea in the SLC
algorithm [16]. The SLC algorithm suggests the idea of
constructing a directed graph between two groups each of
(M − 1) processes with property that there is an edge from
Pl to Pk if Pl and Pk are in different groups and the formers
assignment precedes the latter’s (or the former precedes the
latter for short). Constructing such a directed graph has time
complexity O(M2) since each member of one group must be
checked with (M − 1) members of the other group.

However, the SECONDAGREEMENT procedure finds an
agreement with time complexity only O(M). The idea is

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 37

Algorithm 7 SECONDAGREEMENT(first: proposal; gId:
bit) invoked by process pi

1S: M_ASSIGNMENT({1WR[i][¬gId], 2WR[i][β +
1], · · · , 2WR[i][β + M − 1]}, {first, · · · , first}), where
β = (¬gId)(M − 1)

2S: winner ← i // Initialize the winner winner to pi

3S: w_gId ← gId // Initialize the winner’s group ID w_gId
4S: pivot[w_gId] ← i // Set pivots for both groups to check all members

of each group in a round-robin manner
5S: pivot[¬w_gId] ← β + 1 // The smallest index in winner’s opposite

group
6S: next ← pivot[¬w_gId]
7S: repeat
8S: previous ← winner
9S: {winner, ref} ← ORDERING(winner, next,¬w_gId)
10S: if winner =⊥ then
11S: return ⊥ // pId’s round had finished and a new round started
12S: else if winner 6= previous then
13S: w_gId ← ¬w_gId // winner now belongs to the other group
14S: next ← previous
15S: end if
16S: next ← the next member index in next’s group in a round-robin

manner.
17S: until next = pivot[¬w_gId] // All members of winner’s opposite

group have been checked
18S: return ref // The reference to winner’s proposal in round roundi

that we can find a process pw in a group G0 that precedes
all members of the other group G1 without the need of such
a directed graph. Such a process is called source. Since all
members of G1 are preceded by pw, they cannot be sources.
All sources must be members of pw’s group G0, which sug-
gest the same proposal, their agreement achieved in the first
phase. Therefore, all processes in both groups will achieve
an agreement, the agreement of pw’s group.

The SECONDAGREEMENT procedure utilizes the transi-
tive property of the preceding order to achieve the better time
complexity O(M). Fig. 6 illustrates the procedure. As-
sume that process pi belongs to group 0, which is marked
as p0

i in the figure. The procedure sets a pivot index for each
group (e.g. pivot0 = p0

i and pivot1 = p1
1) and checks mem-

bers of each group in a round-robin manner starting from
the group’s pivot (lines 4S and 5S). In the figure, p0

i , which
is the temporary winner (line 2S), consecutively checks the
members of group 1: p1

1, p
1
2 and p1

3, and discovers that it pre-
cedes p1

1 and p1
2 but it is preceded by p1

3. At this point, the
temporary winner winner is changed from p0

i to p1
3 and p1

3

starts to checks the members of group 0 starting from p0
i+1

(lines 12S-14S). Then, p1
3 discovers that it precedes p0

i+1 but
it is preceded by p0

i+2. At this point, the temporary winner
winner is again changed from p1

3 to p0
i+2. p0

i+2 continues to
check the members of group 1 starting from p1

4, the index be-
fore which p0

i stopped, instead of starting from pivot1 = p1
1

(lines 12S-14S). It is clear from the figure that p0
i+2 precedes

p1
1 and p1

2 (or p0
i+2 Ã p1

1 and p0
i+2 Ã p1

2 for short) since
p0

i+2 Ã p1
3 Ã p0

i and p0
i precedes both p1

1 and p1
2. Therefore,

as long as the temporary winner (e.g. p0
i+2) checks the pivot

of its opposite group again, it can ensure that it precedes all
the members of its opposite group (line 17S) and becomes
the final winner. Therefore, the procedure needs to check at
most (2M −2) times, leading to the time complexity O(M).

Group 0

Group 1

...

pivot1 = p1
1

p1
3

p0
i+2

p1
j

pivot0 = p0
i

p1
2

p0
i+1

p1
4

Figure 6. Illustration for the SECONDAGREE-
MENT procedure, Algo. 7

3.3 Wait-free Read-Modify-Write Objects
for N = 2M − 2

In this section, we present a wait-free read-modify-
write (RMW) object for N = (2M − 2) processes using
M_ASSIGNMENT operations. Since the M_ASSIGNMENT
operation has consensus number (2M − 2), we cannot con-
struct any wait-free objects for more than (2M − 2) pro-
cesses using only this operation and read/write registers [16].
The idea is to divide the execution of the RMW object
into consecutive rounds. Processes belonging to the same
round each suggests an order of these processes’ functions to
be executed on the object in that round, and then invokes
the LONGLIVEDCONSENSUS procedure in Section 3.2 to
achieve an agreement among these processes. Since each
process executes one function on the RMW object at a time,
functions are ordered according to both the round in which
their matching processes participate and the agreed order
among processes in the same round.

3.4 (2M − 3)-Resilient Read-Modify-Write
Objects for Arbitrary N

In this section, we present a (2M − 3)-resilient object for
an arbitrary number N of processes using M_ASSIGNMENT
operations. Since the operation has consensus number
(2M − 2), we cannot construct any objects that toler-
ate more than (2M − 3) faulty processes using only the
M_ASSIGNMENT operation and read/write registers [8].

Let D = (2M−2) and, without loss of generality, assume
that N = DK, whereK is an integer. The idea is to construct
a balanced tree with degree of D. Processes start from the
leaves at level K and climb up to the first level of the tree,
the level just below the root. When visiting a node at level
i, 2 ≤ i ≤ K, a process pi calls the wait-free LONGLIVED-
CONSENSUS procedure (cf. Section 3.2) for its D sibling
processes/nodes to find an agreement on which process will
be their representative that will climb up to the higher level.

The representative process of pi’s D siblings at level l will
participate in the wait-free LONGLIVEDCONSENSUS proce-

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

38 c© 2008, Copyright held by the individual authors

dure with its D siblings at level (l + 1) and so on until the
representative reaches level 1 of the tree at which there are
exact D nodes. At this level, the D processes/nodes invoke
the wait-free RMW procedure for D processes (cf. Section
3.3).

Processes that are not chosen to be the representative stop
climbing the tree and repeatedly check the final result until
their function is executed. After that they return with the
corresponding response.

3.5 Bounded round numbers

Active processes pi that are participating in the most re-
cent instance of the long-lived protocol need a mechanism to
distinguish them from slow/sleepy processes. The bounded
version of the long-lived protocol can be obtained by replac-
ing the unbounded round number with the (bounded) lead-
ership graph suggested in [15]. In the graph, an incoming
process pi invokes the ADVANCE operation to become one
of the leaders of the graph. Processes that are current leaders
belong to the most recent round whereas processes that are
no longer leaders are slow processes. Therefore, the leader-
ship graph can help distinguish active processes from slow
processes, satisfying the requirement of the long-lived proto-
col. Another approach to bound the round number is to use
the transforming technique presented in [10]. The technique
can transform any unbounded algorithm based on an asyn-
chronous rounds structure into a bounded algorithm in a way
that preserves correctness and running time.

References

[1] Cell Broadband Engine Architecture, version 1.01. IBM,
Sony and Toshiba Corporations, 2006.

[2] NVIDIA CUDA Compute Unified Device Architecture, Pro-
gramming Guide, version 1.1. NVIDIA Corporation, 2007.

[3] S. V. Adve and K. Gharachorloo. Shared memory consistency
models: A tutorial. Computer, 29(12):66–76, 1996.

[4] H. Attiya and J. Welch. Distributed Computing: Fundamen-
tals, Simulations, and Advanced Topics. John Wiley and Sons,
Inc., 2004.

[5] E. Borowsky and E. Gafni. Generalized flp impossibility re-
sult for t-resilient asynchronous computations. In STOC ’93:
Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing, pages 91–100, 1993.

[6] H. Buhrman, A. Panconesi, R. Silvestri, and P. Vitanyi. On
the importance of having an identity or, is consensus really
universal? Distrib. Comput., 18(3):167–176, 2006.

[7] I. Castano and P. Micikevicius. Personal communication.
NVIDIA, 2008.

[8] T. Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg. Gen-
eralized irreducibility of consensus and the equivalence of t-
resilient and wait-free implementations of consensus. SIAM
Journal on Computing, 34(2):333–357, 2005.

[9] D. Dolev, C. Dwork, and L. Stockmeyer. On the mini-
mal synchronism needed for distributed consensus. J. ACM,
34(1):77–97, 1987.

[10] C. Dwork and M. Herlihy. Bounded round number. In Proc.
of Symp. on Principles of Distributed Computing (PODC),
pages 53–64, 1993.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM,
32(2):374–382, 1985.

[12] P. H. Ha, P. Tsigas, and O. J. Anshus. The synchroniza-
tion power of coalesced memory accesses. In Proc. of the
Intl. Symp. on Distributed Computing (DISC), pages 320–
334, 2008.

[13] P. H. Ha, P. Tsigas, and O. J. Anshus. The synchroniza-
tion power of coalesced memory accesses. Technical report
CS:2008-68, University of Tromsø, Norway, 2008.

[14] P. H. Ha, P. Tsigas, and O. J. Anshus. Wait-free programming
for general purpose computations on graphics processors. In
Proc. of the IEEE Intl. Parallel and Distributed Processing
Symp. (IPDPS), pages 1–12, 2008.

[15] M. Herlihy. Randomized wait-free concurrent objects (ex-
tended abstract). In Proc. of Symp. on Principles of Dis-
tributed Computing (PODC), pages 11–21, 1991.

[16] M. Herlihy. Wait-free synchronization. ACM Transaction on
Programming and Systems, 11(1):124–149, Jan. 1991.

[17] L. Lamport. Concurrent reading and writing. Commun. ACM,
20(11):806–811, 1977.

[18] L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess progranm. IEEE Trans. Comput.,
28(9):690–691, 1979.

[19] S. S. Lumetta and D. E. Culler. Managing concurrent access
for shared memory active messages. In Proc. of the Intl. Par-
allel Processing Symp. (IPPS), page 272, 1998.

[20] M. M. Michael and M. L. Scott. Relative performance of
preemption-safe locking and non-blocking synchronization
on multiprogrammed shared memory multiprocessors. In
Proc. of the IEEE Intl. Parallel Processing Symp. (IPPS,
pages 267–273, 1997.

[21] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware. Com-
puter Graphics Forum, 26(1):80–113, 2007.

[22] G. L. Peterson. Concurrent reading while writing. ACM
Trans. Program. Lang. Syst., 5(1):46–55, 1983.

[23] D. Pham and et.al. The design and implementation of a first-
generation cell processor. In Solid-State Circuits Conference,
2005. Digest of Technical Papers. ISSCC. 2005 IEEE Inter-
national, pages 184–185, 2005.

[24] E. Ruppert. Determining consensus numbers. In Proc.
of Symp. on Principles of Distributed Computing (PODC),
pages 93–99, 1997.

[25] P. Tsigas and Y. Zhang. Evaluating the performance of
non-blocking synchronization on shared-memory multipro-
cessors. In Proceedings of the 2001 ACM SIGMETRICS inter-
national conference on Measurement and modeling of com-
puter systems, pages 320–321, 2001.

[26] P. Tsigas and Y. Zhang. Integrating non-blocking synchroni-
sation in parallel applications: Performance advantages and
methodologies. In Proceedings of the 3rd ACM Workshop
on Software and Performance (WOSP’02), pages 55–67, July
2002.

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

c© 2008, Copyright held by the individual authors 39

PAPER SESSION 1: PROGRAMMING ON SPECIALIZED PLATFORMS

40 c© 2008, Copyright held by the individual authors

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

Paper session 2: Language and compilation techniques

c© 2008, Copyright held by the individual authors 41

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

42 c© 2008, Copyright held by the individual authors

OpenDF – A Dataflow Toolset for Reconfigurable
Hardware and Multicore Systems

Shuvra S. Bhattacharyya
Dept. of ECE and UMIACS

University of Maryland, College Park, MD 20742
USA

Gordon Brebner, Jörn W. Janneck
Xilinx Research Labs
San Jose, CA 95123

USA

Johan Eker, Carl von Platen
Ericsson Research
Mobile Platforms
SE-221 83, Lund

Sweden

Marco Mattavelli
Microelectronic Systems Lab

EPFL
CH-1015 Lausanne

Switzerland

Mickaël Raulet
IETR/INSA Rennes

F-35043, Rennes
France

Abstract

This paper presents the OpenDF framework and recalls
that dataflow programming was once invented to address
the problem of parallel computing. We discuss the prob-
lems with an imperative style, von Neumann programs,
and present what we believe are the advantages of using a
dataflow programming model. The CAL actor language is
briefly presented and its role in the ISO/MPEG standard is
discussed. The Dataflow Interchange Format (DIF) and re-
lated tools can be used for analysis of actors and networks,
demonstrating the advantages of a dataflow approach. Fi-
nally, an overview of a case study implementing an MPEG-
4 decoder is given.

1 Introduction

Time after time, the uniprocessor system has managed
to survive in spite of rumors of its imminent death. Over
the last three decades hardware engineers have been able
to achieve performance gains by increasing clock speed,
and introducing cache memories and instruction level par-
allelism. However, current developments in the hardware
industry clearly shows that this trend is over. The frequency
in no longer increasing, but instead the number of cores on
each CPU is. Software development for uniprocessor sys-
tems is completely dominated by imperative style program-
ming models, such as C or Java. And while they provide a
suitable abstraction level for uniprocessor systems, they fail
to do the same in a multicore setting. In a time when new
hardware meant higher clock frequencies, old programs al-

most always ran faster on more modern equipment. How-
ever, this is not true when programs written for single core
system execute on multicore. And the bad news is that there
is no easy way of modifying them. Tools such as OpenMP
will help the transition, but likely fail to utilize the full po-
tential of multicore systems.

Over the years considerable attention has been put to the
data flow modeling, which is a programming paradigm pro-
posed in the late 60s, as a means to address parallel pro-
gramming. It is well researched area with a number of inter-
esting results pertaining to parallel computing. Many mod-
ern forms of computation are very well suited for data flow
description and implementation, examples are complex me-
dia coding [1], network processing [2], imaging and digital
signal processing [3], as well as embedded control [4]. To-
gether with the move toward parallelism, this represents a
huge opportunity for data flow programming.

2 Why C etc. Fail

Before diving into dataflow matters, we will give a brief
motivation why a paradigm shift is necessary. The control
over low-level detail, which is considered a merit of C, tends
to over-specify programs: not only the algorithms them-
selves are specified, but also how inherently parallel com-
putations are sequenced, how inputs and outputs are passed
between the algorithms and, at a higher level, how compu-
tations are mapped to threads, processors and application-
specific hardware. It is not always possible to recover the
original knowledge about the program by means of analysis
and the opportunities for restructuring transformations are
limited.

1

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

c© 2008, Copyright held by the individual authors 43

Code generation is constrained by the requirement of
preserving the semantic effect of the original program.
What constitutes the semantic effect of a program depends
on the source language, but loosely speaking some observ-
able properties of the program’s execution are required to
be invariant. Program analysis is employed to identify the
set of admissible transformations; a code generator is re-
quired to be conservative in the sense that it can only per-
form a particular transformation when the analysis results
can be used to prove that the effect of the program is pre-
served. Dependence analysis is one of the most challenging
tasks of high-quality code generation (for instance see [5]).
It determines a set of constraints on the order, in which the
computations of a program may be performed. Efficient uti-
lization of modern processor architectures heavily depends
on dependence analysis, for instance:

• To determine efficient mappings of a program onto
multiple processor cores (parallelization),

• to utilize so called SIMD or “multimedia” instructions
that operate on multiple scalar values simultaneously
(vectorization), and

• to utilize multiple functional units and avoid pipeline
stalls (instruction scheduling).

Determining (a conservative approximation of) the depen-
dence relation of a C program involves pointer analysis.
Since the general problem is undecideable, a trade-off will
always have to be made between the precision of the analy-
sis and its resource requirements [6].

3 Dataflow Networks

A dataflow program is defined as a directed graph, where
the nodes represent computational units and the arcs rep-
resent the flow of data. The lucidness of dataflow graphs
can be deceptive. To be able to reason about the effect of
the computations performed, the dataflow graph has to be
put in the context of a computation model, which defines
the semantics of the communication between the nodes.
There exists a variety of such models, which makes dif-
ferent trade-offs between expressiveness and analyzability.
Of particular interest are Kahn process networks [7], and
synchronous dataflow networks [8]. The latter is more con-
strained and allows for more compile-time analysis for cal-
culation of static schedules with bounded memory, leading
to synthesized code that is particularly efficient. More gen-
eral forms of dataflow programs are usually scheduled dy-
namically, which induces a run-time overhead.

It has been shown that dataflow models offer a represen-
tation that can effectively support the tasks of paralleliza-
tion [8] and vectorization [9]—thus providing a practical
means of supporting multiprocessor systems and utilizing
vector instructions.

3.1 Actors

The fundamental entity of this model is an actor [10],
also called dataflow actor with firing. Dataflow graphs,
called networks, are created by means of connecting the in-
put and output ports of the actors. Ports are also provided by
networks, which means that networks can nested in a hier-
archical fashion. Data is produced and consumed as tokens,
which could correspond to samples or have a more complex
structure. This model has the following properties:

• Strong encapsulation. Every actor completely encap-
sulates its own state together with the code that oper-
ates on it. No two actors ever share state, which means
that an actor cannot directly read or modify another
actor’s state variables. The only way actors can inter-
act is through streams, directed connections they use
to communicate data tokens.

• Explicit concurrency. A system of actors connected
by streams is explicitly concurrent, since every sin-
gle actor operates independently from other actors in
the system, subject to dependencies established by the
streams mediating their interactions.

• Asynchrony, untimedness. The description of the ac-
tors as well as their interaction does not contain spe-
cific real-time constraints (although, of course, imple-
mentations may).

4 The CAL Actor Language

CAL [11] is a domain-specific language that provides
useful abstractions for dataflow programming with actors.
CAL has been used in a wide variety of applications and
has been compiled to hardware and software implementa-
tions, and work on mixed HW/SW implementations is un-
der way. Below we will give a brief introduction to some
key elements of the language.

4.1 Basic Constructs

The basic structure of a CAL actor is shown in the Add
actor below, which has two input ports t1 and t2, and one
output port s, all of type T. The actor contains one action
that consumes one token on each input ports, and produces
one token on the output port. An action may fire if the avail-
ability of tokens on the input ports matches the port pat-
terns, which in this example corresponds to one token on
both ports t1 and t2.
actor Add() T t1, T t2⇒ T s :

action [a], [b]⇒ [sum]
do

sum := a + b;
end

end

2

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

44 c© 2008, Copyright held by the individual authors

An actor may have any number of actions. The untyped
Select actor below reads and forwards a token from ei-
ther port A or B, depending on the evaluation of guard con-
ditions. Note that each of the actions have empty bodies.

actor Select () S, A, B⇒ Output:

action S: [sel], A: [v]⇒ [v]
guard sel end

action S: [sel], B: [v]⇒ [v]
guard not sel end

end

An action may be labeled and it is possible to constrain
the legal firing sequence by expressions over labels. In the
PingPongMerge actor, see below, a finite state machine
schedule is used to force the action sequence to alternate
between the two actions A and B. The schedule statement
introduces two states s1 and s2.

actor PingPongMerge () Input1, Input2⇒ Output:
A: action Input1: [x]⇒ [x] end
B: action Input2: [x]⇒ [x] end

schedule fsm s1:
s1 (A) --> s2;
s2 (B) --> s1;

end
end

The Route actor below forwards the token on the input
port A to one of the three output ports. Upon instantiation
it takes two parameters, the functions P and Q, which are
used as predicates in the guard conditions. The selection of
which action to fire is in this example not only determined
by the availability of tokens and the guards conditions, by
also depends on the priority statement.

actor Route (P, Q) A⇒ X, Y, Z:

toX: action [v]⇒ X: [v]
guard P(v) end

toY: action [v]⇒ Y: [v]
guard Q(v) end

toZ: action [v]⇒ Z: [v] end

priority
toX > toY > toZ;

end
end

For an in-depth description of the language, the reader is
referred to the language report [11]. A large selection of ex-
ample actors is available at the OpenDF repository, among
them the MPEG-4 decoder discussed below.

4.2 Networks

A set of CAL actors are instantiated and connected to
form a CAL application, i.e. a CAL network. Figure 1
shows a simple CAL network Sum, which consists of the
previously defined Add actor and the delay actor shown be-
low.

Z(v=0)

Add

Sum

B

A

Out Out

Out

In

In

Figure 1. A simple CAL network.

actor Z (v) In⇒ Out:

A: action⇒ [v] end
B: action [x]⇒ [x] end

schedule fsm s0:
s0 (A) --> s1;
s1 (B) --> s1;

end
end

The source that defined the network Sum is found be-
low. Please, note that the network itself has input and output
ports and that the instantiated entities may be either actors
or other networks, which allows for a hierarchical design.

network Sum () In⇒ Out:

entities
add = Add();
z = Z(v=0);

structure
In --> add.A;
z.Out --> add.B;

add.Out --> z.In;

add.Out -- > Out;
end

4.3 ISO-MPEG standardisation

The data-driven programming paradigm of CAL
dataflow lends itself naturally to describing the processing
of media streams that pervade the world of media coding.
In addition, the strong encapsulation afforded by the actor
model provides a solid foundation for the modular specifi-
cation of media codecs.

MPEG has produced several video coding standards such
as MPEG-1, MPEG-2, MPEG-4 Video, AVC and SVC.
However, the past monolithic specification of such stan-
dards (usually in the form of C/C++ programs) lacks flexi-
bility and does not allow to use the combination of coding
algorithms from different standards enabling to achieve spe-
cific design or performance trade-offs and thus fill, case by
case, the requirements of specific applications. Indeed, not
all coding tools defined in a profile@level of a specific stan-
dard are required in all application scenarios. For a given

3

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

c© 2008, Copyright held by the individual authors 45

application, codecs are either not exploited at their full po-
tential or require unnecessarily complex implementations.
However, a decoder conformant to a standard has to support
all of them and may results in a non-efficient implementa-
tion.

So as to overcome the limitations intrinsic of specify-
ing codecs algorithms by using monolithic imperative code,
CAL language has been chosen by the ISO/IEC standard-
ization organization in the new MPEG standard called Re-
configurable Video Coding (RVC) (ISO/IEC 23001-4 and
23002-4). RVC is a framework allowing users to define a
multitude of different codecs, by combining together ac-
tors (called coding tools in RVC) from the MPEG stan-
dard library written in CAL, that contains video technology
from all existing MPEG video past standards (i.e. MPEG-
2, MPEG- 4, etc.). The reader can refer to [12] for more
information about RVC. CAL is used to provide the refer-
ence software for all coding tools of the entire library. The
essential elements of the RVC framework include:

• the standard Video Tool Library (VTL) which contains
video coding tools, also named Functional Units (FU).
CAL is used to describe the algorithmic behaviour of
the FUs that end to be video coding algorithmic com-
ponents self contained and communicating with the ex-
ternal world only by means of input and output ports.

• a language called Functional unit Network Language
(FNL), an XML dialect, used to specify a decoder con-
figuration made up of FUs taken from the VTL and the
connections between the FUs.

• a MPEG-21 Bitstream Syntax Description Language
(BSDL) schema which describes the syntax of the bit-
stream that a RVC decoder has to decode. A BSDL
to CAL translator is under development as part of the
OpenDF effort.

In summary the components and processes that lead to
the specification and implementation of a new MPEG RVC
decoder are based on the CAL dataflow model of computa-
tion and are:

• a Decoder Description (DD) written in FNL describing
the architecture of the decoder, in terms of FUs and
their connections.

• an Abstract Decoder Model (ADM), a behavioral
(CAL) model of the decoder composed of the syntax
parser specified by the BSDL schema, FUs from the
VTL and their connections.

• the final decoder implementation that is either gener-
ated by substituting any proprietary implementation,
conformant in terms of I/O behavior, of the standard

RVC FUs, or obtained directly from the ADM by gen-
erating SW and/or HW implementations by means of
appropriate synthesis tools.

Thus, based on CAL dataflow formalism, designers can
build video coding algorithm with a set of self-contained
modular elements coming from the MPEG RVC standard
library (VTL). However, the new CAL based specification
formalism, not only provide the flexibility required by the
process itself of specifying a standard video codec, but also
yields a specification of such standard that is the appropriate
starting point for the implementation of the codec on the
new generations of multicore platforms. In fact the RVC
ADM is nothing else that a CAL datatflow specification that
implicitly expose all concurrency and parallelism intrinsic
to the model, features that classical generic specifications
based on imperative languages have not provided.

5 Tools

CAL is supported by a portable interpreter infrastructure
that can simulate a hierarchical network of actors. This in-
terpreter was first used in the Moses1 project. Moses fea-
tures a graphical network editor, and allows the user to mon-
itor actors execution (actor state and token values). The
project being no longer maintained, it has been superseded
by the Open Dataflow environment (OpenDF2 for short).

OpenDF is also a compilation framework. Today there
exists a backend for generation of HDL(VHDL/Verilog)
[13], and another backend for that generates C for integra-
tion with the SystemC tool chain [14]. A third backend tar-
geting ARM11 and embedded C is under development [15]
as part of the EU project ACTORS3. It is also possible to
simulate CAL models in the Ptolemy II4 environment.

5.1 Analysis Support

A related tool is the dataflow interchange format (DIF),
which is a textual language for specifying mixed-grain
dataflow representations of signal processing applications,
and TDP5 (the DIF package), which is a software tool for
analyzing DIF specifications. A major emphasis in DIF
and TDP is support for working with and integrating dif-
ferent kinds of specialized dataflow models of computation
and their associated analysis techniques. Such functional-
ity is useful, for example, as a follow-on step to the au-
tomated detection of specialized dataflow regions in CAL
networks. Once such regions are detected, they can be an-
notated with corresponding DIF keywords — e.g., CSDF

1http://www.tik.ee.ethz.ch/ moses/
2http://opendf.sourceforge.net
3http://www.actors-project.eu
4http://ptolemy.eecs.berkely.edu
5http://www.ece.umd.edu/DSPCAD/dif

4

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

46 c© 2008, Copyright held by the individual authors

(cyclo-static dataflow) and SDF (synchronous dataflow) —
and then scheduled and integrated with appropriate TDP-
based analysis methods. Such a linkage between CAL and
TDP is under active development as a joint effort between
the CAL and DIF projects.

A particular area of emphasis in TDP is support for de-
veloping efficient coarse-grain dataflow scheduling tech-
niques. For example, the generalized schedule tree rep-
resentation in TDP provides an efficient format for stor-
ing, manipulating, and viewing schedules [16], and the
functional DIF dataflow model provides for flexible pro-
totyping of static, dynamic, and quasi-static scheduling
techniques [3]. Libraries of static scheduling techniques
and buffer management models for SDF graphs, as well
as an SDF-to-C translator are also available in TDP [17].
The set of dataflow models that are currently recognized
and supported explicitly in the DIF language and TDP in-
clude Boolean dataflow [18], enable-invoke dataflow [3],
CSDF [19], homogeneous synchronous dataflow [8, 20],
multidimensional synchronous dataflow [21], parameter-
ized synchronous dataflow [22], and SDF [8]. These al-
ternative dataflow models have useful trade-offs in terms of
expressive power, and support for efficient static or quasi-
static scheduling, as well as efficient buffer management.
The set of models that is supported in TDP, as well as the
library of associated analysis techniques are expanding with
successive versions of the TDP software.

The initial focus in integrating TDP with CAL is to
automatically-detect regions of CAL networks that conform
to SDF semantics, and can leverage the significant body
of SDF-oriented analysis techniques in TDP. In the longer
term, we plan to target a range of different dataflow mod-
els in our automated “region detection” phase of the design
flow. This appears significantly more challenging as most
other models are more complex in structure compared to
SDF; however, it can greatly increase the flexibility with
which different kinds of specialized, streaming-oriented
dataflow analysis techniques can be leveraged when syn-
thesizing hardware and software from CAL networks.

6 Why dataflow might actually work

Scalable parallelism. In parallel programming, the
number of things that are happening at the same time can
scale in two ways: It can increase with the size of the
problem or with the size of the program. Scaling a reg-
ular algorithm over larger amounts of data is a relatively
well-understood problem, while building programs such
that their parts execute concurrently without much interfer-
ence is one of the key problems in scaling the von Neu-
mann model. The explicit concurrency of the actor model
provides a straightforward parallel composition mechanism
that tends to lead to more parallelism as applications grow

in size, and scheduling techniques permit scaling concurrent
descriptions onto platforms with varying degrees of paral-
lelism.

• Modularity, reuse. The ability to create new abstrac-
tions by building reusable entities is a key element in
every programming language. For instance, object-
oriented programming has made huge contributions to
the construction of von Neumann programs, and the
strong encapsulation of actors along with their hierar-
chical composability offers an analog for parallel pro-
grams.

• Scheduling. In contrast to procedural programming
languages, where control flow is made explict, the ac-
tor model emphasizes explicit specification of concur-
rency.

• Portability. Rallying around the pivotal and unify-
ing von Neumann abstraction has resulted in a long
and very successful collaboration between processor
architects, compiler writers, and programmers. Yet,
for many highly concurrent programs, portability has
remained an elusive goal, often due to their sensitivity
to timing. The untimedness and asynchrony of stream-
based programming offers a solution to this problem.

The portability of stream-based programs is evidenced
by the fact that programs of considerable complexity
and size can be compiled to competitive hardware [13]
as well as software [14], which suggests that stream-
based programming might even be a solution to the
old problem of flexibly co-synthesizing different mixes
of hardware/software implementations from a single
source.

• Adaptivity. The success of a stream programming
model will in part depend on its ability to configure
dynamically and to virtualize, i.e. to map to collec-
tions of computing resources too small for the entire
program at once. The transactional execution of actors
generates points of quiescence, the moments between
transactions, when the actor is in a defined and known
state that can be safely transferred across computing
resources.

7 The MPEG-4 Case Study

One interesting usage of the collection of CAL actors,
which constitutes the MPEG RVC tools library, is as a vehi-
cle for video coding experiments. Since it provides a source
of relevant application of realistic sizes and complexity, the
tools library also enables experiments in dataflow program-
ming, the associated development process and development
tools.

5

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

c© 2008, Copyright held by the individual authors 47

Figure 2. Top-level dataflow graph of the
MPEG-4 decoder.

Some of the authors have performed a case study[13], in
which the MPEG-4 Simple Profile decoder was specified in
CAL and implemented on an FPGA using a CAL-to-RTL
code generator. Figure 2 shows a top-level view of decoder.
The main functional blocks include a bitstream parser, a re-
construction block, a 2D inverse cosine transform, a frame
buffer and a motion compensator. These functional units
are themselves hierarchical compositions of actor networks.
The objective of the design was to support 30 frames of
1080p in the YUV420 format per second, which amounts
to a production of 93.3 Mbyte of video output per second.
The given target clock rate of 120 MHz implies 1.29 cycles
of processing per output sample on average.

The results of the case study were encouraging in that
the code generated from the CAL specification did not only
outperformed the handwritten reference in VHDL, both in
terms of throughput and silicon area, but also allowed for
a significantly reduced development effort. Table 3 shows
the comparison between CAL specification and the VHDL
reference.

It should be emphasized that this counter-intuitive result
cannot be attributed to the sophistication of the synthesis
tool. On the contrary the tool does not perform a number
of potential optimizations; particularly it does not consider
optimizations involving more than one actor. Instead, the
good results appear to be due to the development process.
A notable difference was that the CAL specification went
through significantly more design iterations than the VHDL
reference —in spite of being performed in a quarter of the
development time. Whereas a dominant part of the develop-
ment of the VHDL reference was spent getting the system
to work correctly, the effort of the CAL specification was
focused on optimizing system performance to meet the de-
sign constraints.

The initial design cycle resulted in an implementation
that was not only inferior to the VHDL reference, but one
that also failed to meet the throughput and area constraints.
Subsequent iterations explored several other points in the

design space until arriving at a solution that satisfied the
constraints. At least for the case study, the benefit of short
design cycles seem to outweigh the inefficiencies that were
induced by high-level synthesis and the reduced control
over implementation details.

Size Speed Code size Dev. time
slices, BRAM kMB/S kLOC MM

CAL 3872, 22 290 4 3
VHDL 4637, 26 180 15 12
Improv. 1.2 1.6 3.75 4
factor

Figure 3. Hardware synthesis results for an
MPEG-4 Simple Profile decoder. The num-
bers are compared with a reference hand
written design in VHDL.

In particular, the asynchrony of the programming model
and its realization in hardware allowed for convenient ex-
periments with design ideas. Local changes, involving only
one or a few actors, do not break the rest of the system in
spite of a significantly modified temporal behavior. In con-
trast, any design methodology that relies on precise speci-
fication of timing —such as RTL, where designers specify
behavior cycle-by-cycle— would have resulted in changes
that propagate through the design.

Figure 3 shows the quality of result produced by the RTL
synthesis engine for a real-world application, in this case an
MPEG-4 Simple Profile video decoder. Note that the code
generated from the high-level dataflow description actually
outperforms the VHDL design in terms of both throughput
and silicon area for a FPGA implementation.

8 Summary

We believe that the move towards parallelism in com-
puting and the growth of application areas that lend them-
selves to dataflow modeling present a huge opportunity for a
dataflow programming model that could supplant or at least
complement von Neumann computing in many fields.

We have discussed some properties that comes with us-
ing a dataflow model, such as explicit parallelism and de-
coupling of scheduling and communication. The open
source simulation and compilation framework OpenDF was
presented together with the CAL language and the DIF/TDP
analysis tools. Finally, the work on the MPEG-4 decoder
verifies the potential of the dataflow approach.

References

[1] J. Thomas-Kerr, J. W. Janneck, M. Mattavelli, I. Bur-
nett, and C. Ritz, “Reconfigurable Media Coding:

6

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

48 c© 2008, Copyright held by the individual authors

Self-describing multimedia bitstreams,” in Proceed-
ings IEEE Workshop on Signal Processing Systems—
SiPS 2007, October 2007, pp. 319–324.

[2] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek,
“The Click modular router,” SIGOPS Oper. Syst. Rev.,
vol. 33, no. 5, pp. 217–231, 1999.

[3] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S.
Bhattacharyya, “Functional DIF for rapid prototyp-
ing,” in Proceedings of the International Symposium
on Rapid System Prototyping, Monterey, California,
June 2008, pp. 17–23.

[4] S. S. Bhattacharyya and W. S. Levine, “Optimization
of signal processing software for control system im-
plementation,” in Proceedings of the IEEE Symposium
on Computer-Aided Control Systems Design, Munich,
Germany, October 2006, pp. 1562–1567, invited pa-
per.

[5] H. Zima and B. Chapman, Supercompilers for parallel
and vector computers. New York, NY, USA: ACM,
1991.

[6] M. Hind, “Pointer analysis: haven’t we solved this
problem yet?” in PASTE ’01: Proceedings of the
2001 ACM SIGPLAN-SIGSOFT workshop on Pro-
gram analysis for software tools and engineering.
New York, NY, USA: ACM, 2001, pp. 54–61.

[7] G. Kahn, “The semantics of simple language for par-
allel programming,” in IFIP Congress, 1974, pp. 471–
475.

[8] E. A. Lee and D. G. Messerschmitt, “Synchronous
dataflow,” Proceedings of the IEEE, vol. 75, no. 9, pp.
1235–1245, September 1987.

[9] S. Ritz, M. Pankert, V. Živojnović, and H. Meyr, “Op-
timum vectorization of scalable synchronous dataflow
graphs,” in Intl. Conf. on Application-Specific Array
Processors. Prentice Hall, IEEE Computer Society,
1993, pp. 285–296.

[10] C. Hewitt, “Viewing control structures as patterns of
passing messages,” Artif. Intell., vol. 8, no. 3, pp. 323–
364, 1977.

[11] J. Eker and J. W. Janneck, “Cal language report,”
University of California at Berkeley, Tech. Rep.
UCB/ERL M03/48, December 2003.

[12] C. Lucarz and J. J. Marco Mattavelli, Joseph Thomas-
Kerr, “Reconfigurable media coding: A new specifica-
tion model for multimedia coders,” in Proceedings of
IEEE Workshop on Signal Processing Systems, 2007,
pp. 481–486.

[13] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier,
M. Wipliez, and M. Raulet, “Synthesizing hardware
from dataflow programs: an MPEG-4 simple profile
decoder case study,” in Proceedings of the 2008 IEEE
Workshop on Signal Processing Systems (SiPS), 2008.

[14] G. Roquier, M. Wipliez, M. Raulet, J. W. Janneck,
I. D. Miller, and D. B. Parlour, “Automatic software
synthesis of dataflow programs: an MPEG-4 simple
profile decoder case study,” in Proceedings of the 2008
IEEE Workshop on Signal Processing Systems (SiPS),
2008.

[15] C. von Platen and J. Eker, “Efficient realization of a
cal video decoder on a mobile terminal,” in Proceed-
ings of IEEE Workshop on Signal Processing Systems,
2008.

[16] M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhat-
tacharyya, B. Kienhuis, and E. Deprettere, “Parame-
terized looped schedules for compact representation
of execution sequences in DSP hardware and software
implementation,” IEEE Transactions on Signal Pro-
cessing, vol. 55, no. 6, pp. 3126–3138, June 2007.

[17] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software
synthesis from the dataflow interchange format,” in
Proceedings of the International Workshop on Soft-
ware and Compilers for Embedded Systems, Dallas,
Texas, September 2005, pp. 37–49.

[18] J. T. Buck and E. A. Lee, “Scheduling dynamic
dataflow graphs using the token flow model,” in Pro-
ceedings of the International Conference on Acous-
tics, Speech, and Signal Processing, April 1993.

[19] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peper-
straete, “Cyclo-static dataflow,” IEEE Transactions on
Signal Processing, vol. 44, no. 2, pp. 397–408, Febru-
ary 1996.

[20] S. Sriram and S. S. Bhattacharyya, Embedded Multi-
processors: Scheduling and Synchronization. Marcel
Dekker, Inc., 2000.

[21] P. K. Murthy and E. A. Lee, “Multidimensional syn-
chronous dataflow,” IEEE Transactions on Signal Pro-
cessing, vol. 50, no. 8, pp. 2064–2079, August 2002.

[22] B. Bhattacharya and S. S. Bhattacharyya, “Parame-
terized dataflow modeling for DSP systems,” IEEE
Transactions on Signal Processing, vol. 49, no. 10, pp.
2408–2421, October 2001.

7

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

c© 2008, Copyright held by the individual authors 49

Optimized On-Chip Pipelining of Memory-Intensive Computations
on the Cell BE

Christoph W. Kessler
Linköpings Universitet

Dept. of Computer and Inf. Science
58183 Link̈oping, Sweden

chrke@ida.liu.se

Jörg Keller
FernUniversiẗat in Hagen

Dept. of Mathematics and Computer Science
58084 Hagen, Germany

joerg.keller@fernuni-hagen.de

Abstract

Multiprocessors-on-chip, such as the Cell BE processor,
regularly suffer from restricted bandwidth to off-chip main
memory. We propose to reduce memory bandwidth require-
ments, and thus increase performance, by expressing our
application as a task graph, by running dependent tasks
concurrently and by pipelining results directly from task to
task where possible, instead of buffering in off-chip memory.
To maximize bandwidth savings and balance load simulta-
neously, we solve a mapping problem of tasks to SPEs on
the Cell BE. We present three approaches: an integer linear
programming formulation that allows to compute Pareto-
optimal mappings for smaller task graphs, general heuris-
tics, and a problem specific approximation algorithm. We
validate the mappings for dataparallel computations and
sorting.

1. Introduction

The new generation of multiprocessors-on-chip derives
its raw power from parallelism, and explicit parallel pro-
gramming with platform-specific tuning is needed to turn
this power into performance. A prominent example is the
Cell Broadband Engine with a PowerPC core and 8 parallel
slave processors called SPEs (e.g. cf. [1]). Yet, many ap-
plications use the Cell BE like a dancehall architecture: the
SPEs use their small on-chip local memories (256 KB for
both code and data) as explicitly-managed caches, and they
all load and store data from/to the external (off-chip) main
memory. However, the bandwidth to the external memory
is much smaller than the SPEs’ aggregate bandwidth to the
on-chip interconnect bus (EIB) [1]. For applications that
frequently access off-chip main memory, such as streaming
computations, stream-based sorting, or dataparallel compu-
tations on large vectors, the ratio between computational

work and memory transfer is low, such that the limited
bandwidth to off-chip main memory constitutes the perfor-
mance bottleneck. This problem will become even more
severe with the expected increase in the number of cores
in the future. Consequently, the generation of memory-
efficient code is an important optimization to consider for
such memory-intensive computations.

Scalable parallelization on such architectures should
therefore trade increased communication between the SPEs
over the high-bandwidth EIB for a reduced volume of com-
munication with external memory, and thereby improve
the computation throughput for memory-intensive compu-
tations. This results in anon-chip pipeliningtechnique: The
computations are reorganized such that intermediate results
(temporary vectors) are not written back to main memory
but instead forwarded immediately to a consuming succes-
sor operation. This requires some buffering of intermediate
results in on-chip memory, which is necessary anyway in
processors like Cell in order to overlap computation with
bulk (DMA) communication. It also requires that all tasks
(elementary streaming operations) of the algorithm be ac-
tive simultaneously; tasks assigned to the same SPE will be
scheduled round-robin, each with a SPE time share corre-
sponding to its relative computational load. However, as
we would like to guarantee fast user-level context switch-
ing among the tasks on a SPE, the limited size of Cell’s
local on-chip memory then puts a limit on the number of
tasks that can be mapped to a SPE, or correspondingly a
limit on the size of data packets that can be buffered, which
also affects performance. Moreover, the total volume of in-
termediate data forwarded on-chip should be low and, in
particular, must not exceed the capacity of the on-chip bus.

We formalize the problem by modeling the application as
a weighted acyclic task graph, with node and edge weights
denoting computational load and communication rates, re-
spectively, and the Cell processor by its key architectural
parameters. We assume that only one application is using

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

50 c© 2008, Copyright held by the individual authors

the Cell processor at a time. Task graph topologies oc-
curing in practice are, e.g., completeb-ary trees forb-way
merge sort or bitonic sort, butterfly graphs for FFT, and ar-
bitrary tree and DAG structures representing vectorized dat-
aparallel computations. These applications seem to be ma-
jor application areas for Cell BE besides gaming. On-chip
pipelining then becomes a constrained optimization prob-
lem to determine a mapping of the task graph nodes to the
SPEs that is an optimal or near-optimal trade-off between
load balancing, buffer memory consumption, and commu-
nication load on the on-chip bus.

To solve this multi-objective optimization problem, we
propose an integer linear programming (ILP) formulation
that allows to compute Pareto-optimal solutions for the
mapping of small to medium-sized task graphs with a state-
of-the-art ILP solver. For larger general task graphs we
provide a heuristic two-step approach to reduce the prob-
lem size. We exemplify our mapping technique with sev-
eral memory-intensive example problems: with acyclic
pipelined task graphs derived from dataparallel code, with
completeb-ary merger tree pipelines for parallel mergesort,
and with butterfly pipelines for parallel FFT. We validate
the mappings with discrete event simulations. Details are
given in a forthcoming paper [2].

For special task graph topologies such as merge trees,
more problem-tailored solutions can be applied. In previ-
ous work [3] on pipelined parallel mergesort, we described
a tree-specific divide-and-conquer heuristic and an ILP for-
mulation to compute a good or even optimal placement of
the tasks of the resulting tree-shaped pipelined computation.
These results can be used to improve Cell-specific merge
sort or bitonic sort implementations reported in the litera-
ture [4, 5].

In the present paper, we briefly summarize some of our
very recent results [2, 3] in this area. In Sect. 2 we present
optimal mapping results, and in Sect. 3 we summarize
heuristic results for large task graphs. In Sect. 4, we present
a new tree-specific approximation algorithm. In Sect. 5 we
summarize related work, and Sect. 6 concludes.

2. Optimal Mapping of Task Graphs for On-
Chip Pipelining

We start by introducing some basic notation and stating
the general optimization problem to be solved. We then
give an integer linear programming (ILP) formulation for
the problem, which allows to compute optimal solutions for
small and middle-sized pipeline task graphs, and report on
the experimental results obtained for examples taken from
the domain of streaming computations.

Problem definition Given is a setP = {P1, . . . , Pp} of p
processors and a directed acyclic task graphG = (V,E) to

be mapped onto the processors. Input is fed at the sources,
data flows in direction of the edges, output is produced by
the sinks.

Each node (task)v in the graph processes the incom-
ing data streams and combines them into one outgoing data
stream. With each edgee ∈ E we associate the (average)
rateτ(e) of the data stream flowing alonge. In all types
of streaming computations considered in this work, all in-
put streams of a task have the same rate. However, other
scenarios with differentτ rates for incoming edges may be
possible.

The computational load ρ(v) denotes the relative
amount of computational work performed by the taskv,
compared to the overall work

∑
v∈V ρ(V) in the task graph.

It will be proportional to the processor time that a nodev
places on a processor it is mapped to. In most scenarios,ρ
is proportional to the data rateτ(e) of its (busiest, if sev-
eral) output streame. Reductions are a natural exception
here; their processing rate is proportional to the input data
rate.

In contrast to the averaged valuesρ and τ , the actual
computational load (at a given time) is usually depending on
the current or recent data ratesτ . In cases such as merge-
sort where the input data rates may show higher variation
around the averageτ values, also the computational load
will be varying when the jitter in the operand supply cannot
be compensated for by the limited size buffers.

For presentation purposes, we usually normalize the val-
ues ofρ andτ such that the heaviest loaded taskr obtains
ρ(r) = 1 and the heaviest loaded edgee obtainsτ(e) = 1.
For instance, the rootr of a merge tree will haveρ(r) = 1
and produce a result stream of rate 1. The computational
load and output rate may of course be interpreted as node
and edge weights of the task graph, respectively.

The memory loadβ(v) that a nodev will place on the
(SPE) processor it is mapped to (including packet buffers,
code, stack space) is usually just a fixed value depending on
the computation type ofv, because the node needs a fixed
amount for its code, for buffering transferred data, and for
the internal data structures it uses for processing the data. In
homogeneous task graphs such as merge trees or FFT but-
terflies, allβ(v) are equal. In this case, we also normalize
the memory loads such that each taskv gets memory load
β(v) = 1.

We construct a mappingµ : V → P of nodes to proces-
sors. Under this mappingµ, a processorPi hascomputa-
tional load

Cµ(Pi) =
∑

v∈µ−1(Pi)

ρ(v),

i.e. the sum of the load of all nodes mapped to it, and it has
memory load

Mµ(Pi) =
∑

v∈µ−1(Pi)

β(v)

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

c© 2008, Copyright held by the individual authors 51

which is 1 · #µ−1(Pi) for the case of homogeneous task
graphs.

The mappingµ that we seek shall have the following
properties:

1. The maximum computational loadC∗µ =
maxPi∈P Cµ(Pi) among the processors shall be
minimized. This requirement is obvious, because the
lower the maximum computational load, the more
evenly the load is distributed over the processors. With
a completely balanced load,C∗µ will be minimized.

2. The maximum memory loadM∗µ = maxPi∈P Mµ(Pi)
among the processors shall be minimized. The maxi-
mum memory load is proportional to the number of
the buffers. As the memory per processor is fixed, the
maximum memory load determines the buffer size. If
the buffers are too small, communication performance
will suffer.

3. Thecommunication load
Lµ =

∑
(u,v)∈E,µ(u) 6=µ(v) τ(u), i.e. the sum of the

edge weights between processors, should be low.

ILP Formulation We are given a task graph withn nodes
(tasks) andm edges, node weightsρ, node buffer require-
mentsβ, and edge weightsτ . The ILP model for mapping
the task graph to a setP of SPEs is summarized in Figure 1;
for more details see [2].

For a Cell withp SPEs and a general task graph withn
nodes andm edges, our ILP model usesnp+mp = O(np)
boolean variables, 1 integer variable, 2 linear variables, and
2mp + 2p + 2 = O(np) constraints. We implemented the
ILP model in CPLEX 10.2 [6], a commercial ILP solver.

By choosing the ratio ofεM to εC , we can only find two
extremal Pareto-optimal solutions, one with least possible
maxMemoryLoadand one with least possiblecommLoad.
In order to enforce finding further Pareto-optimal solu-
tions that may exist in between, one can use any fixed ra-
tio εM/εC , e.g. at 1, and instead set a given minimum
memory load to spend (which is integer) on optimizing for
commLoadonly:

maxMemoryLoad≥ givenMinMemoryLoad

For modeling task graphs of mergesort as introduced
above, we generated binary merge trees withk levels (and
thus2k−1 nodes) intended for mapping top = k processors
[3]. Table 1 shows all Pareto-optimal solutions that CPLEX
found for k = p = 5, 6, 7. While most optimizations for
k = 5, 6, 7 took just a few seconds, CPLEX hit a timeout
after 24 hours fork = 8 and only produced approximate
solutions with a memory load of at least37. Figure 2 shows
one Pareto-optimal mapping fork = 5.

Solution variables:
Binary variablesx, z with
xv,q = 1 iff nodev is mapped on processorq, and
z(u,v),q = 1 iff both sourceu and targetv of edge(u, v)
are mapped to processorq.
The integer variablemaxMemoryLoadwill hold the maxi-
mum memory load assigned to any SPE inP .
The linear variablemaxComputLoadyields the maximum
accumulated load mapped to a SPE.
Constraints:
Each node must be mapped to exactly one processor:

∀v ∈ V :
∑
q∈P

xv,q = 1

The maximum load mapped to a processor is computed as

∀q ∈ P :
∑
v∈V

xv,q · ρ(v) ≤ maxComputLoad

The memory load should be balanced:

∀q ∈ P :
∑
v∈V

xv,q · β(v) ≤ maxMemoryLoad

Communication cost occurs whenever an edge is not inter-
nal, i.e. its endpoints are mapped to different SPEs.

∀(u, v) ∈ E, q ∈ P : z(u,v),q ≤ xv,q
z(u,v),q ≤ xu,q

and in order to enforce that az(u,v),q will be 1 wherever it
could be, we have to take up the (weighted) sum over allz
in the objective function. This means, of course, that only
optimal solutions to the ILP are guaranteed to be correct
with respect to minimizing communication cost. We ac-
cept this to avoid quadratic optimization, and because we
also want to minimize the maximum communication load.
The communication load is the communication volume
over all edges minus the volume over the internal edges:

commLoad=
∑
e∈E

τ(e)−
∑
e∈E

∑
q∈P

ze,q · τ(e)

Objective function: Minimize

Λ ·maxComputLoad+ εM ·maxMemoryLoad

+ εC · commLoad

with Λ chosen large enough to prioritize computational
load balancing over all other optimization goals; the pos-
itive weights0 ≤ εM < 1 and0 < εC < 1 are chosen
to give preference tomaxMemoryLoador commLoadas
secondary optimization goal.

Figure 1. ILP model for mapping task graphs.

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

52 c© 2008, Copyright held by the individual authors

Table 1. The Pareto-optimal solutions for
mapping b-ary merge trees, found with ILP,
for b = 2, k = p = 5, 6, 7.

k binary con- max. mem- commLoad
variables straints ory load

k = 5 305 341 8 2.5
9 2.375

10 1.75
k = 6 750 826 13 2.625

14 2.4375
15 1.9375
20 1.875

k = 7 1771 1906 21 2.375
29 2.3125
30 2

Figure 2. A Pareto-optimal solution for map-
ping a 5-level merge tree onto 5 processors
with maximum memory load 8 (merger tasks
on an SPE) and communication load 2.5 (ac-
cumulated rate of all inter-SPE edges), com-
puted by the ILP solver.

To test the performance of our merger tree mappings
with respect to load balancing, we implemented a discrete
event simulation of the pipelined parallel mergesort. The
simulation is quite accurate, as the variation in runtime for
merger nodes is almost zero, and communication and com-
putation can be overlapped perfectly by mapping several

nodes to one SPE. We have investigated several mappings
resulting from our mapping algorithm. The 5-level tree of
Fig. 2 realizes a 32-to-1 merge. The maximum memory
load of 8 merger tasks (needing 5 buffers each) on a SPE
still yields a reasonable buffer size of 4 KB, accumulating
to a maximum of 160 KB for buffers per SPE. With 32 input
blocks of220 sorted random integers, the pipeline efficiency
was 93%. In comparison to the corresponding merge phase
in [5], memory bandwidth requirements decreased by a fac-
tor of 2.5, but as now 5 instead of 4 SPEs are utilized, this
translates to a factor 1.86 in estimated performance gain.
For further results for mapped merge trees, see [3].

In order to test the ILP model with dataparallel task
graphs, we used several hand-vectorized fragments from the
Livermore Loops and synthetic kernels, see Table 2. Such
task graphs are usually of very moderate size, and comput-
ing an optimal ILP solution for a small number of SPEs
takes only a few seconds in most of the cases. For two com-
mon Cell configurations (p = 6 as in PS3, andp = 8),
the generated ILP model sizes (after preprocessing) and the
times for optimization with memory load preference are
given in Table 2. A discrete event simulation of the LL9
mapping on 6 SPEs achieved a pipeline efficiency of close
to 100%. Further results and discussion can be found in [2].

3. Heuristic Algorithms for Large Task Graphs

The ILP solver works well for small task graph and ma-
chine sizes. However, for future generations of Cell with
many more SPEs and for larger task graph sizes, comput-
ing optimal mappings with the ILP approach will no longer
be computationally feasible. For the case of general task
graphs, we developed a divide-and-conquer based heuristic
[2] where the divide step uses the ILP model forp = 2. An
example mapping is given in Fig. 3 for Livermore Loop 9.

4. New Approximation Algorithm for Mapping
Merge Trees

We consider the mapping problem for task graphs with
the structure ofb-ary merger trees, as inb-ary merge sort.
In previous work, we presented an approximation algorithm
based on divide-and-conquer [3]. Its approximation guaran-
tee for the maximum memory load mainly depends on the
tree sizek0 considered as base case in the recursive solu-
tion (which is, e.g. solved optimally by the ILP method);
the worst-case maximum memory load is by a factork/k0

larger than a straightforward lower bound (see Lemma 1),
but the quality is much better in practice [3]. As an ex-
ample, fork = p = 5 and b = 2 (i.e., a 32-to-1 binary
merger tree), the resulting mappingµ1 is different from the
Pareto-optimal one shown in Figure 2 but has the same qual-
ity (optimal maximum memory load 8 and communication

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

c© 2008, Copyright held by the individual authors 53

Table 2. ILP models for dataparallel task graphs extracted from the Livermore Loops (LL) and from
some synthetic kernels.

Kernel Description #Nodes #Edges ILP model forp = 6 ILP model forp = 8
n m var’s constr. time var’s constr. time

LL9 Integrate predictors 28 27 333 371 2:07s 443 485 —
LL10 Difference predictors 29 28 345 384 0:06s 459 502 1:26:39s
LL14 1D particle in cell, 2nd loop 19 21 243 290 0:03s 323 380 1:05s
LL22 Planckian distribution 10 8 111 125 <0:01s 147 163 <0:01s
FIR8 8-tap FIR filter 16 22 231 299 45:04s 307 393 0:04s
T-8 Binary tree, 16 leaves 31 30 369 410 5:36s 491 536 0:11s
C-6 Cook pyramid, 6 leaves 21 30 309 400 27:56s 411 526 3:22s

Figure 3. ILP solution for partitioning the task graph of Livermore Loop 9 into two (thus p = 2)
subgraphs, each to be mapped separately on a Cell SPE subset of size 4.

load 2.5). The discrete event simulation reported also for
this mapping a pipeline efficiency of 93%.

In the following, we give an alternative approximation
algorithm where the maximum memory load is by a factor
at mostb larger than the lower bound, independent of the
size of the tree, i.e. the number of levels.

We will use the notations from Sect. 2. Our task graph
T is a complete and balancedb-ary k-level merge tree. As
each task has exactly one outgoing edge, we identify the rate
τ of edges with the computational load of their origin node.
Thus τ(v, w) = ρ(v). As taskv merges theb incoming
data streams into one outgoing data stream with rateτ(v),
the incoming data streams on average will have rateτ(v)/b,
if we assume only finite buffering within nodes. With nor-
malization, the tree rootr will haveρ(r) = 1, and thus each
nodev on level i of the tree, where0 ≤ i ≤ k − 1, has
ρ(v) = b−i on average.

We extendρ and τ to subgraphs of the merge tree. A
subgraph’s computational load is the sum its node loads,
and its outgoing data rate is the aggregate rate of all edges
leaving the subgraph. For example, a subtree ofl levels
rooted atv has computational loadl · ρ(v) and data rate
τ(v).

The mappingµ for T that we seek shall have the proper-
ties 1–3 already listed for the general case in Section 2, but
in addition, it shall also fulfill:

4. As often as possible, sibling nodes (nodesu andv with
a common successorw, i.e. where(u,w) ∈ E and
(v, w) ∈ E) should be mapped to the same processor.

Note that a merger should deliver merged data buffers
at an actual output rate that does not significantly fall
short of the average output rate, because otherwise the
preceding and subsequent mergers may be delayed,
too, due to limited buffer capacity. A drop in the output
rate may be caused by phases of unequal distribution
of data in the input sequences, such that a merger pro-
cesses, in such a phase, mainly input data coming from
one subtree only, which effectively stalls the other sub-
tree(s). Short phases can be caught by buffering (if
buffers are sufficiently large) and have thus no effect,
while long phases may lead to idle times on some pro-
cessors. If sibling merger nodes are mapped to the
same processor, such a stall of a sibling node allows to
temporarily give an accordingly larger processor time
share to the busier sibling(s), maintaining a more bal-
anced overall output rate of the siblings towards the
common parent node.

Lemma 1 (Lower bounds) In any mappingµ the maxi-
mum computational load is at leastk/p, and the maximum
memory load is at least(bk − 1)/((b− 1)p).

Proof: As there arebi nodes in leveli, each with com-

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

54 c© 2008, Copyright held by the individual authors

putational loadb−i, the computational load in each level
equals1, i.e. the load of thek-level tree equalsk. As this
load is spread overp processors, there will be at least one
processor with computational load at leastk/p.

As there are(bk−1)/(b−1) nodes in ak-level balanced
b-ary tree, each with memory loadc, the memory load of
the tree equalsc · (bk − 1)/(b − 1). As this load is spread
overp processors, there will be at least one processor with
memory load at least(bk − 1)/((b− 1)p).

Construction Consider as a first try the casep = k and
the mappingµ0 that maps all nodes of leveli onto pro-
cessorPi. Obviously, this mapping fulfils properties 1
and 3, as the computational load of each level equals 1
(see Lemma 1), and as siblings in the tree are always on
the same level and hence mapped to the same processor.
However,bk−1 nodes of levelk − 1 are mapped to proces-
sorPk−1, and henceM∗µ0

= c · bk−1 and thus a factor of
aboutk/2 ≤ k(b − 1)/b ≤ k away from the lower bound
of Lemma 1. This restriction is serious, as each processor
only contains a fixed amount of local memory, so that ei-
ther, when we consider the memory load of each task to be
fixed, the maximum numberk to which this mapping scales
is severely limited. If we do not fix the memory load of
the task, the memory available for each node is—at least
on levelk − 1, i.e. for at least half of all nodes because of
b ≥ 2—shrinking by a factor ofk faster with growingk
than necessary, i.e. buffer size will soon become very small,
which also affects performance of data transfer.

We therefore devise a mappingµ1 that is constructed in
several steps, and in each stepi mapsli levels of the tree
onto li processors. Letk0 = k be the number of levels and
processors in step0. In stepi, if ki ≥ 2, we mapli ≤ ki−1
of theki levels, starting from the leaves, onto a respective
number of processors, so thatki+1 = ki − li levels and
processors remain. Ifki = 1, we map the tree root onto the
last processor, and the mapping is complete. As each level
of the tree has a computational load of1, the mapping must
be such that each processor receives a load of1 to minimize
C∗µ1

.
We chooseli to be the largest power ofb less than or

equal toki − 1. Theli levels then consist ofbki+1 balanced
b-ary trees ofli levels each. Ifli ≤ bki+1 , thenli divides
bki+1 because it is also a power ofb, and we mapbki+1/li
trees on each of the processors. This balances both maxi-
mum computational and maximum memory load.

The caseli > bki+1 is illustrated in Fig. 4. In this case,
we can writeli = bx · bki+1 , wherex ≥ 1 is an integral
number. In this case, we definel′i = li − bx and first
map thel′i levels starting from the leaves. Those levels
consist ofbki+1+bx balancedb-ary trees ofl′i levels each.
As bx ≥ x because ofb ≥ 2 andx ≥ 1, it follows that
bki+1+bx ≥ bki+1+x = li and that this number is even an

Figure 4. Step i of the construction of map-
ping µ1.

integral multiple ofli becauseli is also a power ofb. Thus,
we can map the trees of the lastl′i levels evenly onto theli
processors. For the remainingbx levels to be mapped in this
step, we map those levels starting with the level closest to
the root havingbki+1 nodes: we map each node onto one
processor, usingbki+1 processors. For the next level having
b ·bki+1 nodes, we mapb nodes on each processor, using an-
otherbki+1 processors. When we have finished with those
bx levels, we have usedbx · bki+1 = li processors. Note
that this straightforward placement corresponds to applying
mappingµ0 for thebki+1 trees ofk = bx levels each, with
the processor capacity scaled down tob−ki+1 . We might
also apply mappingµ1 recursively to further balance the
load.

On each processor, we have placed a load ofl′i/li =
1 − b−ki+1 by mappingl′i levels, andb−ki+1 by mapping
the firstbx levels. It follows that the computational load on
each processor is 1. The maximum memory load is deter-
mined in stepi = 0, because the majority of the nodes is
mapped there. In this step(bk − bk−l0)/(b − 1) nodes are
mapped ontol0 processors, so that each processor receives
a memory load of

bk − bk−l0
(b− 1)l0

< b · b
k − 1

(b− 1)k

becausel0 ≥ k/b. Thus, the memory load is larger than the
lower bound by a factor less thanb. Note that this is not
completely exact because thebx levels — if they are used
in the first step — are not mapped with a completely even
memory load. However, the imbalance is only very slight,
as our simulations will show.

In each step, there are at most two levels (the first one

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

c© 2008, Copyright held by the individual authors 55

of the bx and the first one of thel′i) where siblings are not
placed on the same processor.

As in each stepi the largest power ofb less thanki is
chosen as the numberli of levels mapped, the numberr of
steps made by the mapping algorithm is one plus the cross
sum ofk− 1 in b-ary representation, and thusr ≤ 1 + (b−
1) · logb(k − 1).

We summarize the properties of mappingµ1:

Lemma 2 The maximum computational load of mapping
µ1 isC∗µ1

= 1, which is optimal.
The maximum memory load of mappingµ1 is about

M∗µ1
= bk−bk−l0

(b−1)l0
, which is larger than the lower bound by

a factor of less thanb.
In at leastk−2r levels, siblings are mapped to the same

processor, wherer ≤ 1 + (b− 1) logb(k− 1) is the number
of the steps in the construction of the mapping.

We illustrate the mapping algorithm for the caseb = 2
andk = 5. The resulting mapping is identical to the one in
Fig. 2, i.e. the approximation algorithm produces an optimal
result. In stepi = 0, we havel0 = 4 as this is the largest
power of 2 less thank0 = k = 5. Hence,k1 = 1. The
levels to be mapped consist of2k1 = 2 trees of 4 levels, and
thus cannot be mapped directly. It follows thatx = 1 as
l0 = 4 = 21 · 21 = 2k1 · 2x, and thusl′0 = l0− 2x = 2. The
last two levels of the 5-level tree consist of 8 trees, so that
two of them are mapped onto each processor. Then we place
the remaining2x = 2 levels, of which the first consists of
two nodes, that are mapped onto two processors, one node
on each processor. The last level consists of 4 nodes, of
which 2 are mapped on each of two processors. Finally, in
stepi = 1, we havek1 = 1 and map the root onto the last
processor. The maximum memory load of the mapping is
8 which is optimal (see previous section) although it is a
factor of1.29 away from the lower bound.

As a second example we considerk = 8 andb = 2. In
this examplebki+1 ≥ li for all stepsi. In step 0, we map
l0 = 4 levels of the tree onto 4 processors, in step 1 we
map l1 = 2 levels, and in steps 2 and 3 we map 1 level,
respectively. The resulting mapping is depicted in Fig. 5.
The maximum computational load on each processor is 1,
which is optimal, and the maximum memory load is60, on
processors 0 to 3, which is a factor of1.9 away from the
lower bound.

Both examples were chosen in part because they repre-
sent two extremes:k = 5 = 22 + 1 is a power of two plus
one, and thusl0 can be chosen the maximum value so that
k1 = 1, and the mapping can be constructed in two steps.
The closerl0 is to k, also the closer the maximum memory
load is to the lower bound. In contrast, fork = 8, we must
choosel0 = 4 which is only half ofk, and thus the worst
value possible. As a consequence the maximum memory
load is by a factor of1.88 larger than the lower bound.

Figure 5. Mapping a 8-level binary tree onto 8
processors.

Figure 6. Ratio between max. memory load
and lower bound depending on k and b.

In general, the ratio between maximum memory load and
lower bound increases with increasingk in intervals[bj +
1, . . . , bj+1] from 1 to b. We have illustrated this fork =
4, . . . , 32 andb = 2, 4, 6, 8 in Fig. 6.

Several cases remain to be considered. In the case that
p < k, there are several possibilities. Ifk is a multiple of
p, then we could first construct a mapping ontok pseudo-

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

56 c© 2008, Copyright held by the individual authors

Figure 7. Mapping a 4-level
tree onto 6 SPEs.

processors, and then mapk/p of those pseudo-processors
onto one processor. Alternatively, one could split thek-level
tree intop-level sub-trees that can be mapped as before, and
have the system work in a scheduled way, e.g. round-robin,
on the sub-trees. Ifk is not a multiple ofp, then we again
split the tree intop-level sub-trees starting from the leaves.
The sub-tree containing the root will contain onlyk mod
p < p levels, a case which is treated below.

Note thatk is an input parameter of our problem as the
sorting algorithm in principle is free to choosek as seems
suitable. Thereforek should be chosen such it fits well with
the available number of processors, i.e. in most cases one
will try to choosek = p.

In the case thatp > k, there are again several possi-
bilities. If p is a multiple ofk, then one could first con-
struct a mapping ontok pseudo-processors, and then dis-
tribute the work of each pseudo-processor evenly ontop/k
processors. Note that distributing the work of the pseudo-
processor to which the root node is mapped consists of par-
allelizing a single merge node. However, there are algo-
rithms known in the literature for that problem, see e.g.
Chapter 4.2 of [7] that presents a parallel merge onn pro-
cessors withO(n log n) work.

In case thatp is only slightly larger thank, one may also
think of distributing the work of processors to which the
leaves are mapped, onto several processors. The reduction
of the computational load for these processors takes into
account that the computational load is anaverageover the
time, and can compensate variations too large to be taken
care of by buffering. An example is depicted in Fig. 7 for
k = 4 andp = 6. The mapping fork = p = 4 usesl0 = 2
in the first step, but distributes the load for two processors
now onto four processors.

So far, we have only considered the memory load, and
not the load on the ring network. The processorPp−1 hold-
ing solely the root node will have an output rate of1, which
is transported over the ring to the external memory. Each set
of processors maps a number of levels. The rate of the com-
munication leaving those processors sums up to1 as well,

as this is the load on each level. Hence, no part of the ring
will have a higher network load, so that also the network
load scales well with the algorithm.

5. Related Work

Partitioning and mapping of task graphs is, in general, a
NP-complete problem and has been discussed a lot in the
literature.

One application area is, as in our case, the paralleliza-
tion of programs with given dependence graph for execu-
tion on a (mostly, shared memory) parallel computer, with
the objective to balance the work load of the partitions, min-
imize the number of partitions (aka.processor minimiza-
tion), and/or minimize the overall weight of all edges cut
by the partitioning, as all these are supposed to correspond
to expensive shared memory accesses (aka.bandwidth min-
imization).

Another related area is the (spatial) clustering of logic
circuits into partitions each matching a maximum chip
size constraint, while the communication between partitions
must fit an upper limit on the number of pins per chip. Here,
one is (as in our case) mainly interested in reducing the ac-
cumulated weight of all edges cut between any two adjacent
partitions (aka.bottleneck minimization).

There is a wealth of literature on mapping and schedul-
ing acyclic task graphs of streaming computations to multi-
processors. Some methods are designed for special topolo-
gies, such as linear chains and trees, while others address
general task graphs.

Mapping of special topologies For tree-shaped task
graphs, various partitioning algorithms have been proposed.

Bokhari [8] considers partitioning of trees for master-
slave (there called host-satellite) systems where the parti-
tion containing the root is mapped to the master (host) pro-
cessor while the slaves (satellites) are each assigned exactly
one complete subtree that is connected directly to the master
partition.

Ray and Jiang [9] show that the bandwidth minimiza-
tion problem is NP-complete even for trees, and give a fast
heuristic algorithm for it. In a follow-up paper [10], the
same authors give polynomial-time greedy algorithms for
bottleneck minimization and processor minimization of tree
task graphs.

Most approaches for tree partitioning are for non-
pipelined trees and therefore assume that the tree partitions
should be connected components (i.e., contiguous subtrees)
and exactly one partition be mapped to one processor. This
does not apply in our case, where partitions can consist of
multiple disconnected subtrees, so that processors could be
better “filled up” to their computational capacity with resid-
ual tree fragments if this improves system throughput. Also,

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

c© 2008, Copyright held by the individual authors 57

in our scenario theb-ary tree is always complete, thus we
can exploit symmetry properties that are not given in the
more general case.

Lüling et al. [11] consider the problem of mapping a tree
that evolves in a search problem onto a distributed memory
parallel computer in such a way that computation and com-
munication times both are minimized. They focus on trees
that evolve dynamically, i.e. are not known beforehand as
in our case. The work associated with each tree node seems
to be constant while the computational load in our case de-
pends on the tree level of the node. As the tree is not kept
completely, memory load plays a minor role. In contrast, we
map a tree to be kept completely in memory. Finally, the
trees considered in search problems typically are far from
balanced and their degree is irregular, while we consider
balancedb-ary trees.

Middendorf et al. [12] consider non-pipelined, tree-like
task graph structures such as reduction trees, task graphs
for parallel prefix computations andButterfly graphs, under
the LogP cost model that accounts for transfer latency and
limited communication bandwidth in message passing sys-
tems. They give polynomial-time algorithms for comput-
ing optimal schedules for special cases. However, memory
constraints or pipelined versions of these task graphs are not
considered.

Mapping of general task graphs The approaches for
mapping general task graphs can be roughly divided into
two classes: Non-overlapping scheduling and overlapping
scheduling.

Non-overlapping schedulingschedules a single execu-
tion of the program (and repeats this for further input sets
if necessary); it aims at minimizing the makespan (execu-
tion time for one input set) of the schedule, which depends
strongly on task and communication latencies, while mem-
ory constraints are usually a non-issue here. A typical result
is that all tasks on a critical path are mapped to the same pro-
cessing unit. The mapping and scheduling can thus be done
by classical list-scheduling based approaches for task graph
clustering that attempt to minimize the critical path length
for a given number of processors. Usually, partitions are
contiguous subgraphs. The problem complexity can be re-
duced heuristically by a task merging pre-pass that coarsens
the task granularity. Optimization methods applied include
e.g. gradient search as in Sarkar and Hennessy [13]. See
[14] for a recent survey and comparison.

Szymanek and Kuchcinski [15] propose a heuristic
method for memory-aware assignment and scheduling of
a task graph to a bus- or link-connected set of processing
units. Tasks are parametrized in their code and data mem-
ory needs, and edges between tasks by the buffer space re-
quirements on sender and receiver side during the whole
communication period that results if an edge is selected

as communication edge between partitions. Based on ini-
tial estimations for maximum data memory use, this itera-
tive optimization method toggles between two strategies for
assignment and scheduling, namely critical path schedul-
ing (which optimizes for the makespan) and scheduling for
minimization of memory usage, trying to balance execution
time and memory utilization of the resulting solution.

Overlapping scheduling, which is closely related tosoft-
ware pipelining[16, 17] andsystolic parallel algorithms
[18], instead overlaps executions for different input sets in
time and attempts to maximize the throughput in the steady
state, even if the makespan for a single input set may be
long. Mapping methods for such pipelined task graphs, es-
pecially for signal processing applications in the embedded
systems domain, have been described e.g. by Hoang and
Rabaey [19] and Ruggieroet al. [20]. Our method also
belongs to this second category.

Hoang and Rabaey [19] work on a hierarchical task
graph such that task granularity can be refined by expanding
function calls or loops into subtasks as appropriate. They
provide a heuristic algorithm based on greedy list schedul-
ing for simultaneous pipelining, parallel execution and re-
timing to maximize throughput. The resulting mapped
pipeline is a linear graph where each pipeline stage is as-
signed one or several processors. Buffer memory require-
ments are considered only when checking feasibility of a
solution, but are not really minimized for. The method only
allows contiguous subDAGs to be mapped to a processor.

Ruggieroet al. [20] decompose the problem into map-
ping (resource allocation) and scheduling. The mapping
problem, which is close to ours, is solved by an integer lin-
ear programming formulation, too, and is thus, in general,
not constrained to partitions consisting of contiguous sub-
DAGs as in most other methods. Their framework targets
MPSoC platforms where the mapped partitions form linear
pipelines. Their objective function for mapping optimiza-
tion is minimizing the communication cost for forwarding
intermediate results on the internal bus. Buffer memory re-
quirements are not considered.

6. Conclusion

We have shown how to lower memory bandwidth re-
quirements in code for the Cell BE by on-chip pipelining
of memory-intensive computations. To realize pipelining
with maximum throughput while reducing on-chip memory
load and interprocessor communication, we formulated a
general optimization problem for mapping task graphs. We
have demonstrated our model with case studies from data-
parallel code generation and merge trees in sorting. Small
to medium sized problem instances can be solved optimally
by ILP, larger ones by heuristics and approximation algo-
rithms. We have also presented a new tree-specific approx-

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

58 c© 2008, Copyright held by the individual authors

imation algorithm for the mapping problem.
Implementing and evaluating the resulting code on Cell

is an issue of current and future work. The method could
be used e.g. as an optimization in code generation for dat-
aparallel code in an optimizing compiler for Cell, such as
[21].

Acknowledgements C. Kessler acknowledges partial
funding by Vetenskapsrådet, SSF, Vinnova, and CUGS.

References

[1] Chen, T., Raghavan, R., Dale, J.N., Iwata, E.:
Cell broadband engine architecture and its first
implementation—a performance view. IBM J. Res.
Devel.51(5) (Sept. 2007) 559–572

[2] Kessler, C.W., Keller, J.: Optimized mapping of
pipelined task graphs on the Cell BE. In: Proc. 14th
Int. Workshop on Compilers for Parallel Computing
(CPC-2009), Z̈urich, Switzerland. (January 2009)

[3] Keller, J., Kessler, C.W.: Optimized pipelined parallel
merge sort on the Cell BE. In: Proc. 2nd Workshop on
Highly Parallel Processing on a Chip (HPPC-2008) at
Euro-Par 2008, Gran Canaria, Spain. (2008)

[4] Gedik, B., Bordawekar, R., Yu, P.S.: Cellsort: High
performance sorting on the Cell processor. In: Proc.
33rd Int.l Conf. on Very Large Data Bases. (2007)
1286–1207

[5] Inoue, H., Moriyama, T., Komatsu, H., Nakatani, T.:
AA-sort: A new parallel sorting algorithm for multi-
core SIMD processors. In: Proc. 16th Int.l Conf.
on Parallel Architecture and Compilation Techniques
(PACT), IEEE Computer Society (2007) 189–198

[6] ILOG Inc.: CPLEX v. 10.2. www.ilog.com (2007)

[7] JáJ́a, J.: An Introduction to Parallel Algorithms.
Addison-Wesley (1992)

[8] Bokhari, S.H.: Partitioning problems in parallel,
pipelined and distributed computing. IEEE Transac-
tions on Computers37(1) (January 1988)

[9] Ray, S., Jiang, I.: Improved algorithms for partition-
ing tree and linear task graphs on shared memory ar-
chitecture. In: Proceedings of the 14th International
Conference on Distributed Computing Systems. (June
1994) 363–370

[10] Ray, S., Jiang, I.: Sequential and parallel algorithms
for partitioning tree task graphs on shared memory ar-
chitecture. In: Proc. International Conference on Par-
allel Processing, Volume 3. (August 1994) 266–269

[11] Lüling, R., Monien, B., Reinefeld, A., Tschöke, S.:
Mapping tree-structured combinatorial optimization
problems onto parallel computers. In: Solving Combi-
natorial Optimization Problems in Parallel - Methods
and Techniques, London, UK, Springer-Verlag (1996)
115–144

[12] Middendorf, M., L̈owe, W., Zimmermann, W.:
Scheduling inverse trees under the communication
model of the LogP-machine. Theoretical Computer
Science215(1999) 137–168

[13] Sarkar, V., Hennessy, J.: Compile-time Partitioning
and Scheduling of Parallel Programs. In: Proc. ACM
SIGPLAN Symp. on Compiler Construction. (1986)
17–26

[14] Kianzad, V., Bhattacharyya, S.S.: Efficient techniques
for clustering and scheduling onto embedded multi-
processors. IEEE Trans. on Par. and Distr. Syst.17(7)
(July 2006) 667–680

[15] Szymanek, R., Kuchcinski, K.: A constructive algo-
rithm for memory-aware task assignment and schedul-
ing. In: CODES ’01: Proc. 9th int. symposium on
Hardware/software codesign, New York, NY, USA,
ACM (2001) 147–152

[16] Rau, B., Glaeser, C.: Some scheduling techniques and
an easily schedulable horizontal architecture for high
performance scientific computing. In: Proc. 14th An-
nual Workshop on Microprogramming. (1981) 183–
198

[17] Lam, M.: Software pipelining: An effective schedul-
ing technique forVLIW machines. In: Proc. ACM
SIGPLAN Symp. on Compiler Construction. (July
1988) 318–328

[18] Kung, H.T.: Why systolic architectures? IEEE Com-
puter15 (January 1982) 37–46

[19] Hoang, P.D., Rabaey, J.M.: Scheduling of DSP pro-
grams onto multiprocessors for maximum throughput.
IEEE Trans. on Signal Processing41(6) (June 1993)
2225–2235

[20] Ruggiero, M., Guerri, A., Bertozzi, D., Milano, M.,
Benini, L.: A fast and accurate technique for map-
ping parallel applications on stream-oriented MPSoC
platforms with communication awareness. Int. J. of
Parallel Programming36(1) (February 2008)

[21] Eichenberger et al., A.E.: Using advanced com-
piler technology to exploit the performance of the Cell
Broadband Engine (TM) architecture. IBM Systems
Journal45(1) (2006)

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

c© 2008, Copyright held by the individual authors 59

Automatic Parallelization of Simulation Code for Equation-based

Models with Software Pipelining and Measurements on Three Platforms

Håkan Lundvall, Kristian Stavåker, Peter Fritzson, Christoph Kessler

PELAB – Programming Environments Laboratory

Dept. of Computer and Information Science

Linköping University, SE-581 83 Linköping, Sweden

{haklu, krsta, petfr, chrke}@ida.liu.se

Abstract

In this work we report results from a new integrated
method of automatically generating parallel code from

Modelica models by combining parallelization at two le-

vels of abstraction. Performing inline expansion of a
Runge-Kutta solver combined with fine-grained automat-

ic parallelization of the right-hand side of the resulting

equation system opens up new possibilities for generat-
ing high performance code, which is becoming increa-

singly relevant when multi-core computers are becoming
commonplace. An implementation, in the form of a back-

end module for the OpenModelica compiler, has been

developed and used for measurements on two architec-
tures: Intel Xeon and SGI Altix 3700 Bx2. This paper al-

so contains some very recent results of a prototype im-
plementation of this parallelization approach on the Cell

BE processor architecture.

Keywords: Modelica, automatic parallelization, equ-
ation-based modeling.

1. Introduction

Equation-based Object-Oriented (EOO) modeling lan-

guages (see Section 2), such as Modelica [12][13] and

VHDL-AMS [5], are used for modeling and simulation of

increasingly complex industrial applications, requiring

higher performance of hardware architectures used. To

reach acceptable levels of performance when simulating

these models, increased usage of parallel architectures, es-

pecially multi-core ones, will be necessary. In this context,

there is a great motivation for exploring automatic and part-

ly manual methods to extract parallelism from mathematical

models. Several approaches are briefly described in Section

3.

In this work we extend previous approaches. We present

a method [1] of automatically generating parallel code from

Modelica models by combining parallelization at two levels

of abstraction. Our work represents a new way of automati-

cally detecting pipelining possibilities in the total task graph

(generated from the simulation problem) containing both

the solver stages (an inline expansion of a Runge-Kutta

solver) and the right hand side of the system, and automati-

cally generating parallelized code optimized for the specific

parameters of the target machine. This is a continuation of

the work in [6].

We have introduced a new way of scheduling the task

graph generated from the simulation problem which utilizes

knowledge about locality of the simulation problem and ge-

nerates a computation pipeline such that processors early in

the pipeline can carry on with subsequent time steps while

the end of the pipeline still computes the current step

If the model in question contains algebraic loops the

evaluation of the right hand side will involve solving a sys-

tem of simultaneous equations. If this system involves non-

linear equations, it is solved using an iterative solver. From

the scheduler's point of view such a set of equations is

treated as one, very expensive, task, so that the generated

task graph is always an acyclic graph. This means that mod-

els containing large algebraic loops are not suitable for this

pipelining approach. Our parallelization approach has not

yet been adapted to hybrid simulation problems.

We report implementation details and measurements for

three different hardware configurations: Intel Xeon, SGI Al-

tix 3700 Bx2 and Cell BE. Most of this paper, except the

very recent results on the Cell BE processor, has recently

been accepted for publication [2].

The paper has the following structure. In Section 2 we

present some background information on mathematical

modeling languages, especially Modelica and its open-

source implementation OpenModelica. Section 3 contains

some background information on methods for exploiting

parallelism in mathematical models. Section 4 introduces

methods for combining parallelism extracted from several

levels of abstraction, leading over to the new work pre-

sented at the end of that section, and in Sections 5 to 8. Fi-

nally, Sections 9 and 10 present our conclusions and future

directions of our work.

2. Background on Mathematical Modeling and

Modelica

Modelica is a rather new language for equation-based

object-oriented mathematical modeling and is being devel-

oped through an international effort [12][13]. The language

unifies and generalizes previous object-oriented modeling

languages. Modelica is intended to become a de facto stan-

dard. It allows defining simulation models in a declarative

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

60 c© 2008, Copyright held by the individual authors

manner, modularly and hierarchically and combining vari-

ous formalisms expressible in the more general Modelica

formalism. The multi-domain capability of Modelica gives

the user the possibility to combine electrical, mechanical,

hydraulic, thermodynamic, etc., model components within

the same application model.

 In the context of Modelica class libraries software com-

ponents are Modelica classes. However, when building par-

ticular models, components are instances of those Modelica

classes. Classes should have well-defined communication

interfaces, sometimes called ports, in Modelica called con-

nectors, for communication between a component and the

outside world. A component class should be defined inde-

pendently of the environment where it is used, which is es-

sential for its reusability. This means that in the definition

of the component including its equations, only local va-

riables and connector variables can be used. No means of

communication between a component and the rest of the

system, apart from going via a connector, is allowed. A

component may internally consist of other connected com-

ponents, i.e., hierarchical modeling.

Compiling a Modelica model involves going through

several stages as shown in Figure 1.

 Modelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

Modelica models

Flat model

Sorted equations

Optimized sorted
equations

C Code

Executable

Figure 1. OpenModelica compiler translation stages.

First the hierarchy imposed by the object oriented and

component based modeling style is flattened out to a set of

equations and variables. The result of the first stage is what

we call a flat model which is then analyzed in order to sort

the equations topologically according to data dependencies

between the equations. In the Optimizer stage some symbol-

ic manipulations are performed while removing trivial equa-

tions and performing symbolic index reduction. Finally, the

code generator produces C/C++ code which can be com-

piled and linked together with a numeric solver and ex-

ecuted.

To summarize, the key characteristics of Modelica are:

 Object-oriented mathematical modeling. This tech-

nique makes it possible to create physically relevant

and easy-to-use model components, which are em-

ployed to support hierarchical structuring, reuse, and

evolution of large and complex models covering mul-

tiple technology domains.

 Acausal modeling. Modeling is based on equations in-

stead of assignment statements as in traditional in-

put/output block abstractions. Direct use of equations

significantly increases reusability of model compo-

nents, since components adapt to the data flow context

in which they are used. This generalization enables

both simpler models and more efficient simulation.

However, for interfacing with traditional software, al-

gorithm sections with assignments as well as external

functions/procedures are also available in Modelica.

 Physical modeling of multiple application domains.

Model components can correspond to physical objects

in the real world, in contrast to established techniques

that require conversion to “signal” blocks with fixed

input/output causality. In Modelica the structure of the

model becomes more natural in contrast to block-

oriented modeling tools. For application engineers,

such “physical” components are particularly easy to

combine into simulation models using a graphical edi-

tor.

Modelica
Compiler

Interactive
session handler

Execution

Graphical Model
Editor/Browser

Textual
Model Editor

Modelica
Debugger

Emacs
Editor/Browser

DrModelica
NoteBook

Model Editor

Eclipse Plugin
Editor/Browser

Figure 2. The architecture of the OpenModelica
environment.

2.1. The OpenModelica Open Source Environment

The OpenModelica environment is the currently major

Modelica open-source tool effort [11] consisting of several

interconnected subsystems, as depicted in Figure 2. Arrows

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

c© 2008, Copyright held by the individual authors 61

denote data and control flow. Several subsystems provide

different forms of browsing and textual editing of Modelica

code.

In this research project two parts of the OpenModelica

environment are used.

 A Modelica compiler subsystem (called OMC – for

Open-Modelica Compiler) translating Modelica to

C/C++ code, with a symbol table containing definitions

of classes, functions, and variables. Such definitions

can be predefined, user-defined, or obtained from libra-

ries.

 An execution and run-time module. This module cur-

rently executes compiled binary code from translated

expressions and functions, as well as simulation code

from equation based models, linked with numerical

solvers.

2.2. General Mathematical Description of Simula-

tion Problem

As mentioned in the section 1, in our work we have not

yet approached hybrid simulation problems. The compila-

tion and transformation of a plain continuous Modelica

model generally results in a Differential Algebraic Equation

system (DAE). A DAE system in implicit form can be ex-

pressed as follows:

0 = g(t, X´(t), X(t), Y(t), P), X(t0) = X0

Here X is a vector of state variables, X’ is a vector of de-

rivatives of the state variables, Y is a vector of algebraic va-

riables, P is a vector of parameters and/or constant, X0 is a

vector of start values and t is the time variable.

 Usually such a system is transformed to an Ordinary

Differential Equation system (ODE). Such an ODE system

can be described as:

X’(t) = f(t, X(t), Y(t), P), X(t0) = X0

An iteration scheme, such as Runge-Kutta, is then applied

to this system. When we from now on talk about the “right-

hand side” it is f in the above equation system that we refer

to. See, for example, [15] for more details on continuous

system simulation.

3. Approaches to Exploiting Parallelism in Ma-

thematical Models

There are several approaches to exploit parallelism in

mathematical models. In this section we briefly review three

main approaches that we are investigating in the context of

parallel simulation of equation-based models.

3.1. Automatic Fine-Grained Parallelization of Ma-

thematical Models

One obstacle to parallelization of traditional numerical

simulation codes is the prevalence of low-level implementa-

tion details in such codes, which also makes automatic pa-

rallelization hard.

Instead, it would be attractive to directly extract paral-

lelism from the high-level mathematical model, or from the

numerical method(s) used for solving the problem. Such

parallelism from mathematical models can be categorized

into three groups:

 Parallelism over the method. One approach is to adapt

the numerical solver for parallel computation, i.e., to

exploit parallelism over the method. For example, by

using a parallel ordinary differential equation (ODE)

solver that allows computation of several time steps

simultaneously. However, at least for ODE solvers, on-

ly limited parallelism is available. An adoption of alter-

native solver algorithms with better parallelizability

may, in turn, decrease the numerical stability, which

could lead to increased simulation time again.

 Parallelism over time. A second alternative is to paral-

lelize the simulation over the simulated time. This is

however best suited for discrete event simulations,

since solutions to continuous time dependent equation

systems develop sequentially over time, where each

new solution step depends on the immediately preced-

ing steps.

 Parallelism of the system. This means that the modeled

system (the model equations) is parallelized. For an

ODE or DAE equation system, this means paralleliza-

tion of the right-hand sides of such equation systems

which are available in explicit form; moreover, in many

cases implicit equations can automatically be symboli-

cally transformed into explicit form.

A thorough investigation of the third approach, automat-

ic parallelization over the system, has been done in our pre-

vious work on automatic parallelization (fine-grained task-

scheduling) of Modelica-generated simulation code [9][10],

see Figure 5.

3.2. Coarse-Grained Explicit Parallelization Using

Computational Components

Automatic parallelization methods have their limits. A

natural idea for improved performance is to structure the

application into computational components using strongly-

typed communication interfaces.

This involves generalization of the architectural lan-

guage properties of Modelica, currently supporting compo-

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

62 c© 2008, Copyright held by the individual authors

nents and strongly typed connectors, to distributed compo-

nents and connectors [17][18]. This will enable flexible

configuration and connection of software components on

multiprocessors, clusters, or on computational grids, and in-

volves a structured system of distributed solvers/ or solver

components.

3.3. Explicit Parallel Programming

The third approach is providing general easy-to-use ex-

plicit parallel programming constructs within the algorith-

mic part of the modeling language. We have previously ex-

plored this approach with the NestStepModelica language

[3][7]. NestStep is a parallel programming language based

on the BSP (Bulk-Synchronous Parallel) model, which is an

abstraction of a restricted message passing architecture and

charges cost for communication. It is defined as a set of

language extensions which, in the case of NestStepModeli-

ca, is added to the algorithmic part of Modelica. The added

constructs provide shared variables and process coordina-

tion. NestStepModelica processes run, in general, on differ-

ent machines that are coupled by the NestStepModelica

language extensions and runtime system to a virtual parallel

computer.

4. Combining Parallelism from Several Levels

Models described in equation-based object-oriented

modeling languages like Modelica give rise to large diffe-

rential algebraic equation systems that can be solved using

numerical DAE or ODE-solvers. Many scientific and engi-

neering problems require a lot of computational resources,

particularly if the system is large or if the right hand side is

complicated and expensive to evaluate. Obviously, the abili-

ty to parallelize such models is important, if such problems

are to be solved in a reasonable amount of time.

As mentioned in the introduction, parallelization of ob-

ject oriented equation-based simulation code can be done at

several different levels. In recent work [6] we started to ex-

plore the combination of the following two parallelization

approaches:

 Parallelization across the method, e.g., where the stage

vectors of a Runge-Kutta solver can be evaluated in pa-

rallel within a single time step

 Fine grained parallelization across the system where

the evaluation of the right hand side of the system eq-

uations is parallelized.

In this work, we develop an integrated automatic two-

level parallelization approach, also including software pipe-

lining. This is a further development of the basic parallel

pipelining technique for Runge-Kutta solvers described by

Korch and Rauber [8].

We automatically detect pipelining possibilities in the

total task graph, which is obtained by inlining the solver

stages in the code evaluating the right hand side of the sys-

tem, and automatically generate parallelized code optimized

for the specific latency and bandwidth parameters of the

target machine.

5. Pipelining the Task Graph

Since communication between processors is more fre-

quent using this approach we want to make sure that the

communication interferes as little as possible with the com-

putation. Therefore, we schedule the tasks in such a way

that communication taking place within the same simulation

step is always directed from a processor with lower rank to

a higher ranked processor. In this way the lower ranked

processor is always able to carry on with calculations even

if the receiving processor temporarily falls behind. Results

needed in the next simulation step by other processors are

calculated and sent out first so that a lower ranked processor

can carry on with the next time step as early as possible.

This scheduling scheme is depicted in Figure 4 and further

explained in Section 7.

6. Sorting Equations for Short Access Distance

One part of translating an acausal equation-based model

into simulation code involves sorting the equations by data

dependency order. This is done using Tarjan’s algorithm,

which also finds any strongly connected components in the

system graph, i.e., a group of equations that must be solved

simultaneously. This phase of the compilation corresponds

to the Analyzer block in Figure 1.

 Proc1 Proc2

 V1 V2 V3 v4

eq1 1

eq2 1 1

eq3 1 1

eq4 1 1

Figure 3. Incidence matrix in block lower triangular
form. Occurrences in the grey area mean a depen-

dency between processor 1 and processor 2.

One way to represent the information about dependen-

cies between equations and equation sorting is through an

incidence matrix. In such a matrix there is a row for each

equation and a column for each unknown variable in the

system. Each position in the matrix is marked if the variable

corresponding to the column appears in the equation corres-

ponding to the row.

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

c© 2008, Copyright held by the individual authors 63

In Figure 3 we see a small example of such a matrix af-

ter equation sorting has been carried out. In this form, we

can read out which variable is solved for in which equation

by looking at the diagonal. We can also see that, if we cal-

culate the values for the variables in the order they appear in

the columns (in this case, v1, v2, v3, v4), all dependent va-

riables will be calculated before they are needed in another

equation.

We assign a sequence number to each variable, or set of

variables in case of a strongly connected component, and

use this to help the scheduler assign tasks that communicate

much within the same processor. When the task graph is

generated, each task is marked with sequence number of the

variable it calculates. When a system with n variables is to

be scheduled onto p processors, tasks marked 1 through n/p

are assigned to the first processor and so on. This guaran-

tees that within one evaluation of the right hand side all de-

pendencies that cross process boundaries point in the same

direction. See Section 7 for more details on scheduling

We define the access distance of the list of equations to

be the maximum distance between two equations within the

sorted list of equations where one uses the result calculated

by the other. If this access distance is small, the risk of a

dependency crossing the process boundary is also small.

Data dependencies also exist between simulation time

steps. The computed state variable values from one time

step are input to the next time step. These dependencies, un-

like those within a single time step, normally go in both di-

rections. The forward inter-step dependences are not a prob-

lem since higher ranked processors always will be slightly

behind in the calculation. It is however important that the

backward dependencies also have a short access distance.

Fortunately, models with short access distance of the first

kind tend to have short access distance between time steps

as well. Figure 4 shows the data flow between processors.

As can be seen in the figure, if the dependencies would

stretch over more than one processor boundary the pipeline

would be stretched out as well.

Even though Tarjan’s algorithm assures that the equa-

tions are evaluated in a correct order, we cannot be sure that

there is not a different ordering where the access distance is

smaller. If, for example, two parts of the system are largely

independent, they can become interleaved in the sequence

of equations, making the access distance unnecessarily

large. Therefore we apply an extra sorting step after Tar-

jan’s algorithm which moves equations with direct depen-

dencies closer together. This reduces the risk of two tasks

with a direct dependency getting assigned to different pro-

cessors. What we in effect are doing is to try to make the

incidence matrix as narrow banded as possible by permut-

ing the rows and columns, moving occurrences in the lower

left part of the matrix closer to the diagonal, while keeping

the block lower triangular form. See [6] for an explanation

of this algorithm.

Assigning tasks to processors is the same thing as divid-

ing the sorted incidence matrix into groups of adjacent col-

umns and assigning each task involved in an equation where

a variable belonging to a specific group is solved, to the

processor corresponding to that group. The presence of a

non-zero element in the grey area of the matrix in Figure 3

corresponds to a dependency between processors, so the

fewer columns each process gets assigned the narrower the

band of the matrix must be to avoid dependencies. This

leads to the conclusion that there are three variables that in-

fluence how successful the scheduling is, namely;

 The number of processors

 The width of the band of the matrix.

 The size of the matrix

If the width of the band in the matrix is kept the same,

more processors can be utilized if the model gets larger. If

the band gets wider but the problem size, i.e., the size of the

matrix stays the same, fewer processors can be utilized. As

a consequence we can note that for models that originate

from a discretization, like the model used in the measure-

ments in Section 8, the finer discretization used, the more

processors can be utilized.

7. Scheduling

In this section, we describe the scheduling process. We

want all communication occurring inside the same time step

to be one-way only, from processors with lower rank to

processors with higher rank.

Figure 4. Pipelined scheduling of task sets Pa,i, Pb,i,
and Pc,i on three threads. Solid arrows represent

communication of results needed within the same
time step and dotted arrows represent communi-

cation of results needed in the next time step.

Pa,i-1 Pb,i-1 Pc,i-1

Pa,i Pb,i Pc,i

Pa,i+1 Pb,i+1 Pc,i+1

Pa,i Pb,i Pc,i

Pa,i+1 Pb,i-1 Pc,i+1

Pa,i-1 Pb,i-1 Pc,i-1

Execution time

One time step

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

64 c© 2008, Copyright held by the individual authors

To achieve this, we make use of information stored with

each task telling us from which equation it originates from,

and thus, which variable’s evaluation it is part of. We do

this by assigning the tasks to the processors in the order ob-

tained after the sorting step described in Section 6.

Tasks with variable number 1 through n1 are scheduled

to the first processor, n1+1 through n2 to the second and so

on. The values of ni are chosen so that they are always a va-

riable number representing a state variable.

The second goal of the scheduling algorithm is to gener-

ate results that are needed for the next time step by other

processors as early as possible so that a lower ranked pro-

cessor can start the processing the next time step as early as

possible.

To achieve this we collect all tasks that are involved in

calculations of results that are needed by other processors

and which also themselves depend on results of other pro-

cessors into one set which we keep as small as possible.

In order to explain how the tasks are sorted within one

processor we first introduce some definitions:

dep(t1,t2) If t1 and t2 are two tasks in the set of all

tasks P, the relation dep(t1,t2) holds iff

there is a path from t1 to t2 in the task

graph, i.e., t1 is an ancestor of t2.

P The set of all tasks

Pi The set of tasks assigned to processor i.

 Pa,i, Pb,i, Pc,i Subsets of Pi, such that for all tasks a in

Pa,i and b in Pb,i not dep(b,a) holds and

for all tasks b in Pb,i and c in Pc,i not

dep(c,b) holds.

These sets are populated according the following formu-

las:

, iff , ((,)

(,))

b i i i

i

t P t P u v u P u P dep u t

v P v P dep t v

       

   

, , ,iff (() (,))a i i b i b i it P t P t P u u P u P dep t u        

)(iff ,,, ibiaiic PPtPtPt 

The formulas above should be interpreted as follows: A

task t assigned to processor i belongs to the set Pb,i if these

two statements hold:

 A result calculated by a processor other than i is used

somewhere on a path leading to t in the task graph.

 There is a task assigned to a processor other than i, on a

path leading from t.

A task t assigned to processor i belongs to the set Pa,i

if there is a task assigned to a processor other than i on a

path leading from t, or in Pb,i.

All other tasks assigned to processor i belong to Pc,i. The

dependencies between these sets are also illustrated in Fig-

ure 4.

Let tb,i denote the execution time of the tasks in Pb,i, let

tac,i denote the sum of the execution times of Pa,i, and Pc,i.

Furthermore let tl denote the communication latency.

To keep waiting times as short as possible the relation

tb,i + 2 tl < tac,i should hold in each simulation step. This re-

quires the work load to be well balanced between the pro-

cessors and the computation cost for each task to be reason-

ably constant.

For many problems, tb,i remains relatively constant when

changing the number of processors, whereas tac,i decreases

with the number of processors. This means that, in theory, it

is possible to calculate in advance how many processors can

be utilized without introducing waiting time.

If the computation cost for each task can be calculated in

advance, the load balancing can be carried out in the first

step of the scheduling by assigning state variables one by

one to the first processor until 1/n of the total work has been

allocated and then start assigning to the next processor. If,

however, the computation cost cannot be accurately esti-

mated, an initial guess can be generated and simulated for a

short period of time, to collect measurements so that the

processor assignment can be refined in a second attempt.

8. Hardware Platforms and Measurements

The backend of the OpenModelica compiler has been

modified so that it can generate parallel code (using the ap-

proach just described) for two different architectures: Intel

Xeon and SGI Altix 3700 Bx2. A future goal is to be able to

generate code for the Cell BE architecture as well. As a first

step we have made a small test implementation consisting

of a porting of parallel code (generated from the OpenMo-

delica compiler) to the Cell BE architecture.

8.1. Test Model

In order to evaluate the gained speedup we have used a

model of a flexible shaft using a one-dimensional discreti-

zation scheme. The shaft is modeled using a series of n rota-

tional spring-damper components connected in a sequence.

In these tests we use a shaft consisting of 100 spring-

damper elements connected together. The Modelica source

code for the test model follows below. The Model is built

using components from the Modelica standard library apart

from the SpringDamperNL model which is a modified ver-

sion of the SpringDamper that appears in the standard li-

brary. The modified version uses a non-linear spring-

damper model, which is computationally harder and in-

creases the ratio between computation and communication.

model ShaftElement

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

c© 2008, Copyright held by the individual authors 65

 import Modelica.Mechanics.Rotational;

 extends Rotational.Interfaces.TwoFlanges;

 Rotational.Inertia inertia1;

 SpringDamperNL springDamper1(c=5,d=0.11);

equation

 connect(inertia1.flange_b,

 springDamper1.flange_a);

 connect(inertia1.flange_a, flange_a);

 connect(springDamper1.flange_b,flange_b);

end ShaftElement;

model FlexibleShaft

 import Modelica.Mechanics.Rotational;

 extends Rotational.Interfaces.TwoFlanges;

 parameter Integer n(min=1) = 3;

 ShaftElement shaft[n];

equation

 for i in 2:n loop

 connect(shaft[i-1].flange_b,

 shaft[i].flange_a);

 end for;

 connect(shaft[1].flange_a,flange_a);

 connect(shaft[n].flange_b,flange_b);

end FlexibleShaft;

model ShaftTest

 FlexibleShaft shaft(n=100);

 Modelica.Mechanics.Rotational.Torque src;

 Modelica.Blocks.Sources.Step c;

equation

 connect(shaft.flange_a,src.flange_b);

 connect(c.y,src.tau);

end ShaftTest;

If the number of elements used in the discretization is

increased, the width of the banded incidence matrix still

remains the same. Thus, if we choose to increase the accu-

racy of the model by increasing the number of elements, we

can use more processors and keep the simulation time ap-

proximately the same.

The same model has been used in the evaluation of the

task merging approach [10], which makes it possible to

compare the results of this work to what was previously

achieved. The previous results using task merging are

shown in Figure 5.

The generated code is divided into regions according to

the task sets described in Section 7 and illustrated in Figure

4, instrumented such that a time stamp is stored each time

execution moves into a new region of the generated code. In

this way it is easy to analyze how much time each thread

spends waiting for the result of another processor. The

overhead introduced by this instrumentation is negligible.

8.2. Intel Xeon and SGI Altix 3700 Bx2

8.2.1. Implementation

Two approaches have been investigated: 1) all threads

working on the same state variable array, or 2) each thread

keeping its own state array letting the runtime environment

copy results between threads as needed. We also carried out

the tests on two different hardware configurations.

The first configuration consists of a standard 3 GHz PC

with a 4 core Intel Xeon processor with Hyper-Threading,

which means that the operating system sees eight cores, but

two hardware threads share the same execution resources.

Hyper-threading enables the processor to quickly switch be-

tween two threads if one of them stalls due to a cache miss,

branch misprediction, or data dependency. The second con-

figuration used is a 64-processor SGI Altix 3700 Bx2 with

Intel Itanium 2 processors running at 1.6 GHz.

Relative speedup

0

0,5

1

1,5

2

2,5

3

3,5

4

0 5 10 15

Number of processors

S
p

ee
d

u
p

SGI Altix 3700 Bx2

Figure 5. Speedup on the 64 processor SGI machine
using the task merging approach on the flexible shaft

model. See [9][10] for more details.

8.2.2. Measurements

The first tests were carried out on the Intel Xeon multi-

core processor using the version where all threads share the

same state variable array and the result of running the flexi-

ble shaft model on the 8 virtual cores is shown in Table 1.

The figures in the table represent mean values over the en-

tire simulation. However, in the raw data we can see that the

waiting times vary from almost zero to several milliseconds,

indicating that the execution times differ quite a lot between

the time steps. This probably has to do with the fact that the

cores of the computer are overutilized and some threads are

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

66 c© 2008, Copyright held by the individual authors

bound to be preempted by other threads from time to time.

Running the same model on only four threads, so that only

one hardware thread per core need to be utilized, results in

waiting times of about 7 % on all threads. It also becomes a

lot easier to balance the work load between the threads

since the computation time is more predictable.

Thread Ttot (μs) Tb (μs) Twait (μs) % waiting

1 38.1424 6.19957 4.93 11%

2 38.8396 7.13443 4.23 10%

3 34.1659 8.95761 8.91 21%

4 32.9833 5.90638 10.09 23%

5 34.9385 9.10835 8.14 19%

6 41.887 7.27173 1.19 3%

7 41.5482 9.1998 1.53 4%

8 31.6192 3.47542 11.54 27%

Table 1. Measurements of running the flexible shaft

model on eight threads (on Intel Xeon). Ttot
represents the mean time each thread spends doing
useful calculations. Tb represents the mean time
each thread spends evaluating tasks in the Pb,i set of
tasks, i.e., the portion of the code that is on the
dependency path between different threads. Twait
represents the mean time each thread spends
waiting on the result of another thread.

The result indicates that relatively little time is spent on

waiting. However, when we compare the execution time to

running the same model sequentially on one processor the

speedup is only about 2.3. When we, on the other hand, let

each thread work on its own memory area and add code to

distribute results as needed between the threads instead of

doing shared memory accesses, the speedup increases to 4.1

on a test that is identical in all other respects. Thus, the first

version using a shared state variable array was abandoned

and in the rest of the tests we use a version where each

thread keeps its own state variable array and computational

results are copied explicitly between dependent threads.

When running the test on the SGI machine, which does

not suffer from hardware threads sharing the same core, the

test scales well up to eight processors as can bee seen in

Figure 6 where a speedup of 6.1 is reached using eight pro-

cessors. This can be compared to the speedup achieved us-

ing the task merging approach investigated in [10] where a

maximum speedup of about 3.7 was reached using ten pro-

cessors on the same hardware.

We also made tests on the SGI configuration using the

original linear spring-damper model of the standard library,

which has orders of magnitude computationally less expen-

sive tasks. The measured speedup using 4 processors using

the linear model is 1.9.

Relative speedup

0

1

2

3

4

5

6

7

0 2 4 6 8 10

Number of processors

S
p

ee
d

u
p

Intel Xeon SGI Altix 3700 Bx2

Figure 6. Relative speedup of running the flexible
shaft model on the Intel Xeon and the SGI shared

memory machines.

8.3. Cell BE

Future work will include the development of a run-time sys-

tem for the Cell BE processor [14] and a generalization of

the current code generator. As a first step, we have manual-

ly retargeted the generated parallel C/C++ code (from the

OpenModelica compiler) to the Cell BE processor architec-

ture. We took the compiled code for the flexible shaft model

mentioned in Section 8.1 (generated for 6 processors) and

changed the architecture specific sections to make it work

on the Cell BE architecture. Thus the code follows the ap-

proach described in Sections 4 to 7.

8.3.1. Implementation

The currently available Cell BE Architecture (CBEA) is

a single-chip multiprocessor consisting of one so-called

Power Processor Element (PPE) and 8 so-called Synergistic

Processor Elements (SPE). The SPEs are optimized for run-

ning compute-intensive applications while they are coordi-

nated by the PPE which runs the top level thread and the

operating system. The SPEs and PPE do not share on-chip

memory. Instead, each SPE has its own, small local on-chip

memory for both code and data. DMA transfers are used to

transfer data between main memory and the SPEs, and be-

tween the different SPEs. As DMA transfers can run asyn-

chronously in parallel with local SPE computation, it should

be possible to hide the communication latency during com-

putation.

In the PPE, 6 pthreads are created and loaded with 6 dif-

ferent program handlers pointing to different programs con-

taining different subsets of the equations to be calculated.

After creating the threads, the PPE sends out a pointer to a

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

c© 2008, Copyright held by the individual authors 67

control block in main memory, with the help of the mailbox

facility, to each SPE. Each SPE reads the pointer from its

mailbox and uses this pointer to transfer a copy of the con-

trol block via DMA to its local store. The control block con-

tains pointers to different buffers in main memory. The

SPEs will use these pointers to fetch and store data from

main storage and when sending and synchronizing between

different SPEs.

After having read the control block from the main store

into local store, each SPE reads the init data (for the differ-

ent vectors X’, X, Y and P mentioned in Section 2.2) from a

main memory buffer into local store. After this each SPE

will iterate N steps, calculating new values, X[t+h], for the

state variables (associated with that SPE) in each step. Dur-

ing an iteration step, a SPE might have to send and receive

data from neighboring SPEs, corresponding to the arrows in

Figure 4. This is done by DMA transfers. After the end of

each iteration step (or at the end of some iteration steps, in a

periodic manner), data is sent back from the SPEs to the

main memory buffer. This data will then be written to a re-

sult file by the PPE after all threads have finished.

At the moment, only inter-SPE parallelism and DMA

parallelism is utilized. However, in order to exploit the full

performance potential of Cell, the SIMD instructions of the

SPEs need to be leveraged. This requires vectorization of

the generated code, which is an issue of future work.

When scheduling for a small example such as the flexi-

ble shaft model, the local on-chip memory is large enough

to accommodate the code with associated variables and da-

ta. However, for larger examples, either time-consuming

overlay of multiple program modules in SPE local store or

code and data distribution across a cluster of several Cell

processors is needed.

DMA transfers have the advantage that an SPE in some

cases can continue to execute while the transfer is going on.

For instance, at the end of an iteration step an SPE can in-

itialize a DMA transfer of the resulting values of the state

variables in this step to the PPE and then continue on with

the next iteration step.

8.3.2. Measurements

Running the whole flexible shaft example 100000 itera-

tion steps on the Cell BE processor (with 6 SPUs as men-

tioned earlier) took about 31.4 seconds (from start of the

PPU main function to end of the PPU main function). The

final writing of the result to result files is not included in

this measurement. Table 2 shows how much time each

thread took to execute in seconds and also how much tim

DMA transfer (sending, receiving or waiting for DMA to

complete) took for each thread.

Thread Ttot (s) TDMA (s) % DMA

1 31.39 2.49 7.9 %

2 31.39 12.28 39.1 %

3 31.39 11.10 35.4%

4 31.39 12.25 39.0 %

5 31.39 11.04 35.2 %

6 31.38 4.39 13.9%

Table 2. Measurements of running the flexible shaft

model on six threads (on Cell BE).

From Table 2 we can conclude that thread 1 and 6 do

not spend much time on DMA transfers. Thread 2 to 5,

however, spent more than a third of the execution time on

DMA transfers. To start with, the total execution time of

31.4 seconds is pretty bad. On Intel Xeon the same example

took 11.35 seconds (using one core) and on SGI Altix 3700

Bx2 it took 22.59 seconds (using one processor). An

improved implementation could most likely decrease the

time of DMA transfers. Another issue is the fact that on our

Cell BE version double precision calculations takes about 7

times more time than single precision. This will be

improved in the next version of the Cell BE. If it would be

possible to run the whole flexible shaft example on one

SPU it would take about 188.33 – 53.55 ≈ 135 seconds (we

can leave out the time for DMA transfers and assume that

all data is in local store). This gives a “relative“ speedup of

about 4.3 as seen in Figure 7. Since the Cell BE architecture

is a heterogenous architecture, it is not so straightforward to

define relative speedup.

Figure 7. Relative speedup of running the flexible
shaft model on Cell BE.

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

68 c© 2008, Copyright held by the individual authors

9. Conclusions

We have developed a method and prototype implemen-

tation of automatic parallelization of simulation code gener-

ated when compiling models in a high level equation-based

object oriented modeling language. By using software pipe-

lining, the waiting time each processor experiences can be

kept at a low level. Good speedup was achieved on the

tested model with 8 processors. Relatively good speedup

was achieved on the Cell BE architecture even though more

work needs to been done.

If the computation cost can be estimated and communi-

cation latency is known, it is possible to predict how many

processors can be utilized without introducing waiting times

in the computation pipeline.

10. Future work

Tests should be carried out on different simulation prob-

lems to see if the results are general or if there are large dif-

ferences depending on the problem.

A run-time system for the Cell BE processor is also

planned. A run-time system for the Cell BE processor has

been developed for a related effort on NestStep [4]. Expe-

rience from that effort and some code will be reused for the

new run-time system. Moreover, the recently developed ge-

nerative skeleton programming library BlockLib [16] for

Cell BE may be useful in future work, as it contains conve-

nient support for efficiently utilizing the SPE SIMD instruc-

tions and automatic double-buffering to overlap DMA with

SPE computation.

11. Acknowledgements

This work was supported by Vinnova in the Safe & Se-

cure Modeling and Simulation project.

12. References
[1] Håkan Lundvall. Automatic Parallelization using Pipelining for

Equation-Based Simulation Languages, Licentiate Thesis No.

1381, Dept of Computer and Information Science, Linköping Uni-

versity, Linköping, Sweden, Sep. 2008.

[2] Håkan Lundvall, Peter Fritzson. Automatic Parallelization us-

ing Pipelining for Equation-Based Simulation Languages. Ac-

cepted for the 14th Workshop on Compilers for Parallel Compu-

ting (CPC’2009), Zurich, Switzerland, Jan 7-9, 2009.

[3] Christoph Kessler, Peter Fritzson and Mattias Eriksson.

NestStepModelica: Mathematical Modeling and Bulk-

Synchronous Parallel Simulation. PARA-06 Workshop on state-

of-the-art in scientific and parallel computing, Umeå, Sweden,

June 18-21, 2006.

[4] Daniel Johansson, Mattias Eriksson, Christoph Kessler. Bulk-

synchronous parallel computing on the CELL processor. PARS'07:

21. PARS - Workshop, Hamburg, Germany, May 31-Jun 1, 2007.

[5] Ernst Christen and Kenneth Bakalar. VHDL-AMS – A Hard-

ware Description Language for Analog and Mixed-Signal Applica-

tions. IEEE Transactions on Circuits and Systems II: Analog and

Digital Signal Processing,46(10):1263–1272, 1999.

[6] Håkan Lundvall, Peter Fritzson. Automatic Parallelization of

Object Oriented Models across method and system. 6th Eurosim

Congress, Ljubljana, Slovenia, 2007.

[7] Joar Sohl. A Scalable Run-time System for NestStep on Cluster

Supercomputers. Master thesis LITH-IDA-EX-06/011-SE, IDA,

Linköpings universitet, 58183 Linköping, Sweden, March 2006.

[8] Matthias Korch and Thomas Rauber. Optimizing Locality and

Scalability of Embedded Runge-Kutta Solvers Using Block-Based

Pipelining. Journal of Parallel and Distributed Computing, Vo-

lume 66 , Issue 3 (March 2006), Pages: 444 – 468.

[9] Peter Aronsson and Peter Fritzson. Automatic Parallelization in

OpenModelica. In Proceedings of 5th EUROSIM Congress on

Modeling and Simulation, Paris, France. ISBN (CD-ROM) 3-

901608-28-1, Sept 2004.

[10]Peter Aronsson. Automatic Parallelization of Equation-Based

Simulation Programs. PhD thesis, Dissertation No. 1022, Dept,

Computer and Information Science, Linköping University,

Linköping, Sweden.

[11]Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj Nyström,

Adrian Pop, Levon Saldamli, and David Broman. The OpenMode-

lica Modeling, Simulation, and Software Development Environ-

ment. In Simulation News Europe, 44/45, December 2005. See al-

so: http://www.openmodelica.org.

[12]Peter Fritzson. Principles of Object-Oriented Modeling and Si-

mulation with Modelica 2.1, 940 pp., ISBN 0-471-471631, Wiley-

IEEE Press, 2004. See also www.openmodelica.org and book web

page: www.mathcore.com/drModelica

[13]The Modelica Association. The Modelica Language Specifica-

tion Version 3.0, September 2007.

[14]Abraham Arevalo et al, Programming the Cell Broadband En-

gine™: Architecture Examples and Best Practices, IBM Red-

Books, Aug. 2008

[15]Francois E. Cellier, Ernesto Kofman. Continuous System Simu-

lation. Springer. ISBN: 0-387-26102-8. 2005.

[16]Markus Ålind, Mattias Eriksson, Christoph Kessler: BlockLib:

A Skeleton Library for Cell Broadband Engine. Proc. ACM 1st Int.

Workshop on Multicore Software Engineering (IWMSE’08),

Leipzig, Germany, May 2008.

[17]Kaj Nyström and Peter Fritzson. Parallel Simulation with

Transmission Lines in Modelica. In Proceedings of the 5th Inter-

national Modelica Conference (Modelica'2006), Vienna, Austria,

Sept. 4-5, 2006.

[18]Kristoffer Norling, David Broman, Peter Fritzson, Alexander

Siemers, and Dag Fritzson. Secure Distributed Co-Simulation over

Wide Area Networks. In Proceedings of the 48th Scandinavian

Conference on Simulation and Modeling (SIMS’2007), available at

http://www.ep.liu.se. Göteborg, Sweden. October 30-31, 2007

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

c© 2008, Copyright held by the individual authors 69

PAPER SESSION 2: LANGUAGE AND COMPILATION TECHNIQUES

70 c© 2008, Copyright held by the individual authors

PAPER SESSION 3: COHERENCE AND CONSISTENCY

Paper session 3: Coherence and consistency

c© 2008, Copyright held by the individual authors 71

PAPER SESSION 3: COHERENCE AND CONSISTENCY

72 c© 2008, Copyright held by the individual authors

A Scalable Directory Architecture for Distributed Shared Memory

Chip Multiprocessors

Huan Fang and Mats Brorsson

KTH School of Information and Communication Technology

{huanf, matsbror}@kth.se

Abstract

Traditional Directory-based cache coherence

protocol is far from optimal for large-scale cache

coherent shared memory multiprocessors due to the

increasing latency to access directories stored in

DRAM memory. Instead of keeping directories in main

memory, we consider distributing the directory

together with L2 cache across all nodes on a Chip

Multiprocessor. Each node contains a processing unit,

a private L1 cache, a slice of L2 cache, memory

controller and a router. Both L2 cache and memories

are distributed shared and interleaved by a subset of

memory address bits. All nodes are interconnected

through a low latency two dimensional Mesh network.

Directory, as a split component as L2 cache, only

stores sharing information for blocks while L2 cache

only stores data blocks exclusive with L1 cache.

Shared L2 cache can increase total effective cache

capacity on chip, but also increase the miss latency

when data is on a remote node. Being different from

Directory Cache structure, our proposal totally

removes the directory from memory which saves

memory space and reduces access latency. Compared

to L2 cache which combines directory information

internally, our split L2 cache structure saves over 88%

cache space while having achieved similar

performance.

1. Introduction

As number of cores on a single chip increases, the

focus shift from improving computation capabilities on

single core to research on interconnection and

communication patterns. There are two main issues that

designers should consider for large-scale CMPs. One is

how we manage on-chip resources like caches, memory

controllers and routers. There is a trade-off between

cost and performance with different cache hierarchies

and memory systems. The other involves design space

for interconnection. Traditional bus-based

interconnection cannot satisfy increasing bandwidth

requirement for tens or even hundreds of cores

connecting to each other. We need a more scalable on-

chip network than global broadcast technique for future

CMPs.

Scalability, as a property of systems, is highly

significant in electronics systems, database, routers,

and networking. A system, whose performance

improves after adding hardware, proportionally to the

capacity added, is said to be a scalable system.

In this work, a novel directory-based protocol is

designed and simulated to verify if it is suitably

efficient and practical when applied to large situations.

That is, a large working set and large number of

participating nodes in a distributed shred memory

multicore processor. We focus system design on

hardware scalability rather than on capacity because it

is typically cheaper to add a new node to a system in

order to achieve improved performance than to partake

in performance tuning to improve the capacity that

each node can handle.

With the redesign of cache and directory structure,

our protocol achieves similar performance as an

existing SCMP protocol which integrating directory

together with L2 cache. However, the memory

overhead is greatly reduced to 6% - 12% compared to

SCMP. It performs visible speedup on scalability

research as well. With 16 and 64 nodes involved, our

protocol shows even better statistics than SCMP in

some cases.

2. Related Work

Since point-to-point interconnection network is

commonly used for scalable multiprocessor systems, a

cache-coherence protocol that does not use broadcast is

necessary to store the locations of all cached copies of

shared data. A directory-based protocol consists of a

list of these cached locations; each one is a directory

entry that corresponds to a memory block. There are

three primary categories of directory protocol: full-map

PAPER SESSION 3: COHERENCE AND CONSISTENCY

c© 2008, Copyright held by the individual authors 73

directories, limited directories, and chained directories

[4]. In this work, we focused on the performance of our

directory structure; therefore the full-mapped directory

scheme is used for all protocols concerned through our

work.

In [1] and [2], a multilayer directory structure is

presented to reduce the size of the directory for large-

scale configurations of a multiprocessor while also

maintain or even improve the performance. The first-

level directory and the shared data cache integrated

into the processor enhance performance by saving long

access time to slow memories. The compressed

directories, which are placed outside the chip, are

second-level and third-level directories. The

compressed data structure significantly reduces

memory overhead compared to traditional simple full-

map directory.

Directory caches can be also used to reduce the long

latency to memory of L2 misses. The directory

information is obtained from a much faster structure

(caches on chip) than from memory. For example, in

[5] a directory cache located together with the L2 is

responsible for most of the coherence messages

handlings. The directory that stores directory

information for every memory block is kept in memory,

which does nothing to guarantee cache coherence but

functions as a backup storage for sharing information

in directory cache. The state information are copied

back to main memory only there is a DC (Directory

Cache) replacement, thus greatly reduces accesses to

directory in DRAM.

A lightweight directory architecture is introduced in

[8] that adds directory information to the L2 caches and

removes the directory structure from memory.

However, this structure increases cache misses due to

premature invalidations when a replacement in L2

arises. To minimize premature invalidations like this,

[9] proposes a new L2 cache design by splitting L2

cache into two parts: 1.The Data and Directory

Information (DDI) structure that maintains both data

and directory information for blocks requested by the

local processor. 2. The Only Directory Information

(ODI) structure that stores only directory information

for the local blocks requested by remote nodes and not

being used by the local node. The ODI acts like an on-

chip directory cache. When a block is evicted from the

DDI structure, the ODI structure is used as a victim

cache for the directory information of this block. This

avoids premature invalidations as a consequence of

replacements. But the invalidations are inevitable if a

directory entry is evicted from the ODI structure. The

ODI+DDI structure is similar to a cache+directory

design only that the DDI adds directory information in

on-chip cache. Our proposal is to separate L2 cache

and directory thoroughly; the address of directory are

mapped to L2 cache according to number of sets of L2.

Besides, there is no need of directory information to be

stored in main memory. Thus it will greatly reduce

memory overhead for large-scale multiprocessor

system.

Chip multiprocessors place multi processors (cores)

on a single die. There are two basic schemes to manage

the on-chip L2 cache in tiled CMPs [6]. 1. Private L2

cache for each local processor, or 2. Distributed L2

caches that form a single high-capacity shared L2

cache. The private scheme has low L2 hit latency,

performing well if working set fits in the local cache.

But it reduces total effective on-chip capacity since

each core must keep a local copy of the data it

accesses. The structure is simply similar to shrink

traditional multi-chip multiprocessors onto a single

chip. The shared scheme manages L2 slices as a shared

L2 cache with addresses interleaved across cores,

which is an example of a non-uniform cache access

(NUCA) design. It reduces L2 miss rates and thus

memory accesses for large shared working sets.

However, the on chip network latency varies depending

on distance and network congestion. Most existing

CMP designs shared a banked L2 cache while maintain

coherence among all primary caches. [6] presents a

shared L2 design by adding additional directory bits to

each L2 line in order to track shared copies.

From description of [7], we know that UltraSPARC

T1 maintains coherence by shadowing the L1 tags in an

L2-cache directory structure. The L2 cache directory

preserves the inclusion property – all valid entries in

the primary cache should reside in the L2-cache as

well.

In this work, we present a distributed shared L2

design that preserve exclusive L1/L2 property. Any

data block can reside in L2 cache only when it's not in

any L1 caches, otherwise it's removed from L2. The

directory information is stored in a distributed directory

structure if any node(s) has copies of this block in their

primary caches.

3. Parameter Settings

We target our CMP chip design assuming 45nm

technology in 2010 and 22nm technology in 2016 [5].

Each CMP design is restricted within 400 mm
2
 die

area. For a 64-core multiprocessor with 22nm

technology, we estimate the cores (including L1 I&D

caches per core) would occupy 320 mm
2
 and 8MB L2

cache would occupy 48 mm
2
 area [3], the

PAPER SESSION 3: COHERENCE AND CONSISTENCY

74 c© 2008, Copyright held by the individual authors

interconnection and I/O interface occupy the remaining

area.

In order to study the scalability of many cores chip

multiprocessors, we have three configurations varied

from 4, 16 to 64 cores. The system is modeled by

Simics and Gems based on a default ruby configuration

file. Cache size is chosen based on practical processor

design and working sets of our benchmark programs.

It’s sufficient for application like blackscholes, but still

too small for large application like canneal. Since our

concentration is the influence of directory component

and scalability of a reasonable system, other parameters

are fixed as stated in table 1.

Table 1: System parameters.

 4-core 16-core 64-core

Processor 1 GHz, 2 IPC

L1 I & D cache 32 KB, 4-way

Total shared L2 cache

Associativity

Banks

2 MB,

4-way,

4 banks

4 MB,

4-way,

16 banks

8MB,

4-way,

64 banks

L1/L2/Dir block size 64 Bytes

Directory Associativity 4-way

Memory size 4 GB DRAM

On-chip link latency 1 cycle

L1 hit latency 1 cycles

L2 hit latency 2 cycles

Directory latency 4 cycles

Memory latency 60 cycles

Topology 2D Mesh

4. Approach

4.1. System Architecture

In this section, we present our hardware model

generated by Virtutech Simics simulator. We model a

serengeti machine with up to 64 processors, 4GB

memories in total. The detailed cache and memory

system are modeled by GEMS.

4.1.1. Hardware Model. We configure our system as

a single chip multiprocessor with 4, 16 or 64 cores, the

same number banks of L2 caches and memories. Both

L2 cache and memories are distributed shared and

interleaved by a subset of the physical address bits. All

nodes are interconnected as a Mesh network, providing

scalable bandwidth as well as simple hardware

implementation. Each node contains a processing unit,

private L1 cache, a slice of L2 cache, memory

controller and a router. A hardware abstract model with

4 CPU cores is shown in Figure 1.

Figure 1: Proposed Architecture.

4.2. Cache Coherence Protocol

4.2.1. Proposed cache organization. In each node, we

model a directory of variable size determined by

number of nodes in this system. Besides, the number of

entries of directory can be set individually as that of the

L2 Cache. It is hard to decide the optimal size of

directory, which depends on the property of application

and size of working set. But we will try to find a

threshold that satisfies most applications. Beyond the

threshold value, no obvious improvement can be

observed. Thus we are able to get a good trade off of

performance and cost.

Figure 2: Directory and L2 Cache organization.

With the structure shown in figure 2, the data blocks

are stored in L2 cache only in Idle state. Thus sharing

information is not necessary for L2 Cache. When there

is a request from any L1 cache, the block will be sent to

the destination and a directory entry is allocated,

storing its state, owner and sharers if any. When a

directory replacement is triggered, invalidations to all

sharers are required and the clean data is going to be

written back to L2 Cache. There is no need to store

PAPER SESSION 3: COHERENCE AND CONSISTENCY

c© 2008, Copyright held by the individual authors 75

anything back to memory for now until a L2

replacement is triggered. This mechanism significantly

reduces memory accesses compared to the unified

directory + L2 cache structure.

However, the indispensable invalidations increase

L1 misses. More coherence messages and on-chip

cache-to-cache transfers are generated through the

interconnection network. But we believe with high

bandwidth provided by network on chip, it's

worthwhile to trade some on chip traffic for less off

chip traffic. Another explicit and key advantage is the

minimized memory overhead for directory structure.

A directory entry consists of four parts: Tag, State,

Owner and sharers. The Tag is the ID of a data block

as in normal cache. The other bits have same meaning

as typical directories. The whole directory is organized

as four way set-associative cache. The number of cache

blocks mapped to the same set in directory is fixed and

determined by address.

The replacement policy used in the protocol is called

“Last Recently Used” (LRU) policy. Since we have a

four way associative directory, we need to make a

replacement when we have four blocks cached in one

set and then a fifth one is requested by another

processor. In this case we need to invalidate one

directory entry. The procedure will be the following:

first processor Px requests a block that generates the

replacement, the cache controller first stalls Px, then

invalidates the block that was not used for the longest

time (according to LRU policy), when the invalidation

is finished and an empty entry is allocated, Px is given

access to the requested block [5].

5. Simulations

5.1. Simulation Metrics

1. Execution time: The Ruby Cycle is our basic

metric of simulated time used in the Ruby module

of the GEMS simulator. The Ruby module is the

basic module for the memory system configuration

and interconnection network design. The value of

ruby cycles is the count of the number of times the

ruby event queue is invoked in the course of

simulation. The ruby event queue is invoked every

two Simics cycles from the Simics event queue

associated with Simics processor 0. Each ruby

cycle is one simulated cycle of the memory system

analogous to one cycle of a logical memory clock.

Ruby cycles are not determined by the number of

instructions executed on any processor. The Ruby

cycles are the recommended performance metric in

GEMS.

2. L1 cache misses: As the name says it represents

the misses of L1 cache. It's calculated by dividing

request missed by number of requests (Instruction

+ Data). It's an important metric for cache

hierarchy.

3. L2 miss/miss rate: This represents the total misses

and miss rate of the L2 cache. It is calculated from

the number of requests issued to the L2 and the

misses of all banks of L2.

4. L2/Dir replacement: Number of replacements of

L2/Directory entries. It's caused by capacity misses

and conflict misses.

5. Miss latency average: Average of the L1 miss

latency in Ruby cycles. It is measured from the

moment a memory request is issued to the moment

when the date is retrieved.

6. Memory requests: Number of reads and writes

issued to main memory.

5.2. Results and Analysis

Before we start testing with benchmark tools, it’s

important to know the main improvement of our

protocol is significantly reduced overhead compared to

traditional architecture. The directory consumes less

space while maintaining similar performance. It can be

further reduced if combining with other mechanism like

compressed directory code. In figure 3, the last column

shows SCMP protocol which has 8192 directory entries.

overhead

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Overhead

64 128 256 512 1024 2048 SCMP

Figure 3: Overhead comparison (directory entries).

5.2.1. Influence of directory size. In order to analyze

the impact of directory on the system, we will first vary

the directory size from 64 to 2048 entries on a four

node Chip multiprocessor. Another protocol with

unified directory+L2 cache structure is also simulated

for comparison. We call it SCMP for short. All

simulations are configured with same cache size: 32KB

L1I + 32KB L1D and 512KB L2 cache per core.

PAPER SESSION 3: COHERENCE AND CONSISTENCY

76 c© 2008, Copyright held by the individual authors

Since the SCMP requires same number of directory

entries as L2 Cache, the overhead is up to 100%.

Reducing directory from 64 to 2048 entries, we get

much fewer overhead from 0.39% to 12.5% compared

to SCMP, which will save a great amount of die area

for multicore processors.

Three PARSEC programs with different

characteristics are chosen to represent certain range of

applications.

� Blackscholes has least instruction counts and

minimum data requests;

� Swaptions has most instruction counts and

medium working set.

� Canneal has medium instruction counts but

unbounded working set.

blackscholes sw aptions canneal

0

50

100

150

200

250

300

350

Execution Time

64

128

256

512

1024

2048

SCMP

Figure 4: Execution time (million cycles).

As we see from figure 4, with 512 entries for

blackscholes, it has almost achieved the best

performance. The ruby cycles is improved by 105%

compared to 64 entries! However, hardly could we

improve performance any more by increasing directory

size. It also beats SCMP protocol by 14% improvement.

The 136% improvement for swaptions is even more

remarkable. It is also a little better than SCMP Protocol

due to less L2 misses and memory references. The best

directory size for it is between 512 ~ 1024. Actually

512 entries is enough for most applications.

As to canneal, the influence of directory size is not

as significant as the other two. It achieved about 33%

improvement ranged from 64 to 2048 entries, only 3%

improvement over SCMP. The reason is that the large

working set of canneal makes performance constrained

by cache capacity to a great extent. As we will see later,

the large cache misses limit the system performance.

For applications like this, at least 1024 or 2048

directory entries are needed, or ¼ of L2 cache entries.

blackscholes sw aptions canneal

0

2

4

6

8

10

12

14

L1D Miss Rates

64

128

256

512

1024

2048

SCMP

Figure 5: L1 data cache miss rate (%).

The L1 data cache miss rate is calculated as dividing

number of L1D misses by data requests. L1 miss is

greatly affected by directory size. It again influences

L2 requests and on-chip traffics. Therefore, it's an

important factor that determines CMP performance.

As seen in figure 5, all programs have a descending

L1 miss rate especially for swaptions. However the

descending is not that obvious when directory size is

beyond 512 entries. We should also notice that even

512 directory entries have already approximated L1

miss rate of SCMP protocol, while the latter has the

same directory entries as L2 (8192 in this case).

The variation of directory entry replacement is the

most direct outcome of descending directory size. It

decreases from tens of millions to tens of thousands

while brings outstanding performance change.

Basically, designers are supposed to keep these kinds

of replacements below 1 million. Figure 6 shows the

detail.

blackscholes sw aptions canneal

0

5000

10000

15000

20000

25000

30000

35000

40000

Directory Replacements

64

128

256

512

1024

2048

Figure 6: Directory replacements (10

3
).

Since we have exclusive L1/L2 cache design, any

write backs from L1 will miss in L2. L2 cache acts as a

victim cache. No modifications will be made to data in

L2 cache. Therefore, we record only read misses for L2,

and calculate miss rates by dividing read misses by

read requests.

PAPER SESSION 3: COHERENCE AND CONSISTENCY

c© 2008, Copyright held by the individual authors 77

blackscholes sw aptions canneal

0

10

20

30

40

50

60

L2 Miss Rates

64

128

256

512

1024

2048

SCMP

Figure 7: L2 miss rate (%).

blackscholes sw aptions canneal

0

500

1000

1500

2000

2500

3000

3500

4000

4500

L2 Misses

64

128

256

512

1024

2048

SCMP

Figure 8: L2 misses (10

3
).

L2 misses is mainly determined by L2 cache size and

application working set. From figure 8, we can see

huge misses (>100x) of canneal compared to

blackscholes and swaptions. The working set of

canneal can not fit in L2 cache for both structures, thus

there is no obvious difference in number of misses. But

for blackscholes and swaptions, cache size is a

dominant factor. With exclusive caches, our protocol

possesses larger effective cache capacity. It reduces a

large amount of misses and achieved smaller miss rate.

Figure 7 shows that L2 miss rate of SCMP for

canneal is as high as 55%. That is because the total L2

requests is only 10% compared to others.

Blackscholes(10^3) Sw aptions(10^3) canneal(10^5)

0

5

10

15

20

25

L2 Replacement

64

128

256

512

1024

2048

SCMP

Figure 9: L2 replacements (10

3
).

L2 Replacement occurs when the L2 cache is full

and another allocation is required. According to LRU

policy, a block will be chosen and replaced by a new

one. If this block is clean, we can just ignore it and

process allocation without pause. Otherwise the data

block is to be written back to main memory.

For small applications, replacements of L2 are

determined by directory and cache size, the larger the

better. But for canneal, the cache capacity is too small

to reflect this trend. Only a tiny fraction of working set

can fit into cache. Therefore, replacements happen

more frequently in this case.

Blackscholes(10^3) Sw aptions(10^3) Canneal(10^5)

0

10

20

30

40

50

60

70

80

90

Memory Requests

64

128

256

512

1024

2048

SCMP

Figure 10: Memory requests.

Memory Requests, to some extent, represents the

requirement of memory bandwidth of applications. As

we see from figure 10, canneal has over one hundred

times memory requests than other two. It corresponds

to the description of PARSEC report. With optimized

directory structure, our protocol has minimum L2

cache misses and thus much less memory requests than

SCMP protocol(not applies to canneal). It immensely

relieves pressure on memory bandwidth and network

traffic, while also brings smaller latency (figure 11).

blackscholes sw aptions canneal

0

20

40

60

80

100

120

Average Miss Latency

64

128

256

512

1024

2048

SCMP

Figure 11: Average miss latency.

5.2.2. Scalability Research. In this section, we are

going to study the scalability of our new directory

structure and corresponding protocol. A scalable

directory-based protocol should work efficiently on

PAPER SESSION 3: COHERENCE AND CONSISTENCY

78 c© 2008, Copyright held by the individual authors

large CMP with up to 64 cores while keep the overhead

low. A PARSEC program blackscholes with medium

working set is chosen for simulation.

In order to compare with another protocol, we vary

the directory size from 512 to 2048 and see whether it

can achieve similar performance as the existing SCMP

protocol.

4p 16p 64p

0

50

100

150

200

250

300

350

Execution Time

256 512 1024 2048 SCMP

Figure 12: Execution time (million cycles).

The execution time we measured decreases as

directory entries double in all cases but 16 core

configuration. We can see with 512 entries, our

protocol has a performance degression of 9%, 79%,

86% for 4, 16 and 64 cores respectively compared to

SCMP. Apparently, 512 entries is far from enough for

CMP with tens of CPU cores. Thus we increase

directory size up to 2048. The degression is reduced to

2%, 77% and 6%. It’s strange that the increasing

directory barely has impact on execution time for 16

core configuration. But for 4 and 64 cores, our protocol

is approximating SCMP protocol.

We can also check the speedup of program with

multiple threads running. The improvement is quite

large from 4 to 16 cores. When it comes to 64 cores,

the improvement is limited due to longer miss latency

and network latency. In addition, lock waiting and load

imbalance can also be the reason that constraints

speedup.

4p 16p 64p

0

2

4

6

8

10

12

L1 Data Miss Rate

256 512 1024 2048 SCMP

Figure 13: L1 Data cache miss rate (%).

The number of L2 misses increases as we increasing

cores within the system, nevertheless the miss rate

decrease to 40%-80% because of the larger total L2

cache on chip. In our protocol, the misses consist of

cold misses and capacity misses. There is no conflict

misses because the data in L2 cache will be read only.

4p 16p 64p

0

20

40

60

80

100

120

L2 Misses

256 512 1024 2048 SCMP

Figure 14: L2 misses (10

3
).

We can also see that SCMP has a larger miss rate.

The reason is caused by the reduced effective L2 cache

size as we discussed before. The interesting thing

occurs on 16 core platform, L2 miss rate decreases

when directory size increases. It seems the number of

directory entries has impact on L2 cache rather than L1

cache. That's why we get almost same execution time

statistics.

PAPER SESSION 3: COHERENCE AND CONSISTENCY

c© 2008, Copyright held by the individual authors 79

4p 16p 64p

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

L2 Miss Rate

256 512 1024 2048 SCMP

Figure 15: L2 miss rate (%).

4p 16p 64p

0

5

10

15

20

25

30

L2 Replacement

256 512 1024 2048 SCMP

Figure 16: L2 Replacements.

The number of L2 replacement does not vary a lot

for 4 cores. In the latter two cases, our protocol has

fewer replacements with only 2048 entries. The

influence of directory and L2 size becomes dominant

for large scale CMP configurations.

4p 16p 64p

0

5000

10000

15000

20000

25000

30000

35000

Dir Replacement

256 512 1024 2048

Figure 17: Directory replacements.

However, On 16 core platfrom with 512 to 2048

entries of directory, the number of dir replacements

does not change. The reason is that most of the data are

mapped to the same location, thus a great many of

conflicts happens there. Larger directory size does not

improve the situation. We could increase set

associativity of directory to avoid the conflicts. The

trend seems normal in other two cases.

4p 16p 64p

0

20

40

60

80

100

120

140

160

180

Memory Request

256 512 1024 2048 SCMP

Figure 18: Memory requests.

Compare figure18 with figure14 (L2 misses), the

graphs look alike. The memory read requests caused by

L2 miss is the dominant faction of total memory

requests.

4p 16p 64p

0

50

100

150

200

250

Average Miss Latency

256 512 1024 2048 SCMP

Figure 19: Average miss latency.

The miss latency increases 50% from 4-core to 16-

core and 150%-230% from 16-core to 64-core. On a

L1 miss, there are up to 3 nodes involved to fulfill the

miss: local node, home node and remote node. The 3-

way communication aggravates the latency of on-chip

communication.

With Garnet network model, we can measure the

average network latency in detail. It goes from 14, 22

to 36 in there configurations. For both structure, the

latency looks almost the same, which depends on

network topology and on-chip link latency. The result

we get is acceptable. It will be interesting to investigate

other topologies than 2D Mesh.

PAPER SESSION 3: COHERENCE AND CONSISTENCY

80 c© 2008, Copyright held by the individual authors

4p 16p 64p

0

5

10

15

20

25

30

35

40

45

Average Network Latency

256 512 1024 2048 SCMP

Figure 20: Average network latency.

6. Conclusion and Future Work

In conclusion, our protocol works very well for

applications with different characteristics. For large

programs like canneal, the improvement might not be

so obvious because the bottleneck is cache capacity

and memory bandwidth. We believe the improvement

will be greater with larger cache size.

Compared to Inclusive L1/L2 cache design with

unified directory and cache structure (SCMP), our

protocol achieved similar L1 miss rates with only 512

directory entries. Besides, much better L2 miss rates

and memory performance make our protocol attractive

for future memory hungry applications. Furthermore,

greatly reduced memory overhead of directory also

reduces hardware cost and leaves more room for other

components.

The new directory structure has good scalability on

many node processors. The speedup is 1.8x from 4 to

16 cores and 2x from 16 to 64 cores. Although the

directory size does not give much influence on

execution time for 16 core platform, it's still valuable to

study its impact on other aspects.

As you can see, we did not manage to test many

programs for scalability research due to time limitation.

The simulation result could have been more

representative if other benchmark programs involved.

The directory size is reduced in height; it can be

further reduced in width by utilizing compressed

sharing code. However it implies modifications to

GEMS itself since it's not supported natively.

We may also change parameters like network

topology defined in ruby to see how the system

performance is influenced under every circumstances.

7. References

[1] Acacio, M.E.; Gonzalez, J.; Garcia, J.M.; Duato, J.; An

architecture for high-performance scalable shared-

memory multiprocessors exploiting on-chip integration.

Parallel and Distributed Systems, IEEE Transactions on

Volume 15, Issue 8, Aug. 2004 Page(s):755 – 768

[2] Acacio, M.E.; Gonzalez, J.; Garcia, J.M.; Duato, J.; A

two-level directory architecture for highly scalable cc-

NUMA multiprocessors. Parallel and Distributed

Systems, IEEE Transactions on Volume 16, Issue 1, Jan

2005 Page(s):67 – 79

[3] CACTI 5.3 http://quid.hpl.hp.com:9081/cacti/

[4] Chaiken, D.; Fields, C.; Kurihara, K.; Agarwal, A.;

Directory-based cache coherence in large-scale

multiprocessors. Computer Volume 23, Issue 6, June

1990 Page(s):49 – 58

[5] Enric Herrero Abellanas, Marco Antonio Tirado Godoy,

Scalability of a Directory Cache Based Memory

Management Protocol in Mesh CMPs. master thesis,

Royal Institute of Technology, 2006, Stockholm,

Sweden.

[6] The International Technology Roadmap

Semiconductors, 2007 Edition,

http://www.itrs.net/Links/2007ITRS/ExecSum2007.pdf

[7] Kongetira, P.; Aingaran, K.; Olukotun, K.; Niagara: a

32-way multithreaded Sparc processor. Micro, IEEE

Volume 25, Issue 2, March-April 2005 Page(s):21 – 29

[8] Alberto Ros, Manuel E. Acacio and José M. García. A

Novel Lightweight Directory Architecture for Scalable

Shared-Memory Multiprocessors. Euro-Par 2005

Parallel Processing pp. 582-591, 2005

[9] Alberto Ros, Manuel E. Acacio and José M. García. An

efficient cache design for scalable glueless shared-

memory multiprocessors. Conference On Computing

Frontiers, Proceedings of the 3rd conference on

Computing frontiers 2006 Pages: 321 – 330

[10] Zhang, M.; Asanovic, K.; Victim replication:

maximizing capacity while hiding wire delay in tiled

chip multiprocessors. Computer Architecture, 2005.

ISCA '05. Proceedings. 32nd International Symposium

on 4-8 June 2005 Page(s):336 – 345.

PAPER SESSION 3: COHERENCE AND CONSISTENCY

c© 2008, Copyright held by the individual authors 81

State-Space Exploration for Concurrent Algorithms under Weak Memory
Orderings (Preliminary Version)

Bengt Jonsson
UPMARC

Department of Information Technology, Uppsala University, Sweden
bengt@it.uu.se

Abstract

Several concurrent implementations of familiar data ab-
stractions such as queues, sets, or maps typically do not
follow locking disciplines, and often use lock-free synchro-
nization to gain performance. Since such algorithms are ex-
posed to a weak memory model, they are notoriously hard to
get correct, as witnessed by many bugs found in published
algorithms We outline a technique for analyzing correctness
of concurrent algorithms under weak memory models, in
which a model checker is used to search for correctness
violations. The algorithm to be analyzed is transformed
into a form where statements may be reordered according
to a particular weak memory ordering. The transformed
algorithm can then be analyzed by a model-checking tool,
e.g., by enumerative state exploration. We illustrate the ap-
proach on a small example of a queue, which allows an en-
queue operation to be concurrent with a dequeue operation,
which we analyze with respect to the RMO memory model
defined in SPARC v9.

1. Introduction

Shared-memory multiprocessors and multi-core chips
are now ubiquitous. Programming such systems remains
a huge challenge [19]. To make matters worse, most com-
monly used multiprocessor architectures use weak memory
ordering models (see, e.g., [1]). For example, a processor
may reorder loads and stores by the same thread if they tar-
get different addresses, or it may buffer stores in a local
queue. To avoid exposing the programmer to these compli-
cations, programming guidelines recommend to employ a
locking discipline to avoid race conditions which expose the
particular weak memory model of the target platform. Such
programs can be understood as using a sequentially con-
sistent memory semantics [12], and can be reasoned about
using standard interleaving semantics.

Concurrency libraries, e.g., the Intel Threading Building
Blocks or the java.util.concurrent package, sup-
port the programmer by providing concurrent implementa-
tions of familiar data abstractions such as queues, sets, or
maps. Implementations of such libraries typically do not
follow locking disciplines, and can use lock-free synchro-
nization for gaining performance (e.g., [13, 18]). Since
these algorithms are exposed to a weak memory model, they
are notoriously hard to get correct, as witnessed by many
bugs found in published algorithms (e.g., [7, 14]). Imple-
mentations that use lock-free synchronization require ex-
plicit memory ordering fences to function correctly on weak
memory models. Fences counteract the ordering relaxations
by selectively enforcing memory order between preceding
and succeeding instructions. A lack of fences leads to incor-
rect behavior, whereas an overzealous use of fences impacts
performance. Unfortunately, fence placements are rarely
published along with the algorithm.

This paper addresses the problem of verifying correct-
ness of, or finding bugs in, concurrent algorithms which do
not rely on explicit locking, as found in, e.g., lock-free im-
plementations of common data structures. The absence of
locks means that standard race-detection tools (e.g., [9, 16])
are of little use. Existing verification and testing techniques
and tools must therefore be adapted to handle also weak
memory models.

A large share of all verification, program analysis, and
testing algorithms, can very roughly be thought of as per-
forming an exploration of possible sequences of compu-
tation steps, starting from some initial state. There is of
course a huge variation in how they cover the space of com-
putations, and whether they store intermediate system con-
figurations in order to avoid repeating already performed
work. Some such exploration tools include the model
checker SPIN [11], the backtracking testing/simulation tool
VeriSoft [10], and most testing techniques (e.g., [17]). The
goal of our work is to provide techniques to adapt them to
handle weak memory orderings. In this paper, we consider
the model checker SPIN. More precisely, we present a tech-

PAPER SESSION 3: COHERENCE AND CONSISTENCY

82 c© 2008, Copyright held by the individual authors

nique to adapt models analyzed by SPIN, which are natu-
rally expressed for sequentially consistent memory models
in the Promela modeling language, so that they also repre-
sent all possible computations under a weak ordering.

Some Related Work The research performed on the
problem of analyzing concurrent algorithms correct under
weak memory models is still limited. The work on Check-
Fence by Burckhardt and Alur [4] use a bounded model
checkin approach rather than state-space exploration: they
encode possible computations by a constraint system, and
use a SAT solver to search for correctness violations. The
work closest to ours is that by Park and Dill [15], who have
developed an operational encoding of a shared memory with
weak ordering constraints, in particular the RMO model
used in SPARC v9, and used it to analyze simple synchro-
nization examples from the SPARC architecture manual, us-
ing the model checker Murϕ [6]. Their work only reports
application to very small examples, our aim is to make a
more efficient operational representation of the weak mem-
ory model, and to be able to analyze more complicated
algorithms, such as, e.g., those considered by Burckhardt
and Alur [4]. Some specific weak memory ordering has
also been considered in program analysis work [8]. Bur-
ckhardt and Musuvathi [5] develops a run-time monitoring
tool which checks whether concurrent executions are se-
quentially consistent, by maintaining vector clocks.

2. Representing Weak Memory Models

In this section, we describe the principles for represent-
ing the memory model in this work. Abstractly, a memory
model specifies how the program operations “see” the ef-
fects of other program operations through the memory sys-
tem. The interesting part here is how load operations see
store operations. More specifically, an execution consists
of a set of load and store operations (plus memory barriers,
to be explained later), which affect the “state” of the main
memory. Each load sees the value of some store operation
(or the initial value) to the same location. The hard part is
to describe in a concise way which store operations can be
seen.

We follow Burckhardt [3] (who in his turn follows pre-
vious work), and use

• a partial order ≺, called the program order, which
is a total order on all operations of the same thread,
and which does not order two operations of different
threads,

• a total order<M , called the memory order, which intu-
itively models the order in which operations reach the
“main memory”.

The fact that <M is a total order implies that we are aiming
at modeling memory models with a global store order, i.e.,
such that the stores of a thread are seen in the same order
by all other threads. Load operations of the thread that per-
forms the store may see it earlier than other threads through
the mechanism of store-load forwarding.

The orderings≺ and<M are related by four axioms. For
a load operation l, let seed(l) be the store operations which
stores the value that l loads. Let S(l) be the set of store
operations s which access the same address as l, such that
either s <M l or s ≺ l. The axioms are

(A1) whenever x and y are operations to the same address,
y is a store, and x ≺ y, then x <M y,

(A2) seed(l) ∈ S(l) for all loads l,

(A3) seed(l) is the maximal element wrp. to <M in S(l),

(A4) whenever x ≺ f ≺ y for a fence operation f , and
x and y match the type of the fence f (e.g., if f is
a load-load fence, then x and y should both be load
operations), then x <M y.

We shall in particular consider the RMO memory model,
defined by SPARC v9, which is also used by Park and
Dill [15], which is nice because it preserves single-thread
semantics. This is done by defining a dependency order,
which constrains the order between data dependent oper-
ations of the same thread. For operations x and y of the
same thread where x is a load, we say that x <d y if y loads
a data register that is written by x, or if some control branch
instruction between x and y is data dependent on x. Add
the axiom

(A5) whenever x ≺ y and x <d y, then x <M y.

Roughly speaking, the RMO ordering differs in two re-
spects from the natural sequential consistency model. First,
operations of one thread may be reordered, but respecting
fences and data dependencies. Second, while the global
memory order is a merge of the (possibly reordered) local
orderings as in sequential consistency, a a load sees the lat-
est store to the same location in the same thread, if it is later
wrp. to<M than the latest preceding store in memory order.

Finally, let us consider locks. In the examples we have
locks which are updated by lock and unlock operations.
In this work, we assume that lock operations are atomic, and
that

• For the lock operation, a fence is inserted to make
sure that the lock operation precedes all the following
instructions of the thread in memory order.

• For the unlock operation, a fence is inserted to make
sure that the unlock operation succeeds the preced-
ing instructions of the thread in memory order.

PAPER SESSION 3: COHERENCE AND CONSISTENCY

c© 2008, Copyright held by the individual authors 83

3. Illustration of Technique

Our ambition is to consider examples, such as those
taken from the thesis of Sebastian Burckhardt [3]. In this
section, we use one of them, a two-lock queue, to illustrate
how the technique presented in this paper, should work. The
code for the queue, in C syntax, is the following, taken lit-
erally from [3].

1 #include "lsl_protos.h"
2
3 /* ---- data types ---- */
4
5 typedef int value_t;
6
7 typedef struct node {
8 struct node *next;
9 value_t value;

10 } node_t;
11
12 typedef struct queue {
13 node_t *head;
14 node_t *tail;
15 lsl_lock_t headlock;
16 lsl_lock_t taillock;
17 } queue_t;
18
19 /* ---- operations ---- */
20
21 void init_queue(queue_t *queue)
22 {
23 node_t *dummy =

lsl_malloc(sizeof(node_t));
24 dummy->next = 0;
25 dummy->value = 0;
26 queue->head = dummy;
27 queue->tail = dummy;
28 lsl_initlock(&queue->headlock);
29 lsl_initlock(&queue->taillock);
30 }
31
32 void enqueue(queue_t *queue, value_t val)
33 {
34 node_t *node = lsl_malloc(sizeof(node_t));
35 node->value = val;
36 node->next = 0;
37 lsl_lock(&queue->taillock);
38 lsl_fence("store-store");
39 queue->tail->next = node;
40 queue->tail = node;
41 lsl_unlock(&queue->taillock);
42 }
43
44 boolean_t dequeue

(queue_t *queue, value_t *retvalue)
45 {
46 node_t *node;
47 node_t *new_head;

48 lsl_lock(&queue->headlock);
49 node = queue->head;
50 new_head = node->next;
51 if (new_head == 0) {
52 lsl_unlock(&queue->headlock);
53 return false;
54 }
55 lsl_fence("data-dependent-loads");
56 *retvalue = new_head->value;
57 queue->head = new_head;
58 lsl_unlock(&queue->headlock);
59 lsl_free(node);
60 return true;
61 }

The prefix lsl on some operations (for memory man-
agement and lock operations) means that they refere to par-
ticular definitions of these operations used in [3].

Generating an Analyzable Program In order to see
which sequences of loads and stores are in principle gener-
ated by these operations, we transform the description into
“high-level machine instructions”, which are on the same
level of abstraction as the above C pseudocode, but obeys
the restriction that each statement induces at most one store
or load operation. A store operation is typically of the form
*p = v for some address p and value v. We allow both p
and v to be locally computable expressions. Analogously,
a load operation has the form r = *p for some local vari-
able r (sometimes called register), and address p. The first
transformation typically preserves most of the description,
but breaks up statements that involve more than one store or
load. In order to introduce offset calculations more explic-
itly, for a field f in a structure struct, we introduce [f]
to denote the offset induced by f. Thus, if structp points
to struct, then structp + [f] points to the field f in
struct.

Let us first consider the init queue operation. We
transform the code into

void init_queue(queue)
{

1 node_t *dummy =
lsl-malloc(sizeof(node_t));

2 *(dummy + [next]) = 0;
3 *(dummy + [value]) = 0;
4 *(queue + [head]) = dummy;
5 *(queue + [tail]) = dummy;
6 lsl-initlock(queue + [headlock]);
7 lsl-initlock(queue + [taillock]);

return
}

This is essentially the same as before. In order to infer
which are possible orderings between statements, we should

PAPER SESSION 3: COHERENCE AND CONSISTENCY

84 c© 2008, Copyright held by the individual authors

find the data-dependencies between statements. The only
ones in this function are that line 1 must precede lines 2, 3,
4, and 5, through the dependence on dummy.

Next we consider the enqueue operation. At first, we
ignore the fence instruction at line 38. We transform the
code as follows (e.g., breaking the statement at line 39 into
two: one load and one store).

void enqueue(queue, val)
{

1 node = lsl-malloc();
2 *(node + [value]) = val;
3 *(node + [next]) = 0;
4 lsl-lock(queue + [taillock]);
5 queuetail = *(queue + [tail]);
6 *(queuetail + [next]) = node;
7 *(queue + [tail]) = node;
8 lsl-unlock(queue + [taillock]);
9 return

}

Our next job is to see which orderings in the program
order are preserved in the RMO model. We see that data
dependencies arise as follows:

1 <d 2 1 <d 3 1 <d 6 1 <d 7 5 <d 6

It remains to understand the ordering constraints imposed
by the lock operation. These ensure that instruction 4 pre-
cede all following instructions, and that 8 succeed all pre-
ceding instructions. In total, we arrive at the following de-
pendencies:

1 <d 2 <d 8 1 <d 3 <d 8 1 <d 6 <d 8
1 <d 7 <d 8 4 <d 5 <d 6 <d 8 4 <d 7 <d 8

We can summarize these dependencies in the following di-
agram.

1
2
3

4
5 6

7

8

³³³
PPP

©©PPP

@
@@PPP
©©

¡
¡¡

Figure 1. Dependencies in the procedure en-
queue

We finally consider the function dequeue. A con-
densed pseudo-code is as follows

void dequeue(queue, retvalue)
{

1 lsl-lock(queue + [headlock]);
2 node = *(queue + [head]);

3 new_head = *(node + [next]);
4 if (new_head == 0) {
5 lsl-unlock(queue + [headlock]);
6 return(0);

}
7 tmp = *(new_head + [value]);
8 *retvalue = tmp:
9 *(queue + [head]) = new_head;
10 lsl-unlock(queue + [headlock]);
11 lsl-free(node);
12 return(1);

}

Here, there are more data dependencies.

1 <d 2 <d 3 <d 4 <d 5
4 <d 7 <d 8 <d 10 4 <d 9 <d 10 3 <d 11

Lines 6 and 12 should be the last ones

Generating a Promela Model In order to use the SPIN
model checker to analyze the queue implementation, we
must produce a Promela Model, which executes the state-
ments of the transformed program in any possible order
consistent with the ordering. To to this, we must consider
the following issues.

• Promela does not support dynamid heap data struc-
tures. Instead, we model, e.g., the queue structure
as just a structure, and the nodes of type node t by
an array.

• Promela has only a few standard control constructs,
therefore we should find an idiom for allowing all
executions that are linearizations of a partial order.
We can do this by a loop, which in each iteration
checks whether the appropriate preceding statements
have been executed in order to see whether some in-
struction is enabled. This scheme needs an array of
flags to record which statements have already been ex-
ecuted.

A possible Promela model of the above queue for a particu-
lar test case is shown in Appendix A.

4. Experiments

We have so far only considered the example queue
described in Section 3, to obtain some illustrative ex-
ample. We ran exhaustive analyses using several dif-
ferent test harnesses that first perform an initialization
using init queue, and thereafter starts a number of
threads, each of which performs a sequence of enqueue
or dequeue operations. After this, we check that the se-
quence of values returned by the dequeue operation is

PAPER SESSION 3: COHERENCE AND CONSISTENCY

c© 2008, Copyright held by the individual authors 85

consistent with a normal sequentially consistent execution
of these operations.

We denote test harnesses in a condensed notation (fol-
lowing [3]), using a sequence of e (for enqueue) and d
(for dequeue) in each thread, and separating threads by |.
For example, the test (ee | dd) has two threads, one with
two enqueue operations, and one with two dequeue op-
erations.

We first performed a simple test (e | d), which found a
shortest counterexample in a few seconds, generating about
900 states. The problem is the obvious one, that the ini-
tialization of the new node in enqueue at line 2 can be
delayed past the dequeueing of the same node, so that the
dequeue operation read an uninitialized value field. This
problem can be remedied by a store-store-fence between
lines 3 and line 6 of enqueue, e.g., after the lock op-
eration, as in the C pseudocode (line 38). This implies that
line 6 can be completed only after lines 2 and 3. We modi-
fied the promela model accordingly, and reran the test, and
the number of reachable states decreased to 250 with no vi-
olation of sequentially consistent semantics. The Promela
model for this experiment is given in the appendix.

We thereafter subjected the model to the two largest tests
of [3], namely (eeeee | ddddd), and (e | e | e | e | d | d).
The first test completed by SPIN in less than one second,
generating about 100, 000 states. The second test com-
pleted after 260 seconds, using state compression and be-
tween 1GB and 2GB of memory, generating a state space of
28, 000, 000 states. Out of curiosity, we tried different val-
ues for the number of operations in the first test, and were
able to make SPIN analyze two threads, each with 10 opera-
tions, in 143 seconds, generating around 37, 000, 000 states.
It seems that SPIN has problems handling a large number of
threads, due to the many possible interleavings It seems that
work on optimization is needed to make the approach scale
to a larger number of threads.

5 Conclusions

We presented a technique for analyzing correctness of
concurrent algorithms, under weak memory models. The
algorithm to be analyzed is transformed into a partial order-
ing form, which satisfies exactly the ordering constraints
imposed by the memory model under consideration. The
transformed algorithm can then be analyzed by a model
checking tool, such as SPIN.

We implemented the approach in the context of the
SPIN model checker [11], by developing a transformation
to Promela models, which follows a certain idiom to model
execution under partial order constraints. We illustrated the
approach by applying it to an example used in the thesis by
Burckhardt [3]. the scalability of the approach by applying
it to published synchronization algorithms and concurrent

data structures.
We should not make to firm conclusions about this ap-

proach from the limited amount of experiments conducted.
For a better evaluation, the transformation should be auto-
mated; now it is by hand. For the particular example con-
sidered, the limitations, in terms scalability, appear compa-
rable to the approach by Burckhardt. In our approach, we
were able to perform slightly longer test cases, but on the
other hand Burckhardt’s approach is automated.

The work closest to ours, by Park and Dill [15], use a
similar approach of letting a model checker examine all pos-
sible executions that are consistent with the memory model.
Their work only reports application to very small examples.
We have been able to show that the approach can also han-
dle interesting concurrent algorithms.

An impression from the illustrating example is that in-
crease in the number of interleavings as the number of
threads grow will impose limits on the scalability in us-
ing a model checker in the way proposed in this paper. We
can probably make scalability better by introducing a more
generic model of the heap; now there will be many duplica-
tions of isomorphic heaps in the state space from our rep-
resentation as an array. It may also be fruitful to consider
approaches which are not so sensitive to this explosion, con-
sidering either static program analysis (e.g., as in [8] or pa-
rameterized infinite-state model checking (e.g., as in [2].

References

[1] S. Adve and K. Gharachorloo. Shared memory consistency
models: A tutorial. IEEE Computer, 29(12):66–76, 1996.

[2] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regu-
lar model checking. In Emerson and Sistla, editors, Proc.
12th Int. Conf. on Computer Aided Verification, volume
1855 of Lecture Notes in Computer Science, pages 403–418.
Springer Verlag, 2000.

[3] S. Burckhardt. Memory Model Sensitive Analysis of Con-
current Data Types. PhD thesis, Univ. of Pennsylvania,
2007.

[4] S. Burckhardt, R. Alur, and M. Martin. Checkfence: check-
ing consistency of concurrent data types on relaxed memory
models. In PLDI 2007, pages 12–21, 2007.

[5] S. Burckhardt and M. Musuvathi. Effective program ver-
ification for relaxed memory models. In Computer-Aided
Verification (CAV), pages 107–120, 2008.

[6] D. Dill. The murphi verification system. In Proc. 8th Int.
Conf. on Computer Aided Verification, volume 1102 of Lec-
ture Notes in Computer Science, pages 390–393. Springer
Verlag, 1996.

[7] S. Doherty, D. Detlefs, L. Groves, C. Flood, V. Luchangco,
P. Martin, M. Moir, N. Shavit, and G. S. Jr. Dcas is not
a silver bullet for nonblocking algorithm design. In SPAA
2004: Proceedings of the Sixteenth Annual ACM Sympo-
sium on Parallel Algorithms, June 27-30, 2004, Barcelona,
Spain, pages 216–224, 2004.

PAPER SESSION 3: COHERENCE AND CONSISTENCY

86 c© 2008, Copyright held by the individual authors

[8] P. Ferrara. Static analysis via abstract interpretation of the
happens-before memory model. In Proc. TAP 2008, 2nd Int.
Conf. Tests and Proofs, Prato, Italy, volume 4966 of Lec-
ture Notes in Computer Science, pages 116–133. Springer
Verlag, April 2008.

[9] C. Flanagan and S. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. Science of Computer
Programming, 71(2):89–109, 2008.

[10] P. Godefroid, B. Hammer, and L. Jagadeesan. Model check-
ing without a model: An analysis of the heart-beat monitor
of a telephone switch using verisoft. In Proc. ACM SIG-
SOFT International Symposium on Software Testing and
Analysis, pages 124–133, 1998.

[11] G. Holzmann. The model checker SPIN. IEEE Trans. on
Software Engineering, SE-23(5):279–295, May 1997.

[12] L. Lamport. Time, clocks and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558–
565, 1978.

[13] M. Michael. Scalable lock-free dynamic memory allocation.
In PLDI 2004, pages 35–46, 2004.

[14] M. Michael and M. Scott. Correction of a memory manage-
ment method for lock-free data structures. Technical Report
TR599, University of Rochester, 1995.

[15] S. Park and D. Dill. An executable specification and veri-
fier for relaxed memory order. IEEE Trans. on Computers,
48(2):227–235, 1999.

[16] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Trans. on Computer Systems,
14(4):391–411, Nov. 1997.

[17] K. Sen. Race directed random testing of concurrent pro-
grams. In PLDI 2008, pages 11–21, 2008.

[18] H. Sundell and P. Tsigas. Fast and lock-free concurrent pri-
ority queues for multi-thread systems. J. Parallel Distrib.
Comput., 65(5):609–627, 2005.

[19] H. Sutter and J. Larus. Software and the concurrency revo-
lution. ACM Queue, 3(7):54–62, 2005.

Appendix

In this appendix, we show the Promela model, used to
analyze the example of Section 3 for the test case (e|d).

#define TRUE 1
#define FALSE 0
#define UNDEF 255

#define IF if ::
#define FI :: else fi

#define FOR(i,l,h) i = l ; do :: i < h ->
#define ROF(i,l,h) ; i++ :: i >= h -> break od

#define HEAPSIZE 8
#define INITQUEUESIZE 9
#define ENQUEUESIZE 9
#define DEQUEUESIZE 12
#define RETVALSIZE 2

#define malloc(X) X = cur ; cur++
#define free(X) \

atomic{ next[X] = UNDEF ; value[X] = UNDEF}

byte next[HEAPSIZE]; /* model of the heap */
byte value[HEAPSIZE];
byte cur = 0;

byte head = UNDEF; /* the queue structure */
byte tail = UNDEF;
bit headlock = 1;
bit taillock = 1;

/* stores output from dequeue */
byte retval[RETVALSIZE];

byte i = 0 ;

proctype initqueue() {
bit done[INITQUEUESIZE];
byte dummy ;
do
:: atomic{!done[1] ->

malloc(dummy) ; done[1] = TRUE}
:: atomic{!done[2] && done [1] ->

next[dummy] = UNDEF ; done[2] = TRUE}
:: atomic{!done[3] && done [1] ->

value[dummy] = UNDEF ; done[3] = TRUE}
:: atomic{!done[4] && done [1] ->

head = dummy ; done[4] = TRUE}
:: atomic{!done[5] && done [1] ->

tail = dummy ; done[5] = TRUE}
:: atomic{!done[6] && done [1] ->

headlock = 1 ; done[6] = TRUE}
:: atomic{!done[7] && done [1] ->

taillock = 1 ; done[7] = TRUE}
:: atomic{done[1] && done [2] && done [3] &&

done [4] && done [5] && done [6] &&
done [7] ->

break}
od

}

proctype enqueue(byte val) {

PAPER SESSION 3: COHERENCE AND CONSISTENCY

c© 2008, Copyright held by the individual authors 87

bit done[ENQUEUESIZE];
byte node, queuetail;
do
:: atomic{!done[1] ->

malloc(node) ; done[1] = TRUE}
:: atomic{!done[2] && done [1] ->

value[node] = val ; done[2] = TRUE}
:: atomic{!done[3] && done [1] ->

next[node] = UNDEF ; done[3] = TRUE}
:: atomic{!done[4] && taillock == 1 ->

taillock = 0 ; done[4] = TRUE}
:: atomic{!done[5] && done[4] ->

queuetail = tail ; done[5] = TRUE}
:: atomic{!done[6] && done[2] &&

done[3] && done[5] ->
next[queuetail] = node ; done[6] = TRUE}

:: atomic{!done[7] && done[2] &&
done[3] && done[4] ->

tail = node ; done[7] = TRUE}
:: atomic{!done[8] && done[2] && done[3] &&

done[6] && done[7] ->
taillock = 1 ; done[8] = TRUE ; break}

od
}

proctype dequeue(byte rv) {
bit done[DEQUEUESIZE];
byte node, new_head, tmp;

atomic{headlock == 1 -> headlock = 0};
node = head;
new_head = next[node];
if
:: atomic{ new_head == UNDEF ->

headlock = 1 ; retval[rv] = 0}
:: new_head != UNDEF ->

do
:: atomic{!done[7] ->

tmp = value[new_head] ; done[7] = TRUE}
:: atomic{!done[8] && done [7] ->

retval[rv] = tmp ; done[8] = TRUE}
:: atomic{!done[9] ->

head = new_head ; done[9] = TRUE}
:: atomic{!done[10] && done [8] && done [9] ->

headlock = 1 ; done[10] = TRUE}
:: atomic{!done[11] && done [10] ->

free(node) ; done[11] = TRUE ; break}
od

fi
}

init{
atomic{FOR(i,0,HEAPSIZE)

next[i] = UNDEF ; value[i] = UNDEF
ROF(i,0,HEAPSIZE)

} ;
run initqueue();
timeout -> atomic{run enqueue(4) ; run dequeue(0)} ;
timeout -> assert(retval[0] == 0 || retval[0] == 4)

}

PAPER SESSION 3: COHERENCE AND CONSISTENCY

88 c© 2008, Copyright held by the individual authors

Model Checking Race-Freeness

Parosh Aziz Abdulla
Uppsala University, Sweden
<parosh@it.uu.se>

Frédéric Haziza
Uppsala University, Sweden

<daz@it.uu.se>

Mats Kindahl
Sun Microsystems,

Database Technology Group
<mats@sun.com>

Abstract

With the introduction of highly concurrent systems
in standard desktop computers, ensuring correctness of
industrial-size concurrent programs is becoming increas-
ingly important. One of the most important standards in
use for developing multi-threaded programs is the POSIX
Threads standard, commonly known as PThreads. Of par-
ticular importance, the analysis of industrial code should,
as far as possible, be automatic and not require annotations
or other forms of specifications of the code.

Model checking has been one of the most successful
approaches to program verification during the last two
decades. The size and complexity of applications which can
be handled have increased rapidly through integration with
symbolic techniques. These methods are designed to work
on finite (but large) state spaces. This framework fails to
deal with several essential aspects of behaviours for multi-
threaded programs: there is no bound a priori on the num-
ber of threads which may arise in a given run of the sys-
tem; each thread manipulates local variables which often
range over unbounded domains; and the system has a dy-
namic structure in the sense that threads can be created and
killed throughout execution of the system. In this paper we
concentrate on checking a particular class of properties for
concurrent programs, namely safety properties. In particu-
lar, we focus on race-freeness, that is, the absence of race
conditions (also known as data races) in shared-variable
pthreaded programs.

We will follow a particular methodology which we have
earlier developed for model checking general classes of
infinite-state systems [1, 3, 6, 8, 9] and apply a symbolic
backward reachability analysis to verify the safety property.
Since we construct a model as an over-approximation of the
original program, proving the safety property in the model
implies that the property also holds in the original system.
Surprisingly, it leads to a quite efficient analysis which can
be carried out fully automatically.

1. Introduction

The behaviours of concurrent (or multi-threaded) pro-
grams are highly nontrivial and hard to predict. It is im-
portant to develop rigorous methods to verify their correct-
ness. It is now also widely accepted that verification meth-
ods should be automatic. This would allow engineers to
perform verification, without needing to be familiar with
the complex constructions and algorithms behind the tools.

In this paper, we will concentrate on a particular ap-
proach to verification of concurrent programs, namely that
of model checking [4, 16]. The aim of model checking is
to provide an algorithmic solution to the verification prob-
lem. Concurrent programs involve several complex features
which often give rise to infinite state spaces. First, there is
no bound a priori on the number of threads which may arise
in a given run of the system. In addition, each thread ma-
nipulates local variables which often range over unbounded
domains. Furthermore, a system has a dynamic configura-
tion in the sense that threads can be created and terminated
throughout execution of the system.

We concentrate on checking a particular class of proper-
ties for concurrent programs, namely safety properties. In-
tuitively, a safety property states that “nothing bad will ever
occur during the execution of the system”. In particular, we
focus on race-freeness, i.e. the absence of race conditions
(also called data races) in shared-variable concurrent pro-
grams.

A race condition is a situation in which one process
changes a variable which another process has previously
read and the other process does not get notified of the
change. A process can, for example, write a variable that
a second process reads, but the first process continues ex-
ecution – namely races ahead – and changes the variable
again before the second process sees the result of the first
change. Another example: when a process checks a vari-
able and takes action based on the content of the variable,
it is possible for another process to “sneak in” and change
the variable in between the check and the action in such a
way that the action is no longer appropriate. Alternatively,

PAPER SESSION 3: COHERENCE AND CONSISTENCY

c© 2008, Copyright held by the individual authors 89

one can define a race condition as the possibility of incor-
rect results in the presence on unlucky timing in concurrent
programs, that is, getting the right answer relies on lucky
timing.

Race conditions are of particular interest because they
can lead to rather devious bugs. These bugs are extremely
hard to track since they are non-deterministic and difficult
to reproduce. The kind of errors caused by race condition
are very subtle and often manifest themselves in the form of
corrupted or incorrect variable data. Unfortunately, it often
means that the error will not harm the system immediately,
but it will manifest itself when some other code is executed,
which relies on the data to be correct. This makes the pro-
cess of locating the original race condition even more dif-
ficult. To avoid data corruption or incorrectness, the pro-
grammer uses synchronization techniques to constraint all
possible process interleavings to only the desirable ones.
Race condition usually unveil incorrectly synchronized pro-
gram.

Related Work. Existing race checkers fall into three
main categories: on-the-fly, ahead-of-time and post-mortem
tools. They exhibit different strengths and can perform
race detection, while our method focuses at the moment
on race-freeness. The ahead-of-time approach encompasses
static analysis and compile-time heuristics, while on-the-fly
approaches are by nature dynamic. The post-mortem ap-
proach is a combination of static and dynamic techniques.

Type-based solutions provide a strong assurance to the
programmer, in addition to the familiarity of a compiler-
based solution [10]. If a program type-checks, it is guaran-
teed to be race-free. It is however necessary to examine the
source code as a whole in order to draw conclusion about
to find relations between the locks and the shared data that
they protect. This is often alleviated by requiring annota-
tions from the programmer, as to whether a function has an
effect clause or not, such as “the caller must hold lock L”.
Moreover, this only forces a programming discipline and it
can also disallow some race-free programs.

Dynamic tools visit only feasible paths and have an ac-
curate view of the values of the shared data, while static
tools must be conservative. They are based on two main ap-
proaches: the lockset and the happens-before approaches.
The lockset algorithm works on the assumption that shared
variables should be protected by an appropriate lock and
any failure to comply to that discipline is reported. Lockset
tools tend to report many false positives. This technique has
been first implemented in Eraser [17]. The happens-before
technique [13] watches for any accesses of shared variables
that do not have an implied ordering between them. This
technique is highly dependant on the actual thread execu-
tion ordering, and instrumentation might bias the analysis.
Moreover, it only reports a subset of all race conditions

(however real ones). These two main approaches are of-
ten combined to get the best of both worlds, e.g. MultiRace
and RaceTrack [19, 14].

Model checkers, such as Verisoft, Bandera and KISS [12,
7, 15, 5], check concurrent programs with a finite and fixed
number of threads. They often require a user supplied ab-
straction.

A precise way to detect race conditions would be to
search the state space (of a model of the program) for a
state where multiple threads try to access and change the
same variable. The technique is sound (i.e. being able to
prove the race-freeness of a concurrent program), but more
importantly it seems to be much more precise than the other
techniques. It indeed detects the race conditions themselves
instead of detecting violations of the locking discipline that
can be used to prevent race conditions.

Verification Method. We first construct a model for con-
current programs, where each configuration (snapshot) of
the system is represented by a petri net. The transitions in
the petri net represent the instructions of the program. The
configuration of the system changes dynamically during its
execution, by firing transitions in the petri net. The system
starts running from an initial configuration and we charac-
terize a set of bad configurations which violate the given
safety property (i.e. configurations which should not occur
during the execution of the system). Checking the safety
property amounts then to performing reachability analysis:
Is it possible to reach a bad configuration from an initial
configuration through a sequence of actions performed by
different threads?

We will follow a particular methodology which we have
earlier developed for model checking general classes of
infinite-state systems [1]. The method is designed to be
applied for verification of safety properties for infinite-state
systems which are monotonic w.r.t. a well quasi-ordering on
the set of configurations. The main idea is to perform sym-
bolic backward reachability analysis to check safety prop-
erties for such systems.

Outline. We present in Section 2 and Section 3 the type
of programs we consider and how we extract a model from
them. In Section 4, we state the class of safety properties we
want to check, and in Section 5 a solution. We finish with
a small description of our experimental results in Section 6
and a conclusion.

PAPER SESSION 3: COHERENCE AND CONSISTENCY

90 c© 2008, Copyright held by the individual authors

2. Language

We analyze concurrent programs written in a stripped
version of the C language and using POSIX threads. We
call it here the SML language (Simple Multithreaded Lan-
guage). We use a relatively small set of operations which
follows closely those of an instruction set architecture
(ISA). Intuitively, we filter out the C language and Pthreads
constructs. An ISA includes arithmetic (e.g. add and sub)
and logic instructions (e.g. and, or, not), data instructions
(e.g. load, store) and control flow instructions (e.g. goto,
branch). Arithmetic and logic instructions are simply pure
CPU operations. We are interested in instructions touch-
ing the main memory and instructions controlling the flow.
Hence, the language we allow abstracts away the CPU oper-
ations and narrows down the operations to a set of movers,
i.e. loading from and storing to the main memory and opera-
tions related to controlling the flow, thread synchronization
and thread bookkeeping.

We do not define formally the semantics of SML pro-
grams. They allow multiple threads to execute concurrently
and manipulate two kinds of variables: local and global. A
global variable is shared by all threads. A local variable
is local to a given thread and cannot be accessed by other
threads. A shared variable x is a global variable that can
be read and written by any thread. We abstract away the
data and extract the mover instructions as Read x or Write x
accordingly. Local variables are useful for the control flow
only and therefore abstracted away. The if, if-then-else and
while statements are allowed in the form of branch and goto
combinations. for-loops can be unrolled and equivalently
implemented with while and goto.

Threads can use locks for synchronization purposes
through acquire and release primitives. A lock (also called
mutex) is a special shared variable that has two values: it is
either free or busy. A thread trying to acquire a lock will
block if the lock is busy. It will acquire the lock (i.e. atomi-
cally set it to busy) if the lock was free and continue execu-
tion. Releasing the lock resets it to free.

Threads can use condition variables for synchronization
purposes through wait and signal primitives. According to
the POSIX semantics, wait shall be called while holding a
lock or undefined behavior results. If a thread waits on a
condition variable, it releases the lock and blocks its ex-
ecution. A thread will try to re-acquire the lock (leading
to eventual delay) and resume execution if the condition
variable is signaled by another thread. We do not allow at
the moment to broadcast a wake up signal (i.e. wake up all
threads waiting on the condition variable). Signaling a con-
dition variable, while no thread is waiting on that condition
variable, has no effect. The wait instruction suffers from
spurious wakeups as it may return when no thread specifi-
cally signalled that condition variable. We do not disallow

i n t c o u n t e r ;
p t h r e a d _ m u t e x _ t L ;

p t h r e a d _ m u t e x _ l o c k (L) ;
c o u n t e r ++;
p t h r e a d _ m u t e x _ u n l o c k (L) ;

s h a r e d c o u n t e r , L ;

a c q u i r e L ;
r e a d c o u n t e r ;
w r i t e c o u n t e r ;
r e l e a s e L ;

Figure 1. Critical section problem in
pthreaded code (left) and its SML coun-
terpart (right).

pthread_cond_t cvEmpty, cvFull;
int buffer; pthread_mutex_t L;

/ / Many Producer s
p t h r e a d _ m u t e x _ l o c k (L) ;
whi le (t r u e) { /∗ branch ∗ /

p t h r e a d _ c o n d _ w a i t (cvEmpty , L) ;
b u f f e r = d a t a ;
p t h r e a d _ c o n d _ s i g n a l (c v F u l l) ;

}
p t h r e a d _ m u t e x _ u n l o c k (L) ;

/ / Many Consumers
p t h r e a d _ m u t e x _ l o c k (L) ;
whi le (t r u e) { /∗ branch ∗ /

p t h r e a d _ c o n d _ w a i t (c v F u l l , L) ;
v a l = b u f f e r ;
p t h r e a d _ c o n d _ s i g n a l (cvEmpty) ;

}
p t h r e a d _ m u t e x _ u n l o c k (L) ;

shared buffer, L, cvEmpty, cvFull;

/ / Many Producer s
a c q u i r e L ;
whi le (t r u e) { /∗ branch ∗ /

w a i t cvEmpty , L ;
w r i t e b u f f e r ;
s i g n a l c v F u l l ;

}
r e l e a s e L ;

/ / Many Consumers
a c q u i r e L ;
whi le (t r u e) { /∗ branch ∗ /

w a i t c v F u l l , L ;
r e a d b u f f e r ;
s i g n a l cvEmpty ;

}
r e l e a s e L ;

Figure 2. Producers/Consumers in pthreaded
code (left) and its SML counterpart (right).

this behaviour and will handle it in our model. It simply
forces the programmer to check a predicate invariant upon
return and it is not orthogonal to our analysis.

Finally, a thread can create another thread and continue
its execution. We do not allow at the moment to wait for
termination of newly created threads.

Figure 1 and Figure 2 show examples written in C using
Pthreads and its equivalent using the SML language. We
do not show the whole code but just the part of interest.
Figure 1 shows a critical section problem where multiple
threads try to update a counter. Only one thread is allowed
to update the counter at a time, to avoid a data race. Figure 2
is a producers/consumers example. The producers update a
shared buffer, if the buffer is empty and the consumer reads
the buffer if the buffer is full.

PAPER SESSION 3: COHERENCE AND CONSISTENCY

c© 2008, Copyright held by the individual authors 91

3. Model

3.1. Petri Nets

A Petri net N is a tuple (P, T, F) where P is a finite set
of places, T is a finite set of transitions and F ⊆ (P ×T)∪
(T × P) is the flow relation, such that P ∩ T = ∅.

If (p, t) ∈ F , p is said to be an input place of t
and if (t, p) ∈ F , p is said to be an output place of
t. We use I (t) = {p ∈ P | (p, t) ∈ F} and O (t) =
{p ∈ P | (t, p) ∈ F} to denote the sets of input places and
output places of t respectively.

A configuration c of a Petri net, often called a marking in
the literature, is a multiset over P and represents a valuation
of the number of tokens in each place.

The transition system induced by a Petri net consists of
the set configurations together with the transition relation
defined on them. The operational semantics of a Petri net is
defined through the notion of firing transitions. This gives
a transition relation on the set of configurations. More pre-
cisely, a transition fires by removing tokens from its input
places and creating new tokens which are distributed to its
output places. A transition is enabled if each of its input
places has at least one token. A transition may fire if it is
enabled. 1Formally, when a transition t is enabled, we write
c

t−→ c′ if c′ is the result of firing t on c. We define −→
as

⋃
t∈T

t−→ and use ∗−→ to denote the reflexive transitive
closure of −→. For sets C1 and C2 of configurations, we
use C1 −→ C2 to denote that c1 −→ c2 for some c1 ∈ C1

and c2 ∈ C2.

3.2. Modeling programs using Petri Nets

We model the flow of control in SML programs using
Petri Nets. A concurrent program contains multiple sepa-
rate threads of control and each thread is assigned a partic-
ular task, so-called job type, modeled by a petri net. SML
programs have a finite number of job types. Multiple in-
stances of a job type will be modeled by multiple tokens.
Note that the structure of the petri net is then static.

Transitions in the petri net correspond to thread state-
ments and places are used to control the flow and the shared
variable dependencies. This modeling formally captures the
concurrency between threads using the concurrency con-
structs of a petri net, captures synchronization between
threads (e.g. locks, access to shared variables, condition
variables, ...) using appropriate mechanisms in the net, and
formalizes the fact that data is abstracted in a sound manner.
In the following, a place will be represented by a and by

1Petri nets allow multiple arcs from a place to a transition (and vice-
versa), where as many tokens are removed (or created) when an enabled
transition fires. But we will not use that construct.

a when it is shared. A transition will be represented as
.

Reading and Writing a shared variable. A shared vari-
able v is associated with two places, Readv and Writev . A
thread places a token in Readv (resp. Writev) if it is cur-
rently accessing the variable v for reading (resp. writing).
We model read and write accesses to shared variables with
two transitions.

in

out

Readx

in

out

Writex

Acquiring and releasing a lock. There is a place L asso-
ciated with each lock. Intuitively, if L contains a token, the
lock is free, otherwise it is busy. This ensures that only one
thread can hold the lock at a time. Note that L is a global
variable.

in L

out

lock

in

Lout

unlock

Waiting on a condition variable. A condition variable is
modeled with 3 places, namely cond, signal and ready,
and 3 transitions as follows.

Condition Variable

in

L

out

cond signal

ready

win

wout

tr

The transition win releases the lock and places a token in
the cond place. The thread is then blocked since neither
wout nor tr are enabled. If another thread places a token in
signal, tr is enabled. If tr fires, the blocked thread is ready
to fire wout to resume execution, with an eventual delay for
(re-)acquiring the lock.

PAPER SESSION 3: COHERENCE AND CONSISTENCY

92 c© 2008, Copyright held by the individual authors

Signaling a condition variable. A thread can wake up an-
other blocked thread by placing a token in the signal place.

Condition Variable

cond signal

ready

tr

in

out

ts

conflict

Signaling a condition variable in the model while no thread
is waiting on it should have no effect. That is to say, the
token in signal should be consumed if the cond place is
empty. To alleviate the problem, we use a conflict tran-
sition. Recall that an enabled transition only may fire. As
it is not possible to model the firing of a transition based
on the condition that a place is empty, we introduce an ab-
straction where signals might be lost (i.e. signaling a con-
dition variable might not wake up other threads which are
waiting on that condition variable). Nevertheless, it is an
over-approximation so we do not bias correctness.

Branching. The if, if-then-else and while statements are
easily implemented with branch and goto. We therefore
only model those latter.

in

out1 out2

if true if false

Since we abstract away all data, we cannot determine the
branching based on a predicate evaluation. So we use an ab-
straction where the program takes both branches and model
it with two transitions. This eventually introduces false be-
haviours, and increase the number of false positives. Never-
theless, it is again an over-approximation and does not bias
the correctness argument. If, for example, the predicate in
the while loop evaluates while reading some shared variable
(e.g. while(x < 10)), we would model it as a cascade of a
read instruction followed by a branch.

Goto or jump. This is only introduced as a convenience
to work in conjunction with branch and model the control
flow.

in out

Creating a new thread.
A new thread is associated with a
job type and an initial place. Fir-
ing the create transition produces
a new token that we place in the
initial place of the new job type.
The calling thread will continue its
execution. Note that same and
new place can coincide. It would
be easy to extend the transitions to
multiple arcs.

in

same new

create

3.3. An example

As the petri net of a concurrent program written in the
SML language can quickly grow in size, we only show a
short example presented in Figure 3, which models the pro-
gram from Figure 1.

init

end

lock

unlock

L

Readcounter

Writecounter

Figure 3. Modeling the critical section prob-
lem with petri nets.

PAPER SESSION 3: COHERENCE AND CONSISTENCY

c© 2008, Copyright held by the individual authors 93

4. Race-Freeness

4.1. Bad states and ordering

A data race occurs when multiple
threads access a shared variable and
at least one has the intention of
changing it, without any synchro-
nization constraints (i.e. event or-
dering). Consequently, given a vari-
able v, we notice that a bad state
(i.e. a race on v) is one configura-
tion that contains at least two tokens
in either Readv or Writev with one
of them in the Writev place.

Readv Writev

Readv Writev

and

We therefore introduce the following (partial) pre-order
� on configurations. For two configurations c and c′, we
say that c � c′ if all the places in c′ contain more tokens
than the respective places in c. That is, we can obtain c by
removing tokens from c′.

For a configuration c, we use ĉ to denote the upward clo-
sure of c, i.e. ĉ = {c′| c � c′}. For a set C of configura-
tions, we define Ĉ as

⋃
c∈C ĉ.

Upward closed sets are attractive to use because they can
be characterized by their minimal elements, which often
makes it possible to have efficient symbolic representations
of infinite sets of configurations.

4.2. Safety property

A set C of configurations is said to be reachable if
Cinit

∗−→ C. Checking the safety property amounts to
performing reachability analysis: is it possible to reach a
bad configuration from an initial configuration through a
sequence of actions performed by different threads? It can
be shown using standard techniques [18, 11], that check-
ing safety properties can be translated into instances of the
following coverability problem.

Coverability
Instance:

• A set of initial configurations Cinit .

• An upward closed set of bad configurations Cfin .

Question: Is Ĉfin reachable? (i.e. Cinit
∗−→ Ĉfin ?)

The main idea is to perform symbolic backward reacha-
bility analysis, using upward closed sets, to check for race-
freeness for concurrent programs written in the SML lan-
guage. A negative answer guarantees the absence of races
in the program.

5. Backward Reachability Analysis

Computing predecessors. For a configura-
tion c and a transition t, we define Pret(c) ={

c′| ∃c′′ ∈ ĉ, s.t. c′
t−→ c′′

}
.

c′ c

�

c′′∃
Pret(c) represents the set of con-
figurations that could reach ĉ by
firing t. Notice that the transition
system induced by the petri net is
monotonic with respect to �.

Indeed, consider the configurations c1, c2 and c3, such that
c1

t−→ c2 and c1 � c3, then there exists a configuration
c4 where c3

t−→ c4 and c2 � c4. That is to say, if we can
fire a transition on a configuration, we can also fire it on a
configuration with more tokens in the same places, and the
results are also ordered accordingly.

It follows from the anti-symmetry property of � that
each upward closed set has a unique generator. Conse-
quently, Pret(c) is upward closed and it has a generator.
The generator is computed by adding a token to each place
in I (t) and by removing a token from each place in O (t)
that contained a token (or equivalently removing a token
from each output place and resetting to zero the negative
values).

We define the backward transition system on configura-
tions, with respect to the pre-order �, as follows. For con-
figurations c1 and c2, we say that c1

t
; c2 iff Pret(c1) = ĉ2

and we say that c1 ; c2 if c1
t

; c2 for some t ∈ T . Note
that it makes all transitions always backwards enabled. We
define Pre(c) =

⋃
t∈T Pret(c) = {c′| c ; c′} and Pre(C)

as
⋃

c∈C Pre(c). Pre(C) represents the set of all configu-
rations that could reach C by firing a transition in the petri
net. Note that, for a finite set C, Pre(C) is an infinite set
that can be represented by a finite set of minimal configura-
tions (w.r.t. �).
Algorithm. Starting from the finite set Cfin , we define the
sequence I0, I1, I2, . . . of sets by I0 = Ĉfin and Ij+1 =
I ∪Pre(Ij). Intuitively Ij denotes the set of configurations
from which Cfin is reachable in at most j steps. Thus if we
defined Pre∗(Cfin) to be

⋃
j≥0 Ij , then Cfin is reachable if

and only if Cinit ∩ Pre∗(Cfin) 6= ∅.
For a set A, we say that the pre-order v is a well quasi-

ordering (WQO) on A if the following property is satisfied:
for any infinite sequence a0, a1, a2, . . . of elements in A,
there are i, j such that i < j and ai v aj . Since we have
I0 ⊆ I1 ⊆ I2 ⊆ . . ., and the pre-order � is WQO by
Dickson’s lemma, it follows by [2] that there is a k such
that Ik = Ik+1 and hence Il = Ik for all l ≥ k, implying
that Pre∗(Cfin) = Ik. Each Ij is an infinite set, but we
know that we can represent it by a finite set of (minimal)
configurations.

The algorithm is guaranteed to terminate.

PAPER SESSION 3: COHERENCE AND CONSISTENCY

94 c© 2008, Copyright held by the individual authors

Input: Two sets Cinit and Cfin of configurations.
Output: Cinit

∗−→ Ĉfin ?

WorkList := Cfin

Explored := ∅
while (WorkList 6= ∅) {

remove some c from WorkList
if ∃c′ ∈ Cinit , c � c′ {

return true
} else if ∃c′ ∈ Explored, c′ � c {

discard c
} else {

WorkList := WorkList
⋃

Pre(c)
Explored :=
{c}

⋃
{c′| c′ ∈ Explored ∧ (c 6� c′)}

}
}
return false

Figure 4. Algorithm outline

6. Experiments

We present a few examples on which we applied the
method. As the equivalent petri net for each example can
quickly grow, we narrowed down the examples to a charac-
teristic part, namely to test the presence or absence of data
races. Some examples are classical examples of synchro-
nization disciplines. We implemented a small prototype in
Java and report in table 1 the results of the runs. We display
the number of configurations kept at any time in the analysis
(#Conf.), the number of configurations that have been sub-
sumed (#Subsum., i.e. discarded by the algorithm because
already simulated by other smaller configurations), and the
number of iteration of the algorithm (#Iter.). Note that we
also tested some examples that did contain a data race. We
also added whether the analysis found a race or not. All
examples ran in less than a second2.

The Counter and CounterWithLock examples
represent a shared counter which is incremented as
depicted in Figure 1. The CheckThenAct and
CheckThenAct-Lock examples represent a classical
race condition described in Section 1 and depicted
in Figure 5. Figure 2 depicts the Prods/Cons
(Prods/Cons 2 is another variant) as the classical
producer/consumer programming style. Note that the
Lock-ReadWriteOnly example shows a program that
secures only the read and write accesses to shared variable.
A thread in that program can indeed read a shared variable,
store it in a local variable, change the local variable as it

2Performance is not exactly the focus in this paper, nor are limitations,
but we wanted to show that it was not a bottleneck.

/ / Thread A / / Thread B

p t h r e a d _ m u t e x _ l o c k (L) ; i f (d a t a > 0) {
d a t a ++; /∗ do t h i s ∗ /
p t h r e a d _ m u t e x _ u n l o c k (L) ; } e l s e {

/∗ do t h a t ∗ /
}

/ / Thread A / / Thread B
p t h r e a d _ m u t e x _ l o c k (L) ;

p t h r e a d _ m u t e x _ l o c k (L) ; i f (d a t a > 0) {
d a t a ++; /∗ do t h i s ∗ /
p t h r e a d _ m u t e x _ u n l o c k (L) ; } e l s e {

/∗ do t h a t ∗ /
}
p t h r e a d _ m u t e x _ u n l o c k (L) ;

Figure 5. Check then act in pthreaded code.
The read in the if statement was not “se-
cured”.

Table 1. Experimental Results
Prog. #Conf. #Subsum. #Iter. Safe?
Counter 10 3 4 -
CounterWithLock 14 7 6 X
CheckThenAct 20 12 5 -
CheckThenAct-Lock 13 4 4 X
Prods/Cons 310 645 19 X
Prods/Cons 2 290 561 17 X
Lock-ReadWriteOnly 25 13 8 X

wishes, and store the result back into the shared variable.
While there is no data race in that program, it is not a good
programming practice, as the shared variable might have
been updated, and the first read of the shared variable does
not reflect its actual value. It has indeed been argued in [10]
that the absence of data race is not a strong enough condi-
tion.

7. Conclusion

We have presented a method to model-check race-
freeness of programs written in a subset of the C language,
using POSIX threads. We model the behaviour of the sys-
tem as Petri nets and take advantage of upward closure to
efficiently represent infinite sets of configurations. Race-
freeness is a safety property and we check it using a sym-
bolic backward reachability analysis. It is based on a simple
algorithmic principle and is fully automatic and sound. It is
moreover guaranteed to terminate for the class of properties
we consider.

We plan to extend the model to obtain a closer relation-
ship to pthreaded programs. For instance, we will include
waiting for termination of a specific thread and broadcast-
ing of a wake up signal. We also would like to measure

PAPER SESSION 3: COHERENCE AND CONSISTENCY

c© 2008, Copyright held by the individual authors 95

the usefulness of the method by examining the amount of
false positives and the limitations with respect to the pro-
gram size. Finally, we would like to report more precise
program traces involving race conditions.

References

[1] P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay.
General decidability theorems for infinite-state sys-
tems. In Proc. LICS ’96, 11th IEEE Int. Symp. on
Logic in Computer Science, pages 313–321, 1996.

[2] P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K.
Tsay. Algorithmic analysis of programs with well
quasi-ordered domains. Information and Computa-
tion, 160:109–127, 2000.

[3] P. A. Abdulla and A. Nylén. Timed Petri nets and
BQOs. In Proc. ICATPN’2001: 22nd Int. Conf. on ap-
plication and theory of Petri nets, volume 2075 of Lec-
ture Notes in Computer Science, pages 53 –70, 2001.

[4] E. Clarke, E. Emerson, and A. Sistla. Automatic ver-
ification of finite-state concurrent systems using tem-
poral logic specification. ACM Trans. on Program-
ming Languages and Systems, 8(2):244–263, April
1986.

[5] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Roby. Ban-
dera: a source-level interface for model checking java
programs. In ICSE ’00: Proceedings of the 22nd inter-
national conference on Software engineering, pages
762–765. ACM, 2000.

[6] G. Delzanno. Automatic verification of cache co-
herence protocols. In Emerson and Sistla, editors,
Proc. 12th Int. Conf. on Computer Aided Verification,
volume 1855 of Lecture Notes in Computer Science,
pages 53–68. Springer Verlag, 2000.

[7] J. Dingel. Computer-assisted assume/guarantee rea-
soning with verisoft. In ICSE ’03: Proceedings of the
25th International Conference on Software Engineer-
ing, pages 138–148. IEEE Computer Society, 2003.

[8] E. Emerson and K. Namjoshi. On model checking for
non-deterministic infinite-state systems. In Proc. LICS
’98, 13th IEEE Int. Symp. on Logic in Computer Sci-
ence, pages 70–80, 1998.

[9] J. Esparza, A. Finkel, and R. Mayr. On the verification
of broadcast protocols. In Proc. LICS ’99, 14th IEEE
Int. Symp. on Logic in Computer Science, 1999.

[10] C. Flanagan and S. Qadeer. Types for atomicity. In
TLDI ’03: Proceedings of the 2003 ACM SIGPLAN

international workshop on Types in languages design
and implementation, pages 1–12. ACM, 2003.

[11] P. Godefroid and P. Wolper. Using partial orders
for the efficient verification of deadlock freedom and
safety properties. Formal Methods in System Design,
2(2):149–164, 1993.

[12] T. A. Henzinger, R. Jhala, and R. Majumdar. Race
checking by context inference. In PLDI ’04: Pro-
ceedings of the ACM SIGPLAN 2004 conference on
Programming language design and implementation,
pages 1–13. ACM, 2004.

[13] L. Lamport. Time, clocks and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[14] E. Pozniansky and A. Schuster. Efficient on-the-fly
data race detection in multithreaded c++ programs. In
PPoPP ’03: Proceedings of the ninth ACM SIGPLAN
symposium on Principles and practice of parallel pro-
gramming, pages 179–190. ACM, 2003.

[15] S. Qadeer and D. Wu. Kiss: keep it simple and se-
quential. In PLDI ’04: Proceedings of the ACM SIG-
PLAN 2004 conference on Programming language de-
sign and implementation, pages 14–24. ACM, 2004.

[16] J. Queille and J. Sifakis. Specification and verification
of concurrent systems in cesar. In 5th International
Symposium on Programming, Turin, volume 137 of
Lecture Notes in Computer Science, pages 337–352.
Springer Verlag, 1982.

[17] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: a dynamic data race detector
for multi-threaded programs. In SOSP ’97: Proceed-
ings of the sixteenth ACM symposium on Operating
systems principles, pages 27–37. ACM, 1997.

[18] M. Y. Vardi and P. Wolper. An automata-theoretic ap-
proach to automatic program verification. In Proc.
LICS ’86, 1st IEEE Int. Symp. on Logic in Computer
Science, pages 332–344, June 1986.

[19] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: ef-
ficient detection of data race conditions via adaptive
tracking. In SOSP ’05: Proceedings of the twenti-
eth ACM symposium on Operating systems principles,
pages 221–234. ACM, 2005.

PAPER SESSION 3: COHERENCE AND CONSISTENCY

96 c© 2008, Copyright held by the individual authors

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

Paper session 4: Library suppport for multicore computing

c© 2008, Copyright held by the individual authors 97

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

98 c© 2008, Copyright held by the individual authors

NOBLE: Non-Blocking Programming Support
via Lock-Free Shared Abstract Data Types

Håkan Sundell
School of Business and Informatics

University of Bor̊as, 501 90 Bor̊as

E-mail: Hakan.Sundell@hb.se

&

Parallel Scalable Solutions AB

Box 916, 501 10 Bor̊as

E-mail: phs@pss-ab.se

Philippas Tsigas
Department of Computer Science and Engineering

Chalmers University of Technology, 412 96 Göteborg

E-mail: tsigas@chalmers.se

Abstract

An essential part of programming for multi-core and
multi-processor includes efficient and reliable means for
sharing data. Lock-free data structures are known as very
suitable for this purpose, although experienced to be very
complex to design. In this paper, we present a software li-
brary of non-blocking abstract data types that have been de-
signed to facilitate lock-free programming for non-experts.
The system provides: i) efficient implementations of the
most commonly used data types in concurrent and sequen-
tial software design, ii) a lock-free memory management
system, and iii) a run time-system. The library provides
clear semantics that are at least as strong as those of corre-
sponding lock-based implementations of the respective data
types. Our software library can be used for facilitating lock-
free programming; its design enables the programmer to:
i) replace lock-based components of sequential or parallel
code easily and efficiently, ii) use well-tuned concurrent al-
gorithms inside a software or hardware transactional sys-
tem. In the paper we describe the design and functionality
of the system. We also provide experimental results that
show that the library can considerably improve the perfor-
mance of software systems.

1. Introduction

Explicit multi-threading is an efficient way to exploit the
offered parallelism of multi-core and multi-processor based
systems. Fundamental to this paradigm is the ability to
share data among the threads. To avoid inconsistency of
the shared data due to concurrent modifications, accesses to
the shared data must be protected and the common solution

using mutual exclusion is known for several serious prob-
lems. The alternative of using non-blocking synchroniza-
tion can avoid these problems and lock-free data structures
have been shown to permit substantial performance im-
provement of parallel applications[19] and have also been
of interest to designers of languages as C++ [1] and Java.

Two basic non-blocking methods have been proposed in
the literature;lock-freeandwait-free[4]. Lock-free imple-
mentations of shared data structures guarantee that at any
point in time in any possible execution some operation will
complete in a finite number of steps. In cases with overlap-
ping accesses, some of them might have to repeat the oper-
ation in order to correctly complete it. However, real-time
systems might have stronger requirements on progress, and
thus in wait-free implementations each task is guaranteed to
correctly complete any operation in a bounded number of
its own steps, regardless of overlaps of the individual steps
and the execution speed of other processes; i.e. while the
lock-free approach might allow (under very bad timing) in-
dividual processes to starve, wait-freedom strengthens the
lock-free condition to ensure individual progress for every
task in the system.

Large efforts have recently been on generalized meth-
ods for designing non-blocking data sharing as Software
Transactional Memory, although still recognized [7] to be
far from as efficient as ad-hoc designed algorithms. How-
ever, designing ad-hoc lock-free data structures is known
to be very complex and can thus only be done safely by
experts. For example, although many promising and prac-
tical oriented scientific results on non-blocking data struc-
tures [20, 10, 3, 8, 9] have appeared in the literature, these
have still not migrated much into practice. In an attempt
to make non-blocking synchronization a realistic alternative
for practitioners, we have created a software library contain-

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

c© 2008, Copyright held by the individual authors 99

ing a large number of lock-free implementations of com-
mon data structures. This task is also a natural continuation
of our previous experience with designing and implement-
ing non-blocking algorithms [18, 15, 2, 16, 17].

NOBLE offers a library support for non-blocking multi-
process synchronization in shared memory systems. NO-
BLE has been designed in order to: i) provide shared data
structures for the use of non-experts, ii) offer an orthog-
onal support for synchronization in respect to the offered
functionality, iii) be easily portable, and iv) contain efficient
implementations. We will throughout the paper illustrate
the features of NOBLE using the C and C++ languages, al-
though other languages can easily be supported.

The rest of the paper is organized as follows. Section 2
described the motivation for creating the library and in Sec-
tion 3 the overall design is described. Section 4 describes
the programmer’s interface to NOBLE. In Section 5, some
benchmark experiments are shown. Finally, Section 6 con-
cludes this paper.

2. Motivation and Guidelines

Implementation of the published algorithms for non-
blocking data structures are not straight-forward ”from the
box” as they require thorough knowledge in several aspects:

• Non-blocking memory management. Dynamic data
structures require memory management. Concurrent
data structures consequently require concurrent mem-
ory management, which is mostly supported in the
system as memory allocation only and implemented
using locks, letting to the user to handle when and
where to actually allocate or free memory. Language
specific solutions include garbage collection facilities.
However, non-blocking algorithms need non-blocking
memory management in order to be fully lock-free or
wait-free, as using locks in any sub operation would
invalidate this property. Moreover, the data structure
needs to be interoperable with the surrounding code of
the main program. The items that are stored within the
data structure will be used and concurrently referenced
both in and outside of the data structure, and thus needs
to be memory managed for safe access.

• Memory barriers . The published algorithms nor-
mally assume sequential consistency for the operations
on memory. However, due to optimized memory bus
models and internal processor optimizations in modern
multi-core and multi-processor systems, the individ-
ual threads are by default not executing the operations
on memory in program order and updates on memory
might not be globally visible by other threads in the
same order. Consequently, if implementing the pub-
lished algorithms as is, they will very likely result in

failures sooner or later [5]. The necessary methods to
enforce stronger consistency are hardware-dependent
and done by the means of extra machine instructions
which needs to be inserted at the right place for every
instruction accessing memory which order needs to be
controlled. Unfortunately, these instructions are ex-
tremely performance degrading and needs to be used
with care.

• Compiler optimization . The order in which the steps
of the non-blocking algorithm are executed by each
processor is crucial for its correctness to allow for
every step to be interleaved with any other step possi-
bly executed by another processor. Compiler optimiza-
tion, which is essential for decent performance, can re-
order or replace code normally without any concerns
about concurrency or non-blocking effects. Thus, the
programmer must ensure the correctness of the result-
ing machine code, with all the means available, e.g.
proper insertions of keywords like volatile etc.

• The main algorithm. In order to implement the pre-
vious issues both properly and efficient, it is needed
to understand all steps of the main algorithm and their
intended interactions.

Consequently, a trustworthy implementation needs to be
performed by experts. Our motivation was therefore to cre-
ate a software library of abstract data types aimed for con-
current environment that has the best chances to be adopted
by practitioners. Consequently we are aiming for the library
to be: (i) efficient, (ii) versatile, (iii) portable, (iv) interop-
erable, and (v) fast applicable.

A study of available algorithms for concurrent data struc-
tures with a practical aim, gives quickly the conclusion that
there are no single implementation for each type of data
structure that fulfills all of the requested library properties.
Implementations can vary in properties as:

• Time complexity, e.g. depending on the algorithm
used, searches can be done in linear [8], probabilistic
logarithmic [16], or deterministic logarithmic.

• Contention, e.g. the algorithms can create various
amount of contention on the memory subsystem.

• Overall performance, e.g. how much work is actually
performed in the system per time unit.

• Scalability, e.g. how the performance will vary with
the increasing number of threads.

• Space, e.g. memory requirements can vary signifi-
cantly with the implementation and number of threads.

• Semantics, e.g. some implementations might not al-
low items to be deleted [20] or updated.

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

100 c© 2008, Copyright held by the individual authors

• Locality , e.g. some implementations require that each
thread keeps local information about the data structure.

• Dependencies and Limitations, e.g. might only work
together with certain memory managers, hardware ar-
chitectures, or allows up to certain number of threads.

3. Design and Features of NOBLE

The main architecture of NOBLE is layered, as seen in
Figure 1a, and is for efficiency reasons implemented in C
and Assembler and is merged together with the actual ap-
plication at compile-time. The C++ interface is provided as
a template library for efficient in-line compilation.

The main layer of NOBLE constitutes of a set of compo-
nents of various implementations of common abstract data
types. This layer encapsulates functionality and fully hides
complexity of the underlying shared data structure, and
works directly on the hardware where possible. The compo-
nents for abstract data types are facilitated by the memory
layer and the run-time layer. The memory manager layer
services both the actual abstract data types as well as the
data objects stored inside, with efficient concurrent mem-
ory allocation and garbage collection facilities.

The run-time system layer, servicing the abstract data
types and memory manager layers, abstract the operating
system’s functionality for system-wide memory and lock-
based synchronization management, as well as facilitating
for keeping track of the components and their instances in
a multi-thread versus a multi-process environment. This
layer also abstracts the processor and memory hardware by
supporting a well-defined set of atomic primitives for read,
writes and updates, implemented using the specific plat-
form’s synchronization [12] and memory barriers.

Thus, this framework enables the library to being eas-
ily portable. The implementations for the individual com-
ponents are written independent of platform, and platform
specific code is isolated to a small part of the library with a
well defined internal interface.

4 Multithread and Multiprocess Compo-
nents

Each component has a set of different creator functions
that specify the particular implementation, that all result in
the same type of object from which operations are called:

NBLQueueRoot * queue =
NBLQueueCreateLB(); // (C)
NBL::Queue <T> * queue =
NBL::Queue <T>::CreateLB(); // (C++)

As all implementations of a component normally sup-
port the same interface to the operations, this design makes
it very easy to change, or even select in run-time, which im-
plementation to use, e.g. change from lock-based to lock-
free.

Some implementations need to create local data for each
thread and also specify the calling thread identity for op-
erations. Instead of specifying the total number of threads
and creating local data for each at the time when creating
the object, dynamic attachment of threads to the component
object are supported by the means of a handle. The handle
needs to be created by each thread for the specific compo-
nent object, see Figure 1b, and is the only way to call the
operations:

NBLQueue * handle =
NBLQueueCreateHandle(queue); // (C)
void * item = NBLQueueDequeue(handle);
// (C)

The C++ interface, causing a slight overhead, completely
abstracts the handle creation and allows the direct calling of
operations from the component object:

T* item = queue->Dequeue(); // (C++)

4.1. Semantics

The semantics of the components, which has been de-
signed to be the very same for all implementations of a
particular abstract data type, are based on the sequential
semantics of common abstract data types and adopted for
concurrent use. The set of operations has been limited
to those which can be practically implemented using both
non-blocking and lock-based techniques. Due to the con-
current nature, also new operations have been added, e.g.
Update which cannot be replaced byDelete followed
by Insert . Some operations also have stronger seman-
tics than the corresponding sequential, e.g. traversal in the
List is not invalidated due to concurrent deletes, compared
to the iterator invalidation in STL. As the published algo-
rithms for concurrent data structures often diverges from the
chosen semantics, a large part of the implementation work
in NOBLE, besides from adoption to the framework, also
constitutes of considerable changes and extensions to meet
the awaited semantics.

4.2. Components Overview

The abstract data types, see Table 1, each have several
implementations that are named according to their charac-
teristics. Naturally, LF stands for lock-free, WF stands for

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

c© 2008, Copyright held by the individual authors 101

Application

Abstract Data Types (NOBLE)

OS

Hardware

Memory

Manager

(NOBLE)

Run-Time (NOBLE)

f

Handle

(Local Memory)

Handle

(Local Memory)

Abstract Data Type

(Shared Memory)

Thread 1 Thr
ea

d
2

O
p
e
ra

ti
o
n
s

O
p
e
ra

tio
n
s

(a) (b)

Figure 1. (a) The architecture of the NOBLE library system. (b) Operations per thread basis are
performed through local handles that access and modify the shared data structure.

wait-free, and LB stands for lock-based. Concerning the
memory requirements of the abstract data types, B stands
for bounded, and U stands for unbounded memory usage.
The Queue can be based on either a static (S) or dynamic
(D) underlying data structure. The Deque can either of-
fer high (H) or limited (L) level of parallelism. The Prior-
ity Queue and Dictionary can offer an expected logarithmic
(E), deterministic logarithmic (D), or linear (L) time com-
plexity for searches with respect to their size. The List can
be either singly (S) or doubly (D) linked.

The implementations of the other data structures, see Ta-
ble 2, are named similar to the abstract data types. The
Snapshot can support a single (S) scanner together with ei-
ther single (S) or multiple (M) updaters. The implemen-
tations of the atomic word object support a subset of the
functionality, either basic (B) or extended functionality of
either multi-word updates (CASN) or load-linked updates
(LL). The memory manager implementations either support
fixed-size, a selection of sizes (C), or arbitrary size (H) of
memory blocks for allocation. The memory reclamation
mechanism can either be strong (S), medium (M), or weak
(W) dependent on the ability to keep watch over both global
and local pointers. The number of local pointers that can be
handled by each thread can either be limited (L) or unlim-
ited (U).

4.3. Interoperability

As the library stores the items in the abstract data types
by reference, the user program sometimes also needs to con-
sider when to reclaim the item’s memory. For abstract data
types as the Stack, Queue, and Deque this is no problem
as only two threads (the one that puts it and the one that
removes it) access each item. However, for the Dictionary
some threads might access the items through searching at
the same time as another thread might remove it from the
dictionary. To easily facilitate safe handling of the user
items, the Memory component can be used for allocation
and referencing to the items:

void * item = NBLMemoryAllocBlock(
memoryHandle);

The abstract data type component also needs to be aware
of which memory object to use for the items. As all compo-
nent support functions for setting run-time parameters, the
memory object can be specified using one of the parame-
ters:

NBLDictionarySetParameter(dictionary,
NBL PARAMVALUE, memory);

By setting the memory parameter, the dictionary can re-
turn references to the items that are safe to access even if the
items have been concurrently removed instantly afterwards.

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

102 c© 2008, Copyright held by the individual authors

Table 1. Components overview, part 1(2)

Component Implementations Operations

Stack LF B, LF U, ok =Push(item)
LB item =Pop()

Queue WFSS, LF DB, ok =Enqueue(item)
LF DU, LF SB, item =Dequeue()
LB

Deque LF HB ok =PushLeft(item)
LF HU ok =PushRight(item)
LF LB item =PopLeft()
LB item =PopRight()

PQueue LF EB, LF EU, ok =Insert(priority , item)
LB SD, LB DD, item =DeleteMin(ref priority)
LB E item =FindMin(ref priority)

Dictionary LF EB ok =Insert(key , item)
LF EU ok =Update(key , item ,ref olditem)
LF LB item =Delete(key)
LB E item =Find(key)

List LF SU ok =InsertBefore(item)
LF DB ok =InsertAfter(item)
LF DU item =Delete()
LB S item =Read()
LB D First()

Last()
ok =Next()
ok =Previous()

After accessing the item, the reference has to be released:

void * item = NBLDictionaryFind(
dictHandle, key);
NBLMemoryReleaseRef(memoryHandle, item
);

The Priority Queue and Dictionary support besides inte-
gers for priorities and keys also user-defined data types for
these. As the abstract data types perform searches among
the stored items, these user-defined data types need to be
enumerable and thus comparable. The user-defined func-
tion for comparison of the user-defined data types are spec-
ified using the run-time parameters to the component ob-
jects. In the C++ interface this is automatically handled by
the user defining the< and== operators for the specific
data type.

Some implementations uses back-off techniques to in-
crease performance in contention intensive situations. For
best performance these timings are platform dependent, and
can thus be tweaked by the means of the on-line parameters.

If needed, the user can also tune the whole library’s use
of the system’s default memory manager for pre-allocation
and its functionality for handling mutexes and semaphores,
by specifying user-defined functions for replacement.

NOBLE provides efficient implementations of the most
commonly used data types in concurrent and sequential
software design with an object-oriented API. A list of the
data types currently provided by NOBLE as well as the NO-
BLE API can be found in [13].

4.4. Related Work

Commercially and by communities, there have been
several attempts of incorporating non-blocking data struc-
tures and synchronization into frameworks and libraries, al-
though mostly only to a comparably small extent. To the
best of our knowledge, the major libraries with significant
non-blocking content are the following:

• Intel Threading Building Blocks [6] This is a frame-
work for implicit/explicit parallel programming in
C++, also containing a collection of container classes.
The containers are designed using a combination of
lock-free and lock-based techniques. The containers
are Queue, Vector or HashMap. Items in the contain-
ers are stored by value.

• Java Concurrency Package [14] This is a library
package for explicit multi-thread programming in
Java, containing several thread-safe container classed.

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

c© 2008, Copyright held by the individual authors 103

Table 2. Components overview, part 2(2)

Component Implementations Operations

Snapshot WF SS, WF SM, Scan(values[])
WFRSM, LB Update(component , value)

Word WFB ok =Init(address , value)
WFCASN Deinit(address)
LF LL value =Read(address)

Write(address , value)
value =Add(address , value)
value =Swap(address , value)
value =Op(address ,function, value)
ok =CAS(address , oldvalue , newvalue)
ok =CASN(address[] , oldval[] , newval[])
value =LL(index , address)
ok =VL(index , address)
ok =SC(index , address , value)

Memory LF SLB, LF SUU, address =AllocBlock()
LF MLB, LF WLB, address =AllocClass(sizeClass)
LF CSLB, LF CSUU, address =AllocSize(size)
LF CMLB, LF CWLB, DeleteBlock(address)
LF HSLB, LF HSUU, address =DeRefLink(ref address)
LF HMLB, LF HWLB, address =CopyRef(address)
WFSUU ReleaseRef(address)

StoreRef(ref address , address)
ok =CASRef(ref address , oldaddr , newaddr)

A subset of these is based on lock-free algo-
rithms, e.g., ConcurrentLinkedQueue and Concurren-
tHashMap. Items in the containers are by default
stored by reference.

• Microsoft Parallel Extensions to the .NET Framework
[11] This is a framework for implicit/explicit parallel
programming within the .NET framework, also con-
taining a collection of container classes in the Task
Parallel Library. The containers based on lock-free al-
gorithms constitute of ConcurrentQueue and Concur-
rentStack. Items are stored by value or by reference
depending on the type.

NOBLE is a library for explicit multi-thread program-
ming in C or C++. The library contains classes for abstract
data types, single and multi-word transactions, and mem-
ory management. NOBLE contains 7 types of abstract data
types, and offers several lock-free or wait-free implementa-
tions of each data type where each implementation suffice
different needs and characteristics. Items in the containers
are stored by reference.

See Table 3 for a quick overview of the non-blocking
abstract data types offered by the mentioned libraries.

5 Experiments

We have performed experiments in order to estimate the
performance and illustrate the benefits of having several im-
plementations available for each task. For this purpose we
are using micro-benchmarks that test the implementations
in different dimensions that affect performance. In this pa-
per, we present the benchmark of having maximum con-
tention, i.e., the concurrent threads are continuously invok-
ing operations.

In our experiments each concurrent thread performs 500
000 randomly chosen sequential operations with equal dis-
tribution. Each experiment is repeated several times, and
an average execution time for each experiment is estimated.
Exactly the same sequence of operations is used for all dif-
ferent implementations compared. All lock-based imple-
mentations are based on simple spin-locks. For the queue
experiments the initial number of items is zero, and for the
dictionary experiments the data structure is initiated with
1000 items. The experiments were performed using differ-
ent number of threads, varying from 1 to 16.

The results from these experiments are shown in Fig-
ure 2, where the average number of operations performed
per second (in the whole system, all threads altogether) is
drawn as a function of the number of processes. The re-
sults clearly indicate that the lock-free implementations in

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

104 c© 2008, Copyright held by the individual authors

Table 3. Overview of libraries and contained non-blocking abstract data types.

Library Languages Abstract data types

Intel Threading Building Blocks C++ Queue
Vector
Dictionary(HashMap)

Java Concurrency Package Java Queue
Dictionary (HashMap)

Microsoft Parallel Extensions C# (.NET) Stack
Queue

NOBLE Professional Edition C Stack
C++ Queue

Deque
Priority Queue
Dictionary
List
Snapshot

NOBLE, largely because of their non-blocking characteris-
tics and partly because of their efficient implementation and
memory management, can outperform the respective lock-
based implementations significantly.

6. Conclusions

NOBLE is a library for multi-core and multiprocessor
data sharing, including implementations of several funda-
mental and commonly used abstract data types. The library
is easy to use and is well suited for explicit multi-thread
programming. Thanks to several available implementations
and synchronization mechanisms, programs can be easily
tuned, even in run-time, to meet specific performance and
characteristics demands. Experiments show that the non-
blocking implementations in NOBLE offer significant im-
provements in performance, especially on multi-processor
platforms. The library currently supports five architectures
(Intel x86, AMD x64, PowerPC, Sparc and Mips), and five
operating systems (Windows, Linux, Solaris, Irix and AIX).

The second version of NOBLE is proprietary and made
available through a subsidiary company related with our re-
search. Earlier versions available freely for research and
teaching is available through http://www.noble-library.org.
Future work of NOBLE is to include even more abstract
data types and functionality, develop native interfaces for
managed languages like C#, and adapt to emerging multi-
core and multiprocessor architectures.

References

[1] D. Dechev, P. Pirkelbauer, and B. Stroustrup. Lock-free dy-
namically resizable arrays. InProceedings of the 10th In-
ternational Conference on Principles of Distributed Systems

(OPODIS ’06), Lecture Notes in Computer Science, pages
142–156. Springer Verlag, 2006.

[2] A. Gidenstam, M. Papatriantafilou, H. Sundell, and P. Tsigas.
Efficient and reliable lock-free memory reclamation based
on reference counting. InProceedings of the 8th Interna-
tional Symposium on Parallel Architectures, Algorithms and
Networks, pages 202–207. IEEE, Dec. 2005.

[3] T. L. Harris. A pragmatic implementation of non-blocking
linked lists. InProceedings of the 15th International Sympo-
sium of Distributed Computing, pages 300–314, Oct. 2001.

[4] M. Herlihy. Wait-free synchronization.ACM Transactions
on Programming Languages and Systems, 11(1):124–149,
Jan. 1991.

[5] L. Higham and J. Kawash. Impact of instruction re-ordering
on the correctness of shared-memory programs. InProceed-
ings of the 8th International Symposium on Parallel Archi-
tectures, Algorithms and Networks, pages 25–32. IEEE, Dec.
2005.

[6] Intel. Intel Threading Building Blocks 2.1, Sept. 2008.
[7] P. E. McKenney, M. M. Michael, and J. Walpole. Why the

grass may not be greener on the other side: a comparison of
locking vs. transactional memory. InProceedings of the 4th
workshop on Programming languages and operating systems
(PLOS ’07), pages 1–5. ACM, 2007.

[8] M. M. Michael. High performance dynamic lock-free hash
tables and list-based sets. InProceedings of the 14th ACM
Symposium on Parallel Algorithms and Architectures, pages
73–82, 2002.

[9] M. M. Michael. Hazard pointers: Safe memory reclama-
tion for lock-free objects. IEEE Transactions on Parallel
and Distributed Systems, 15(8), Aug. 2004.

[10] M. M. Michael and M. L. Scott. Simple, fast, and practi-
cal non-blocking and blocking concurrent queue algorithms.
In Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing, pages 267–275. ACM
Press, 1996.

[11] Microsoft. Microsoft Parallel Extensions to .NET Frame-
work 3.5, June 2008 Community Technology Preview, Sept.
2008.

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

c© 2008, Copyright held by the individual authors 105

Figure 2. Experiments on a 4-way AMD processor system.

[12] M. Moir. Practical implementations of non-blocking syn-
chronization primitives. InProceedings of the 15th Annual
ACM Symposium on the Principles of Distributed Comput-
ing, Aug. 1997.

[13] Parallel Scalable Solutions AB.NOBLE Professional Edi-
tion: Application Programmers Interface, Sept. 2008.

[14] Sun. Package java.util.concurrent (Java Platform SE 6),
Sept. 2008.

[15] H. Sundell and P. Tsigas. Scalable and lock-free concurrent
dictionaries. InProceedings of the 19th ACM Symposium
on Applied Computing, pages 1438–1445. ACM press, Mar.
2004.

[16] H. Sundell and P. Tsigas. Fast and lock-free concurrent pri-
ority queues for multi-thread systems.Journal of Parallel
and Distributed Computing, 65(5):609–627, May 2005.

[17] H. Sundell and P. Tsigas. Lock-free deques and doubly
linked lists. Journal of Parallel and Distributed Computing,
68(7):1008–1020, 2008.

[18] P. Tsigas and Y. Zhang. A simple, fast and scalable non-
blocking concurrent FIFO queue for shared memory multi-
processor systems. InProceedings of the 13th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA
’01), pages 134–143. ACM press, 2001.

[19] P. Tsigas and Y. Zhang. Integrating non-blocking synchroni-
sation in parallel applications: Performance advantages and
methodologies. InProceedings of the 3rd ACM Workshop on
Software and Performance, pages 55–67. ACM Press, 2002.

[20] J. D. Valois. Lock-Free Data Structures. PhD thesis, Rens-
selaer Polytechnic Institute, Troy, New York, 1995.

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

106 c© 2008, Copyright held by the individual authors

LFTHREADS: A lock-free thread library a

Anders Gidenstam
Algorithms and Complexity

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85

66123 Saarbrücken, Germany.
andersg@mpi-inf.mpg.de

Marina Papatriantafilou
Computer Science and Engineering
Chalmers University of Technology

SE-412 96 Göteborg, Sweden.
ptrianta@cs.chalmers.se

Abstract

This paper presents theLFTHREADS, a thread library
entirely based on lock-free methods, i.e. no spin-locks or
similar synchronization mechanisms are employed in the
implementation of the multithreading. Since lock-freedomis
highly desirable in multiprocessors/multicores due to itsad-
vantages in parallelism, fault-tolerance, convoy-avoidance
and more, there is an increased demand in lock-free
methods in parallel applications, hence also in multi-
processor/multicore system services.LFTHREADS is the
first thread library that provides a lock-free implementa-
tion of blocking synchronization primitives for application
threads; although the letter may sound like a contradicting
goal, such objects have several benefits: e.g. library oper-
ations that block and unblock threads on the same synchro-
nization object can make progress in parallel while main-
taining the desired thread-level semantics and without hav-
ing to wait for any “slow” operations among them. Besides,
as no spin-locks or similar synchronization mechanisms are
employed, memory contention can be reduced and proces-
sors/core are able to do useful work. As a consequence, ap-
plications, too, can enjoy enhanced parallelism and fault-
tolerance. For the synchronization inLFTHREADS we
have introduced a new method, which we callresponsibility
hand-off(RHO), that does not need any special kernel sup-
port. The RHO method is also of independent interest, as
it can also serve as a tool for lock-free token passing, man-
agement of contention and interaction between scheduling
and synchronization.

aAn earlier version of this work appeared in OPODIS’07 [8]; a more
extended version as technical report in [9].

1 Introduction

Multiprogramming and threading allow the processor(s)
to be shared efficiently by several sequential threads of con-
trol. Here we study synchronization issues and algorithms
for realizing standard thread-library operations and objects
(create, exit, yield and mutexes) based entirely onlock-free
methods.

The rationale in LFTHREADS is that active processors or
cores should always be able to do useful work when there
are runnable threads available , regardless of what other pro-
cessors/cores do; i.e. despite others simultaneously access-
ing shared objects related with the implementation of the
LFTHREADS-library and/or suffering stop failures or delays
(e.g. from I/O or page-fault interrupts).

Even a lock-free thread library needs to provide blocking
synchronization objects, e.g. for mutual exclusion in legacy
applications and for other applications where threads might
need to be blocked, e.g. to interact with some external de-
vice. Our new synchronization method in LFTHREADS im-
plements a mutual exclusion object with the standard block-
ing semantics for application threads butwithout enforc-
ing mutual exclusion among the processorsexecuting the
threads.We consider this an important part of the contribu-
tion. It enables library operations blocking and unblock-
ing threads on the same synchronization object to make
progress in parallel, while maintaining the desired thread-
level semantics, without having to wait for any “slow” oper-
ation among them to complete. We achieved this via a new
synchronization method, which we callresponsibility hand-
off (RHO), which may also be useful in lock-free synchro-
nization constructions in general, e.g. fortoken-passing,
contention management and interplay between scheduling
and synchronization. The method is lock-free and manages
thread execution contexts without needing special kernel or
scheduler support.

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

c© 2008, Copyright held by the individual authors 107

Related and motivating work

A special kernel-level mechanism, calledscheduler acti-
vations, has been proposed and studied [2, 6], to enable
user-level threads to offer the functionality of kernel-level
threads with respect to blocking and also leave no proces-
sor idle in the presence of ready threads, which is also the
goal of LFTHREADS. It was observed that application-
controlled blocking and interprocess communication can
be resolved at user-level without modifications to the ker-
nel while achieving the same goals as above, but multi-
programming demands and general blocking, such as for
page-faults, seem to need scheduler activations. The RHO
method and LFTHREADS complement these results, as
they provide thread synchronization operation implemen-
tations that do not block each other unless the application
blocks within the same level (i.e. user- or kernel-level).
LFTHREADS can be combined with scheduler activations
for a hybrid thread implementation with minimal blocking.

To make the implementation of blocking mutual ex-
clusion more efficient, operating systems that implement
threads at the kernel level may split the implementation
of the mutual exclusion primitives between the kernel and
user-level. This is done in e.g. Linux [7] and Sun So-
laris [30]. This division allows the cases where threads
do not need to be blocked or unblocked, to be handled at
the user-level without invoking a system call and often in a
non-blocking way by using hardware synchronization prim-
itives. However, when the calling thread should block or
when it needs to unblock some other thread, an expensive
system call must be performed. Such system calls contain,
in all cases we are aware of, critical sections protected by
spin locks.

Although our present implementation of LFTHREADS is
entirely at the user-level, its algorithms are also well suited
for use in a kernel - user-level divided setting. With our
method a significant benefit would be that there is no need
for spin locks and/or disabling interrupts in either the user-
level or the kernel-level part.

Further research motivated by the goal to keep proces-
sors busy doing useful work and to deal with preemptions
in this context includes: mechanisms to provide some form
of control on the kernel/scheduler to avoid unwanted pre-
emption (cf. e.g. [20, 18]) or the use of some application-
related information (e.g. from real-time systems) to recover
from it [5]; [4] and subsequent results inspired by it focus-
ing on scheduling with work-stealing, as a method to keep
processors busy by providing fast and concurrent access to
the set of ready threads; [28] aims in a similar direction,
proposing thread scheduling that does not require locking
(essentially using lock-free queuing) in a multithreadingli-
brary called Lesser Bear; [37] studied methods of schedul-
ing to reduce the amount of spinning in multithreaded mu-
tual exclusion; [38] focuses on demands in real-time and

Figure 1 The Compare-And-Swap (CAS) and Fetch-And-
Add (FAA) atomic primitives.

function
CAS(address :pointer to word ;

oldvalue :word;
newvalue :word) : boolean

atomic do
if *address = oldvaluethen

*address := newvalue;
return true ;

else return false;

function
FAA(addr: pointer to integer;

increment:integer): integer
atomic do

ret := *addr;
*addr := ret + increment;
return ret;

embedded systems and studies methods for efficient, low-
overhead semaphores; [1] gives an insightful overview of
recent methods for mutual exclusion.

There has been other work at the operating system ker-
nel level [24, 23, 12, 13], where basic kernel data structures
have been replaced with lock-free ones with both perfor-
mance and quality benefits. There are also extensive in-
terest and results on lock-free methods for memory man-
agement (garbage collection and memory allocation, e.g.
[36, 26, 25, 10, 11, 15]).

The goal of LFTHREADS is to implement a common
thread library interface, including operations with blocking
semantics, in a lock-free manner. It is possible to com-
bine LFTHREADS with lock-free and other non-blocking
implementations of shared objects, such as the NOBLE li-
brary [32] or software transactional memory constructions
(cf. e.g. [22, 29]).

The paper is organized as follows: first we present the
system model together with some background informa-
tion on lock-free synchronization and the problem we fo-
cus on including the application programming interface of
LFTHREADS(Section 2); followed by a detailed description
of the algorithmic design (Section 3); the correctness of the
above (Section 4); some implementation-related informa-
tion and an experimental study (Section 5). We conclude in
Section 6.

2 Preliminaries

System model

The system consists of a set of processors or cores, each
of which may have its own local memory as well as it is
connected to a shared memory through an interconnect net-
work. Each processor executes instructions sequentially
at an arbitrary rate. The shared memory might not be
uniform, that is, for each processor the latency to access
some part of the memory is not necessarily the same as
the latency for any other processor to access that part of
the shared memory. The shared memory supports atomic
read and write operations of any single memory word, and
also stronger single-word synchronization primitives, such

2

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

108 c© 2008, Copyright held by the individual authors

as Compare-And-Swap (CAS) and Fetch-And-Add (FAA)
(see Figure 1). These primitives are either available or can
easily be derived from other available primitives [19, 27]
on contemporary microprocessor architectures. The pro-
cessors in the system cooperate to run a set of application
threads. Each thread consists of a sequence of operations;
communication is accomplished via shared-memory opera-
tions.

Lock-free synchronization

Lock-freedom[14] is a type of non-blocking synchroniza-
tion that guarantees that in a set of concurrent operations at
least one of them makes progress and thus eventually com-
pletes each time. Another type of non-blocking synchro-
nization iswait-freedom[21], which guarantees thatevery
operation finishes in a finite number of its own steps re-
gardless of the actions of concurrent operations. In the lit-
erature we also seeobstruction-freedom[16], a weak non-
blocking synchronization option, guaranteeing only that,at
any point, a thread that executesalone for a sufficiently
large but bounded number of steps can complete its oper-
ation. Obstruction free algorithms are distinguished from
lock-free and wait-free ones: in the former, progress is not
guaranteed in presence of concurrency and operations may
even abort.

The correctness condition for atomic non-blocking oper-
ations islinearizability [17]. An execution islinearizable
if it guarantees that even when operations overlap in time,
each of them appears to take effect at an atomic time instant
that lies within its respective time duration, such that the
effect of each operation is consistent with the effect of its
corresponding operation in a sequential execution in which
the operations appear in the same order.

Non-blocking synchronization is attractive as it offers
a number of advantages over lock-based synchronization:
(i) it does not give rise to priority inversion; (ii) it avoids
lock convoys; (iii) it provides better fault tolerance (proces-
sor stop failures will not corrupt shared data objects); and
(iv) it eliminates deadlock scenarios involving two or more
threads both waiting for each other. Due to these facts there
is extended research literature on lock-free synchronization
(c.f. [31] for an overview) as well as onuniversal methods
to transform lock-based constructions into lock-free/wait-
free ones (e.g. [3, 14, 35]). Besides ensuring the above
qualitative properties, it has also been shown, using well-
known parallel applications, thatlock-freemethods imply at
least as good performance as lock-based ones in several ap-
plications, and often significantly better [31, 33]. Wait-free
algorithms, as they provide stronger progress guarantees,
are inherently more complex and more expensive than lock-
free ones. Obstruction freedom implies very weak progress
guarantees and can be used e.g. for reference purposes for

studying parallelization.
In LFTHREADS the focus is onlock-free synchronization

due to its combined benefits in progress, fault-tolerance and
efficiency potential.

The problem and LFTHREADS’s API

The LFTHREADS library defines the following procedures
for thread handlinga:
procedure create(thread :out thread_t; main :in pointer to pro-
cedure);
procedureexit();
procedureyield();

Procedurecreate creates a new thread which will start
in the procedure main. Procedureexit terminates the call-
ing thread and if this was the last thread of the applica-
tion/process the latter is terminated as well. Procedureyield
causes the calling thread to be put on the ready queue and
the (virtual) processor that was running it to pick a new
thread to run from the ready queue.

For applications that need lock-based synchronization
between threads the thread library provides a mutex object.
The mutex object supports the operations:
procedure lock(mutex :in out mutex_t)
procedureunlock(mutex :in out mutex_t)
function trylock(mutex :in out mutex_t):boolean

Procedurelock attempts to lock the mutex. If the mutex
is locked already the calling thread is blocked and enqueued
on the waiting queue of the mutex. Procedureunlock un-
locks a mutex if there are no threads waiting in the mutex’s
waiting queue, otherwise the first of the waiting threads are
removed from the waiting queue and made runnable. That
thread becomes the new owner of the mutex. Only the
thread owning the mutex may callunlock . Functiontry-
lock tries to lock the mutex. If it succeeds (i.e. the mutex
was unlocked)true is returned, otherwisefalse.

3 Detailed description of theLFTHREADS li-
brary

3.1 Data structures used in LFTHREADS

In Figure 2 the data structures used in the implementa-
tion of the LFTHREADS library are presented. We assume
that we have a data type,context_t, where the CPU context
of an execution (i.e. thread) can be stored and some opera-
tions to manipulate such contexts. These operations, which
can be supported by most common operating systemsb, are:

aThe interface we present here was chosen for brevity and simplicity.
Our actual implementation aims to provide a POSIX threads compliant
(IEEE POSIX 1003.1c) interface.

bFor example in systems conforming to the Single Unix Specifica-
tion v2 (SUSv2), such as GNU/Linux, they can be implemented from

3

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

c© 2008, Copyright held by the individual authors 109

(i) save(context) stores the state of the current CPU context
in the supplied variable and switches processor to a special
system context. There is one such context available for each
processor. The return value fromsave is true when the con-
text is stored andfalse when the context is restored.
(ii) restore(context) loads the supplied stored CPU context
onto the processor. The restored context resumes execution
in the (old) call tosave, returningfalse. The CPU context
that made the call torestore is lost (unless it was saved be-
fore the call torestore).
(iii) make_context(context,main) creates a new CPU con-
text in the supplied variable. The new context will start in a
call to the proceduremain when it is loaded onto a proces-
sor withrestore.

Each thread in the system will be represented by an
instance of the thread control block data type,thread_t,
which contains acontext_t variable that stores the thread’s
state when it is not being executed on one of the processors.

Further, we also assume that we have a lock-free queue
data structure (like e.g. [34]) for pointers to thread control
blocks; the queue supports three lock-free and linearizable
operations:enqueue, dequeue andis_empty (each with
its intuitive semantics). The lock-free queue data struc-
ture is used as a building block in the implementation of
LFTHREADS. However, as we will see in detail below, ad-
ditional synchronization methods are needed to make op-
erations involving more than one queue instance lock-free
and linearizable.

3.2 Thread operations in LFTHREADS

The general thread operations and variables used in
LFTHREADS are shown in Figure 3. The persistent global
and per-processor variables consist of the global shared
Ready_Queuec, which contains all runnable threads not
currently being executed by any processor, and the per-
processor persistent variableCurrent, which contains a
pointer to the thread control block of the thread currently
being executed on that processor.

The thread handling operations, whose required func-
tionality was introduced in section 2, work as follows in
LFTHREADS:
(i) Operationcreate creates a new thread control block, ini-
tializes the context stored in the block and enqueues the new
thread on the ready queue.
(ii) Operationexit terminates the thread currently being ex-
ecuted by this processor, which then picks another thread to
run from the ready queue.

getcontext(2), setcontext(2) andmakecontext(3), while
in other Unix systemssetjump(3) andlongjmp(3) or similar could
be used.

cThe Ready_Queue here is a lock-free queue, but e.g. work-stealing
[4] could be used.

Figure 2 Thread context and thread queue operations used
in LFTHREADS.
type context_tis record 〈implementation defined〉;

function save(context :out context_t):boolean;
/* Saves the current CPU context and switches to a
* system context. The call tosave returnstrue when
* the context is saved andfalsewhen it is restored. */
procedure restore(context :in context_t);
/* Replaces the current CPU context with a
* previously stored CPU context.
* The current context is destroyed. */
proceduremake_context(context :out context_t;

main : in pointer to procedure);
/* Creates a new CPU context which will wakeup
* in a call to the procedure main when restored. */

type thread_tis record
uc : context_t;

/* Thread control block. */

type lf_queue_tis record 〈implementation defined〉;

procedureenqueue(queue :in out lf_queue_t;
thread :in pointer to thread_t);

/* Appends the thread control blockthread to
* the end of the queue. */
function dequeue(queue :in out lf_queue_t;

thread :out pointer to thread_t):boolean;
/* If the queue is not empty the firstthread_t pointer
* in the queue is dequeued andtrue is returned.
* Returnsfalse if the queue is empty. */
function is_empty(queue :in out lf_queue_t):boolean;
/* Returnstrue if the queue is empty, and
* falseotherwise. */

function get_cpu_id():cpu_id_t
/* Returns the ID of the current CPU (an integer). */

Figure 3 The basic thread operations and shared data in
LFTHREADS.
/* Global shared variables. */
Ready_Queue : lf_queue_t;

/* Private per-processor persistent variables. */
Currentp : pointer to thread_t;

/* Local temporary variables. */
next : pointer to thread_t;
old_count :integer;
old : cpu_id_t;

procedurecreate(thread :out thread_t;
main : in pointer to procedure)

C1 make_context(thread.uc, main);
C2 enqueue(Ready_Queue, thread);

procedureyield()
Y1 if not is_empty(Ready_Queue)then
Y2 if save(Currentp.uc) then
Y3 enqueue(Ready_Queue, Currentp);
Y4 cpu_schedule();

procedureexit()
E1 cpu_schedule();

procedurecpu_schedule()
CI1 loop
CI2 if dequeue(Ready_Queue, Currentp) then
CI3 restore(Currentp.uc);

4

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

110 c© 2008, Copyright held by the individual authors

(iii) Operation yield saves the context of the thread cur-
rently being executed by this processor, enqueues this
thread on the ready queue and then picks another thread to
run from the ready queue.

In addition to the publiccreate, exit , yield opera-
tions, there is an internal operation in LFTHREADS, namely
cpu_schedule, which is used for selecting the next thread
to load onto the processor. If there are no threads waiting
for execution in theReady_Queue, the processor is idle
and waits for a runnable thread to appear.

3.3 Blocking thread synchronization in
LFTHREADS and the RHO method

To facilitate blocking synchronization among applica-
tion threads, LFTHREADS provides a mutex primitive,mu-
tex_t. While the operations on a mutex,lock , trylock and
unlock have their usual semantics for application threads,
they are lock-free with respect to the processors in the
system. This implies improved fault-tolerance properties
against stop and timing faults in the system compared to
traditional spin-lock-based implementations, since evenif a
processor is stopped or delayed in the middle of a mutex
operation all other processors are still able to continue per-
forming operations,even on the same mutex. However, note
that an individual application thread trying to lock a mutex
will be blocked if the mutex has been locked by another ap-
plication thread. A faulty application can also dead-lock its
threads. It is the responsibility of the application developer
to prevent such situations.d

Mutex operations in LFTHREADS

Themutex_t structure, shown in Figure 4, consists of three
fields:

(i) an integer counter, which counts the number of threads
that are in or want to enter the critical section protected
by the mutex;

(ii) a lock-free queue, where the thread control blocks of
blocked threads wanting to lock the mutex when it is
already locked can be stored; and

(iii) a hand-off flag, whose role and use will be described
in detail below.

The operations on themutex_t structure are shown in
Figure 4. In rough terms, thelock operation locks the mu-
tex and makes the calling thread its owner. If the mutex is
already locked the calling thread is blocked and the proces-
sor switches to another thread. The blocked thread’s con-

dI.e. here lock-free synchronization guarantees deadlock-avoidance
among the operations that are implemented in lock-free manner, but an
applicationthat uses objects that have blocking semantics (e.g. mutex) of
course needs to take care to avoid deadlocks due toinappropriate useof
blocking operations by its threads.

Figure 4 The lock-free mutex protocol in LFTHREADS.
type mutex_tis record

waiting : lf_queue_t;
count : integer := 0;
hand-off :cpu_id_t := null ;

procedure lock(mutex :in out mutex_t)
L1 old_count := FAA(&mutex.count,1);
L2 if old_count6= 0 then

/* The mutex was locked.
* Help or run another thread. */

L3 if save(Currentp.uc) then
L4 enqueue(mutex.waiting, Currentp);
L5 Currentp := null ; /* The thread is now blocked. */
L6 old := mutex.hand-off;
L7 if old 6= null and not is_empty(mutex.waiting)then
L8 if CAS(&mutex.hand-off, old,null) then
L9 dequeue(mutex.waiting, Currentp);
L10 restore(Currentp); /* Done. */
L11 cpu_schedule(); /* Done. */

function trylock(mutex :in out mutex_t):boolean
TL1 if CAS(&mutex.count,0, 1) then return true ;
TL2 else ifGrabToken(&mutex.hand-off)then
TL3 FAA(&mutex.count,1);
TL4 return true ;
TL5 return false;

procedureunlock(mutex :in out mutex_t)
U1 old_count := FAA(&mutex.count,−1);
U2 if old_count6= 1 then

/* There is at least one waiting thread. */
U3 do_hand-off(mutex);

proceduredo_hand-off(mutex :in out mutex_t)
H1 loop /* We own the mutex. */
H2 if dequeue(mutex.waiting, next)then
H3 enqueue(Ready_Queue, next);
H4 return ; /* Done. */

else /* The waiting thread is not ready yet! */
H5 mutex.hand-off := get_cpu_id();
H6 if is_empty(mutex.waiting)then

/* Some concurrent operation will see/or
* has seen the hand-off. */

H7 return ; /* Done. */
H8 if not CAS(&mutex.hand-off, get_cpu_id(),null) then

/* Some concurrent operation acquired the mutex. */
H9 return ; /* Done. */

function GrabToken(loc :pointer to cpu_id_t) : boolean
GT1 old :=* loc;
GT2 if old = null then return false;
GT3 return CAS(loc, old,null);

5

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

c© 2008, Copyright held by the individual authors 111

text will be activated and executed later when the mutex is
released by its previous owner.

In the ordinary case a blocked thread is activated by the
thread releasing the mutex by invokingunlock , but due to
fine-grained synchronization, it may also happen in other
ways. In particular, note that checking whether the mutex
is locked and entering the mutex waiting queue are distinct
atomic operations. Therefore, the interleaving of thread-
steps can cause situations such that e.g. a threadA finds
the mutex locked, but by the time it has entered the mutex
queue the mutex has been released, henceA should not re-
main blocked in the waiting queue. The “traditional” way
to avoid this problem is to ensure that at most one processor
at a time modifies the mutex state, i.e. by enforcing mutual
exclusion among the processors in the implementation of
the mutex operations, e.g. by using a spin-lock. In the lock-
free solution proposed here, the synchronization required
for such cases is managed with a new method, which we
call theresponsibility hand-off(RHO) method. In particu-
lar, the thread/processor that is releasing the mutex is able,
using appropriate fine-grained synchronization steps, to de-
tect whether such a situation may have occurred and, in re-
sponse, “hand-off” the ownership (or responsibility) for the
mutex to some other thread/processor.

By performing aresponsibility hand-off, the processor
executing theunlock operation can finish this operation and
continue executing threads without needing to wait for any
concurrentlock operations to finish (and vice versa). As a
result, the mutex primitive in LFTHREADS tolerates arbi-
trary delays and even stop failures inside mutex operations
without affecting the other processors’ ability to do useful
work, including performing operations on the same mutex.

The details of theresponsibility hand-offmethod are
given in the description of the operations, below:

The lock operation: Line L1 atomically increases the
count of threads that want to access the mutex using Fetch-
And-Add. If the old value was0 the mutex was free and is
now locked by the thread. Otherwise the mutex is likely to
be locked and the current thread has to block. Line L3 stores
the context of the current thread in its TCB and line L4 en-
queues the TCB on the mutex’s waiting queue. From now
on, this invocation oflock is not associated with any thread.

However, the processor cannot just leave and do some-
thing else yet, because the thread that owned the mutex
might have unlocked it (since line L1); this is checked by
line L6 to L8. If the token read fromm.hand-off is not
null then anunlock has tried to unlock the mutex but found
(at line U2) that although there is a thread waiting to lock
the mutex, it has not yet appeared in the waiting queue
(line H2). Therefore, theunlock has set thehand-off flag
(line H5). However, it is possible that thehand-off flag
was set after the thread enqueued by thislock (at line L4)

had been serviced. Therefore, this processor should only
attempt to take responsibility of the mutex if there is a
thread available in the waiting queue. This is ensured by
the is_empty test at line L7 and the CAS at line L8 which
only succeeds if no other processor has taken responsibility
of the mutex since line L6. If the CAS at line L8 succeeds,
lock is now responsible for the mutex again and must find
the thread wanting to lock the mutex. That thread (it might
not be the same as the one enqueued by thislock) is de-
queued from thewaiting queue and this processor will pro-
ceed to execute it (line L9 - L10).

If the conditions at line L7 are not met or the CAS at
line L8 is unsuccessful, the mutex is busy and the processor
can safely leave to do other work (line L11).

To avoid ABA-problems (i.e. cases where CAS succeeds
although the variable has been modified from its old value A
to some value B and back to A)m.hand-off should, in ad-
dition to the processor id, include a per-processor sequence
number. This is a well-known method in the literature, easy
to implement and has been excluded from the presented
code to make the presentation clearer.

The trylock operation: The operation will lock the mu-
tex and returntrue if the mutex was unlocked. Otherwise it
does nothing and returnsfalse. The operation tries to lock
the mutex by increasing the waiting count at line TL1. This
will only succeed if the mutex was unlocked and there were
no ongoinglock operations. If there are ongoinglock op-
erations or some thread has locked the mutex,trylock will
attempt to acquire thehand-off flag. This might succeed if
the thread owning the mutex is trying to unlock it and did
not find any thread in the waiting queue despite at least one
ongoinglock operation. If thetrylock operation succeeds
in acquiring thehand-off flag it becomes the owner of the
mutex and increases the waiting count at line TL3 before
returningtrue. Otherwisetrylock returnsfalse.

The unlock operation: If there are no waiting threads
unlock unlocks the mutex. Otherwise one of the wait-
ing threads is made owner of the mutex and enqueued on
the Ready_Queue. The operation begins by decreasing
the waiting count at line U1, which was increased by this
thread’s call tolock or trylock . If the count becomes0,
there are no waiting threads and theunlock operation is
done. Otherwise, there are at least one thread wanting to
acquire the mutex and thedo_hand-off procedure is used
in order to either find the thread or hand-off the responsibil-
ity for the mutex.

If the waiting thread has been enqueued in the wait-
ing queue, it is dequeued (line H2) and moved to the
Ready_Queue (line H3) which completes theunlock op-
eration. Otherwise, the waiting queue is empty and theun-
lock operation initiates aresponsibility hand-offto get rid

6

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

112 c© 2008, Copyright held by the individual authors

of the responsibility for the mutex (line H5):

• The responsibility hand-off is successful and termi-
nates if: (i) the waiting queue is still empty at line H6;
in that case either the offending thread has not yet been
enqueued there (in which case, it has not yet checked
for hand-offs) or it has in fact already been dequeued
(in which case, some other processor took responsibil-
ity for the mutex); or if (ii) the attempt to retake the
hand-off flag at line H8 fails, in which case, some
other processor has taken responsibility for the mu-
tex. After a successful hand-off the processor leaves
theunlock procedure (line H7 and H9).

• If the hand-off is unsuccessful, i.e. the CAS at line H8
succeeds, this processor is yet again responsible for
the mutex and must repeat the hand-off procedure.
Note that when a hand-off is unsuccessful, at least
some other concurrentlock operation made progress,
namely by completing an enqueue on the waiting
queue (otherwise thisunlock would have completed at
lines H6 - H7). Note further that since the CAS at line
H8 succeeded, none of the concurrentlock operations
have executed line L6-L8 since the hand-off began.

Fault-tolerance Regardingprocessor failures, the proce-
dures enable the highest achievable level of fault-tolerance
for a mutex. Note that even though aprocessor failurewhile
theunlock is moving a thread from them.waiting queue to
theReady_Queue (between line H2 and H3) could cause
the loss of two threads (i.e. the current one and the one
being moved), the system behaviour in this case is indis-
tinguishable from the case when the processor fails before
line H2. In both cases the thread owning the mutex has
failed before releasing ownership. At all other points a
processor failurecan cause the loss of at most one thread,
namely the one whose context is executing.

4 Correctness of the synchronization in
LFTHREADS

To prove the correctness of the synchronization in the
thread library we need to show that the mutex primitive has
the desired semantics. We will first show that the mutex
operations are lock-free and linearizable with respect to the
processors and then that the lock-free mutex implementa-
tion satisfies the conditions for mutual exclusion with re-
spect to the behaviour of the application threads.

First we define (i) some notation that will facilitate the
presentation of the arguments and (ii) establish some lem-
mas that will be used later to prove the safety, liveness, fair-
ness and atomicity properties of the algorithm. Due to space
limitations all proofs are omitted. The interested reader can
find them in [9].

Definition 1 A thread’s call to a blocking operation Op is
said to becompletedwhen the processor executing the call
leaves the blocked thread and goes on to do something else
(e.g. executing another thread). The call is said to have
returnedwhen the thread (after becoming unblocked) con-
tinues its execution from the point of the call to Op.

Definition 2 A mutexm is lockedwhenm.count > 0 and
m.hand-off = null. Otherwise it isunlocked.

Definition 3 When a threadτ ’s call to lock on a mutexm
returns we say that threadτ haslockedor acquiredthe mu-
tex m. Similarly, we say that threadτ has locked or ac-
quiredthe mutexm when the thread’s call totrylock on the
mutexm returnsTrue.

Further, when a threadτ has acquired a mutexm by a
lock or successfultrylock operation and not yet released it
by callingunlock we say that the threadτ is theownerof
the mutexm (or that τ ownsm).

Lemma 1 The value of them.count variable is never neg-
ative and always greater than zero when a threadownsthe
mutexm.

Lemma 2 If m.hand-off 6= null thenm.count > 0.

4.1 Lock-freedom

The lock-free property of the thread library operations
will be established with respect to the processors. An opera-
tion is lock-free if it is guaranteed to complete in a bounded
number of steps unless it is interfered with an unbounded
number of times by other operations and every time oper-
ations interfere, at least one of them is guaranteed to make
progress towards completion.

Theorem 1 The mutex operationslock, trylock andunlock
are all lock-free.

The lock-freedom oftrylock andunlock , with respect
to application threads, follows trivially from their lock-
freedom with respect to processors, since there are no con-
text switches in them. The operationlock it is clearly
neither non-blocking nor lock-free with respect to applica-
tion threads, since a thread callinglock on a locked mutex
should be blocked.

4.2 Linearizability

Linearizability guarantees that the result of any concur-
rent execution of operations is identical to a sequential ex-
ecution of the operations where each operation takes effect
atomically at a single point in time (itslinearization point,
referred to as LP below) within its duration in the original
concurrent execution.

7

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

c© 2008, Copyright held by the individual authors 113

Theorem 2 Operationlock is linearizable.

Theorem 3 Operationtrylock is linearizable.

Theorem 4 Operationunlock is linearizable.

4.3 Mutual exclusion properties

The mutual exclusion properties of the new mutex pro-
tocol are established with respect to application threads.

Theorem 5 (Safety) For any mutexm and at any timet
there is at most one threadτ such thatτ is the owner ofm
at timet.

Lemma 3 No thread is left blocked in the waiting queue of
an unlocked mutexm when all concurrent operations con-
cerningm have completed.

Lemma 4 A mutex is locked if and only if it isownedby a
thread.

Lemma 5 A threadτ waiting to acquire a mutexm in a
call to lock will at most have to wait for the thread currently
owningm and all threads that have calledlock onm before
τ ’s call to lock enqueuedτ on them.waiting queue.

Theorem 6 (Liveness I) A threadτ waiting to acquire a
mutexm will eventually acquire the mutex once itslock op-
eration has enqueuedτ on them.waiting queue.

Theorem 7 (Liveness II) A threadτ wanting to acquire a
mutexm can only be starved if there is an unbounded num-
ber of lock operations onm performed by threads on other
processors.

Theorem 8 (Fairness)A thread τ wanting to acquire a
mutexm will only have to wait for the threads whoselock
operation enqueued them on them.waiting queue beforeτ
was enqueued there.

5 Experimental study

The primary contribution of this work is to enhance qual-
itative properties of thread library operations, such as the
tolerance to delays and processor failures. However, since
lock-freedom may also imply performance/scalability ben-
efits with increasing number of processors, we also wanted
to observe this aspect of the impact of the lock-free mu-
tex implementation. We made an implementation of the
mutex object and the thread operations on the GNU/Linux
operating system. The implementation is written in the C
programming language and was done entirely at the user-
level using “cloned”e processes asvirtual processorsfor

e“Cloned” processes share the same address space, file descriptor table
and signal handlers etc and are also the basis of Linux’s native pthread
library implementation.

Figure 5 Mutex performance in LFTHREADS and pthreads
at high (top) and low (bottom) contention.

10 20 30 40 50 60
10

5

10
6

10
7

Number of threads

Cr
itic

al
se

cti
on

s p
er

 se
co

nd

Lock−based vs lock−free mutex (2x2 IA32 CPUs, high contention).

spin−lock based (1 CPU)
lock−free (1 CPU)
spin−lock based (2 CPUs)
lock−free (2 CPUs)
spin−lock based (4 CPUs)
lock−free (4 CPUs)
spin−lock based (8 CPUs)
lock−free (8 CPUs)
pthread mutex

10 20 30 40 50 60

10
3.5

10
3.6

10
3.7

10
3.8

Number of threads

Cr
itic

al
se

cti
on

s p
er

 se
co

nd

Lock−based vs lock−free mutex (2x2 IA32 CPUs, low contention).

spin−lock based (1 CPU)
lock−free (1 CPU)
spin−lock based (2 CPUs)
lock−free (2 CPUs)
spin−lock based (4 CPUs)
lock−free (4 CPUs)
spin−lock based (8 CPUs)
lock−free (8 CPUs)
pthread mutex

running the threads. The implementation uses the lock-
free queue in [34] for the mutex waiting queue and the
Ready_Queue. To ensure sufficient memory consistency
for synchronization variables, memory barriers surround all
CAS and FAA instructions and the writes at lines L6 and
H5. The lock-based mutex object implementation uses a
test and test-and-set type spin-lock to protect the mutex
state. Unlike the use of spin-locks in an OS kernel, where
usually neither preemptions nor interrupts are allowed while
holding a spin-lock, our virtual processors can be inter-
rupted by the OS kernel due to such events. This behaviour
matches the asynchronous processors in our system model
well.

The experiments were run on a PC with two Intel Xeon
2.80GHz processors (acting as 4 due to hyper-threading) us-
ing the GNU/Linux operating system with kernel version
2.6.9. The microbenchmark used for the experimental eval-
uation consists of a single critical section protected by a
mutex and a set of threads that each try to enter the criti-
cal section a fixed number of times. The contention level on
the mutex was controlled by changing the amount of work
done outside the critical section.

We evaluated the following thread library configurations
experimentally:

• The lock-free mutex using the protocol presented in

8

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

114 c© 2008, Copyright held by the individual authors

this paper, using 1, 2, 4 and 8 virtual processors to run
the threads.

• The spin-lock based mutex, using 1, 2, 4 and 8 virtual
processors to run the threads.

• The platform’s standard pthreads library and a stan-
dard pthread mutex. The pthreads library on
GNU/Linux use kernel-level “cloned” processes as
threads, which are scheduled on all available proces-
sors, i.e. the pthreads are at the same level as the
virtual processors in LFTHREADS. This difference in
scheduling makes it difficult to interpret the pthreads
results with respect to the others; i.e. the pthreads re-
sults should be considered to be primarily for refer-
ence.

Each test configuration was run10 times. The diagrams
present the mean of these10 runs.

High contention In Figure 5 (top) we show the mi-
crobenchmark results when all work is done inside the crit-
ical section, that is, the contention on the mutex is high.
In this case the desired result would be that the through-
put, i.e. the number of critical sections executed per sec-
ond, for an implementation stays the same regardless of the
number of threads or virtual (processors). This should im-
ply that the synchronization scales well. However, in real-
ity the throughput decreases with increasing number of vir-
tual processors, mainly due to preemptions inside the criti-
cal section (but for spin-locks also inside mutex operations)
and synchronization overhead. Further, going from a single
processor to more than one processor for our thread library
implies a cost since with more than one processor the thread
contexts will have to be stored and restored much more of-
ten due to threads being blocked on the mutex. (Note that
threads currently use non-preemptive scheduling in our im-
plementation so with only one virtual processor the threads
will run to completion one after the other without any extra
blocking.) The results indicate that the lock-free mutex has
less overhead than the lock-based one in similar configura-
tions.

Low contention In Figure 5 (bottom) we show the results
from a microbenchmark where the threads perform1000

times more work outside the critical section than inside,
making the contention on the mutex low. With the majority
of the work outside the critical section, the expected be-
haviour is a linear throughput increase over threads until all
(physical) processors are in use by threads, thereafter con-
stant throughput as the processors are saturated with threads
running outside the critical section. The results agrees with
the expected behaviour; we see that from one to two vir-
tual processors the throughput doubles in both the lock-free
and spin-lock based cases. (Recall that the latter is a test-
and-test-and-set-based implementation, which is favoured

under low contention). Note that the step to 4 virtual pro-
cessors does not double the throughput — this is due to
hyper-threading, there are not 4 physical processors avail-
able. Similar behaviour can also be seen in the pthread-
based case. Further, the lock-free mutex shows similar or
higher throughput than the spin-lock-based one for the same
number of virtual processors; it also shows comparable and
even better performance than the pthread-based case when
the number of threads is large and there are "enough" virtual
processors (i.e. more than the physical processors).

Summarizing, we observe that the LFTHREADS thread
library’s lock-free mutex protocol implies comparable
or better throughput than the lock-(test-and-test-and-set-
)based implementation, both in high- and in low-contention
scenaria for the same number of virtual processors, besides
offering the qualitative advantages in tolerance against slow,
delayed or crashed threads, as discussed earlier in the paper.

6 Conclusions

In this paper we have presented the LFTHREADS library
and the first lock-free implementation of a blocking syn-
chronization primitive; as part of this contribution we have
introduced the responsibility hand-off (RHO) synchroniza-
tion method. Besides supporting a thread-library interface
with fault-tolerance properties, we regard the RHO method
as a conceptual contribution, which can be useful in multi-
processors and multicore systems in general.

We have implemented the LFTHREADS library on a PC
multiprocessor platform with two Intel Xeon processors
running the GNU/Linux operating system and using pro-
cesses as virtual processors. The implementation does not
need any modifications to the operating system kernel. Al-
though our present implementation is entirely at the user-
level, its algorithms are well suited for use also in a kernel
- user-level divided setting. With our method a significant
benefit would be that there is no need for spin-locks and/or
disabling interrupts in either the user-level or the kernel-
level part.

Our implementation constitutes a proof-of-concept of
the lock-free implementation of the blocking primitive in-
troduced in the paper and serves as basis for an experimental
study of its performance. The experimental study presented
here, using a mutex-intensive microbenchmark, shows pos-
itive performance figures. Moreover, this implementation
can also serve as basis for further development, for porting
the library to other multiprocessors and experimenting with
parallel applications such as the Spark98 matrix kernels or
applications from the SPLASH-2 suite.

9

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

c© 2008, Copyright held by the individual authors 115

References

[1] J. H. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclu-
sion: major research trends since 1986.Distributed Computing, 16(2-3):75–
110, 2003.

[2] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scheduler Activations:
Effective Kernel Support for the User-Level Management of Parallelism. In
ACM Trans. on Computer Systems, pages 53–79, 1992.

[3] G. Barnes. A method for implementing lock-free shared data structures. In
Proc. of the 5th Annual ACM Symp. on Parallel Algorithms and Architectures,
pages 261–270. SIGACT and SIGARCH, 1993. Extended abstract.

[4] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing,. InProc. of the 35th Annual Symp. on Foundations of Computer
Science (FOCS), pages 356–368, 1994.

[5] U. Devi, H. Leontyev, and J. Anderson. Efficient synchronization underglobal
edf scheduling on multiprocessors. InProc. of the 18th Euromicro Conf. on
Real-Time Systems, pages 75–84. IEEE Computer Society, 2006.

[6] M. J. Feeley, J. S. Chase, and E. D. Lazowska. User-level threads and interpro-
cess communication. Technical Report TR-93-02-03, University of Washing-
ton, Department of Computer Science and Engineering, 1993.

[7] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and furwocks: Fast
userlevel locking in linux. InProc. of the Ottawa Linux Symp., pages 479–494,
2002.

[8] A. Gidenstam and M. Papatriantafilou. LFthreads: A lock-free thread library.
In Proc. of the 11th Int. Conf. on Principles of Distributed Systems (OPODIS),
pages 217 – 231. Springer, 2007.

[9] A. Gidenstam and M. Papatriantafilou. LFthreads: A lock-free thread library.
Technical Report MPI-I-2007-1-003, Max-Planck-Institut für Informatik, Al-
gorithms and Complexity, 2007.

[10] A. Gidenstam, M. Papatriantafilou, H. Sundell, and P. Tsigas. Practical and
efficient lock-free garbage collection based on reference counting. InProc.
of the 8th Int. Symp. on Parallel Architectures, Algorithms, and Networks (I-
SPAN), pages 202 – 207. IEEE Computer Society, 2005.

[11] A. Gidenstam, M. Papatriantafilou, and P. Tsigas. Allocating memory in alock-
free manner. InProc. of the 13th Annual European Symp. on Algorithms (ESA),
pages 329 – 242. Springer Verlag, 2005.

[12] M. Greenwald and D. R. Cheriton. The synergy between non-blocking syn-
chronization and operating system structure. InOperating Systems Design and
Implementation, pages 123–136, 1996.

[13] M. B. Greenwald.Non-blocking synchronization and system design. PhD the-
sis, Stanford University, 1999.

[14] M. Herlihy. A methodology for implementing highly concurrent data objects.
ACM Trans. on Programming Languages and Systems, 15(5):745–770, 1993.

[15] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Nonblocking memory man-
agement support for dynamic-sized data structures.ACM Trans. on Computer
Systems, 23(2):146–196, 2005.

[16] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization:
Double-ended queues as an example. InProc. of the 23rd Int. Conf. on
Distributed Computing Systems (ICDCS), page 522. IEEE Computer Society,
2003.

[17] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for
concurrent objects.ACM Trans. on Programming Languages and Systems,
12(3):463–492, 1990.

[18] P. Holman and J. H. Anderson. Locking under pfair scheduling.ACM Trans.
Computer Systems, 24(2):140–174, 2006.

[19] P. Jayanti. A complete and constant time wait-free implementation of CAS
from LL/SC and vice versa. InProc. of the 12th Int. Symp. on Distributed
Computing (DISC), pages 216–230. Springer Verlag, 1998.

[20] L. I. Kontothanassis, R. W. Wisniewski, and M. L. Scott. Scheduler-conscious
synchronization.ACM Trans. Computer Systems, 15(1):3–40, 1997.

[21] L. Lamport. On interprocess communication–part i: Basic formalism, part ii:
Algorithms. Distributed Computing, 1:77–101, 1986.

[22] V. J. Marathe, W. N. S. III, and M. L. Scott. Adaptive software transactional
memory. InProc. of the 19th Int. Conf. on Distributed Systems (DISC), pages
354–368. Springer, 2005.

[23] H. Massalin.Synthesis: An Efficient Implementation of Fundamental Operating
System Services. PhD thesis, Columbia University, 1992.

[24] H. Massalin and C. Pu. A lock-free multiprocessor OS kernel. Technical Report
CUCS-005-91, 1991.

[25] M. Michael. Scalable lock-free dynamic memory allocation. InProc. of SIG-
PLAN 2004 Conf. on Programming Languages Design and Implementation,
ACM SIGPLAN Notices. ACM Press, 2004.

[26] M. M. Michael and M. L. Scott. Correction of a memory management method
for lock-free data structures. Technical Report TR599, University of Rochester,
Computer Science Department, 1995.

[27] M. Moir. Practical implementations of non-blocking synchronization primi-
tives. In Proc. of the 16th annual ACM Symp. on Principles of Distributed
Computing, pages 219–228, 1997.

[28] H. Oguma and Y. Nakayama. A scheduling mechanism for lock-free operation
of a lightweight process library for SMP computers. InProc. of the 8th Int.
Conf. on Parallel and Distributed Systems (ICPADS), pages 235–242, 2001.

[29] N. Shavit and D. Touitou. Software transactional memory. InProc. of the 14th
ACM Symp. on Principles of Distributed Computing (PODC), pages 204–213.
ACM Press, 1995.

[30] Multithreading in the solaris operating environment. Technical report, SunMi-
crosystems, 2002.

[31] H. Sundell.Efficient and Practical Non-Blocking Data Structures. PhD thesis,
Chalmers University of Technology, 2004.

[32] H. Sundell and P. Tsigas. NOBLE: A non-blocking inter-process communi-
cation library. InProc. of the 6th Workshop on Languages, Compilers and
Run-time Systems for Scalable Computers. Springer Verlag, 2002.

[33] P. Tsigas and Y. Zhang. Evaluating the performance of non-blocking synchroni-
sation on shared-memory multiprocessors. InProc. of the ACM SIGMETRICS
2001/Performance 2001, pages 320–321. ACM press, 2001.

[34] P. Tsigas and Y. Zhang. A simple, fast and scalable non-blocking concurrentfifo
queue for shared memory multiprocessor systems. InProc. 13th ACM Symp.
on Parallel Algorithms and Architectures, pages 134–143. ACM Press, 2001.

[35] J. Turek, D. Shasha, and S. Prakash. Locking without blocking: makinglock
based concurrent data structure algorithms nonblocking. InProc. of the 11th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems,
pages 212–222. ACM Press, 1992.

[36] J. D. Valois. Lock-free linked lists using compare-and-swap. InProc. of the
14th ACM Symp. on Principles of Distributed Computing (PODC), pages 214–
222. ACM, 1995.

[37] J. Zahorjan, E. D. Lazowska, and D. L. Eager. The effect of scheduling disci-
pline on spin overhead in shared memory parallel processors.IEEE Trans. on
Parallel and Distributed Systems, 2(2):180–198, 1991.

[38] K. M. Zuberi and K. G. Shin. An efficient semaphore implementation scheme
for small-memory embedded systems. InProc. of the 3rd IEEE Real-Time
Technology and Applications Symp. (RTAS), pages 25–37. IEEE, 1997.

10

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

116 c© 2008, Copyright held by the individual authors

Wool-A Work Stealing Library

Karl-Filip Faxén

Swedish Institute of Computer Science

kff@sics.se

Abstract

This paper presents some preliminary results on a
small light weight user level task management library
called Wool. The Wool task scheduler is based on work
stealing. The objective of the library is to provide a rea-
sonably convenient programming interface (in particu-
lar by not forcing the programmer to write in continu-
ation passing style) in ordinary C while still having a
very low task creation overhead. Several task scheduling
systems based on work stealing exists, but they are typi-
cally either programming languages like Cilk-5 or based
on C++ like the Intel TBB or C# as in the Microsoft
TPL. Our main conclusions are that such a direct style
interface is indeed possible and yields performance that
is comparable to that of the Intel TBB.

1 Introduction

A task management library supports task parallel
programming, a popular and promising approach to ex-
ploiting the performance potential of multi(core) pro-
cessors. Tasks are light weight units of work. In our
model, tasks synchronize only when a task is created or
completes execution; in pthreads terminology we sup-
port only the operations create, exit and join. These
limited forms of synchronization makes it particularly
important that the overheads associated with tasks are
low, ideally on the order of the cost of a procedure call.

In a work stealing scheduler, each worker thread
maintains a pool of tasks that are ready to execute.
Tasks are created dynamically and are added to the
pool of the creating worker. A worker executes tasks
form its own pool if possible, but if the pool of a worker
is empty, the worker steals a task from the task pool of
a randomly chosen worker (the victim). Task stealing
is efficient since it is the processors that have nothing
useful to do that do most of the load balancing.

2 Programming with Wool

The Wool API is similar to (and inspired by) that of
Cilk-5 [2] and consists of constructs for defining, spawn-
ing and waiting for the completion of tasks. Just like
Cilk-5, and in contrast to for instance the Intel TBB,
the Wool API is direct style, facilitating the conver-
sion of existing code. In a direct style API, there is a
synchronization operation (called SYNC in Wool) which
syntactically looks like a procedure call. In contrast,
a continuation passing API specifies a task to spawn
when a set of other tasks have completed. Thus if
the programmer wishes to first do some compuations
in parallel, then (when the earlier computations have
completed) do another computation, that can be ac-
complished by placing a SYNC in between. In a contin-
uation passing API, the programmer instead indicates
a new task to spawn when the earlier tasks have com-
pleted.

Figure 1 shows a naive implementation of the Fib-
bonacci function in Wool. A sequential (but still naive)
function (seqfib) is used for small arguments.

Wool provides a family of task definition macros of
the form

• TASK n (rtype, name, aty 1 , arg 1 , ...,

aty n , arg n) which define tasks with return
type rtype , name name , and arguments with
their corresponding types.

Given such a definition of a task called name , Wool
provides the following operations:

• SPAWN(name, arg 1 , ..., arg n) which
spawns the task to make it available for parallel
execution. A spawn has no return value (that is,
it has return type void)

• SYNC(name) which synchronizes with the most re-
cently spawned task that has not been synchro-
nized. A sync returns the value returned by the
task.

1

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

c© 2008, Copyright held by the individual authors 117

#include <stdio.h>

#include <stdlib.h>

#include "wool.h"

int threshold;

int seqfib(int n)

{
if(n<2) {
return n;

} else {
return seqfib(n-1)

+ seqfib(n-2);

}
}

TASK 1(int, fib, int, n)

{
if(n<threshold)

return seqfib(n);

else {
int a,b;

SPAWN(fib, n-2);

a = CALL(fib, n-1);

b = SYNC(fib);

return a+b;

}
}

TASK 2(int, main, int, argc,

char **, argv)

{
int n;

threshold = atoi(argv[1]);

n = CALL(fib, atoi(argv[2]));

printf("%d\n", n);

}

Figure 1. A simple Fibbonacci function

• CALL(name, arg 1 , ..., arg n) which invokes
the task as a function call, semantically equivalent
to a spawn immediately followed by a sync. A call
returns the return value of the task.

The CALL operation is avalable as an optimization,
saving the synchronization overhead associated with
SPAWN and SYNC.

Compared to Cilk-5, which is implemented in a com-
piler, the Wool API is slightly coarser. A Cilk-5 sync

synchronizes with all tasks started since the beginning
of the current function call, and the spawn operation
returns the value of the task (although that value can
not be used before the next sync).

We are planning a few extensions to the API, in
particular parallel for-loops (so called DOALL loops)
similar to those found in openMP and the Intel TBB.
The syntax of such a construct is approximately

• FOR(name, from, to , arg 2 , ..., arg n)

where name is a task whose first argument is of type
int, from and to are the loop bounds and the arg i

are the rest of the arguments to the task.

3 The implementation of Wool

Wool allows the programmer to express all paral-
lelism available in the problem; as much of that paral-
lelism as is needed to keep the particular machine ex-
ecuting the program busy will be realized. The excess
tasks are executed sequentially, called inlining the task,
basically as procedure calls (by far the most common
case). Spawning a task makes it available for parallel
execution, but does not guarantee that it will actually
be executed in parallel. If a processor becomes idle it
tries to steal spawned but not yet executed tasks from
some other processor, and it is only such stolen tasks
that execute in parallel with other tasks spwned on the
same processor.

One of the main objectives of Wool is to investigate
how fast spawning can be made; if a spawn is cheap,
the programmer does not need to choose whether or
not to use parallelism but can always spawn indepen-
dent computations and let the implementation worry
about the overheads. We also want to stay withing a
direct style execution model as opposed to a continua-
tion passing model.

For many programs, spawning is the dominant
source of overhead. This happens when spawning is
much more frequent than stealing, as is the case in fine
grained recursive divide and conquer programs. Thus
the first order of business when implementing Wool was
to ensure that spawning a task and synchronizing with

2

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

118 c© 2008, Copyright held by the individual authors

an unstolen task is as cheap as possible. This brings us
to a brief discussion of the basic data structures used
by the Wool scheduler.

In Wool, each worker has a small data structure
called a worker descriptor which contains the admin-
istrative data structures for that worker. In particular
it contains:

• An array of task descriptors for tasks spawned by
this worker.

• A pointer to the next task to steal, used by thieves,
called bot.

• A lock that is mostly used to achieve mutual exclu-
sion between thieves, but that is also used as a fall
back in the synchronization of thief and victim.

• Various other things, including statistics counters.

Conspicuously absent is the top pointer used by worker
to access its own task queue; this pointer is a hidden ex-
tra parameter to each task and its initial value is passed
by the run time system to the main task. Technically,
top is a piece of thread local data; it is different for each
task and can thus not be a global variable. Pthreads
provides functions for dealing with thread local data
(pthread setspecific, pthread getspecific, . . .)
but these are to expensive to use for every spawn, hence
we pass it around instead. In a compiled implementa-
tion (where the code generator is tailored to Wool),
top could have a reserved register that did not need to
be saved accross task and procedure invocations.

The pointer to the worker descriptor, self, is how-
ever used less often and is currently managed using
Pthreads thread specific data functions.

The astute reader may by now be wondering how a
thief and its victim synchronize since the classic way to
do so in work stealing is to have both top and bot in
the worker descriptor and have worker and thief updat-
ing and comparing them. We have not used this design,
since it will cause a unnecessry coherence transactions
when workers and thiefs access the worker descriptor
and since it is incompatible with keeping top in a reg-
ister. Instead, thieves and victims synchronize through
the task descriptors in the task queue of the victim, to
which we now turn our attention.

A task descriptor contains the following information:

• A pointer f to the code (C-function) that imple-
ments the task.

• A pointer balarm indicating whether the task has
been stolen.

• The arguments the task was spawned with.

int steal(Worker *victim)

{
lock(victim->lck);

t = victim->bot;

t->balarm = STOLEN;

memory barrier();

if(t->f == INLINED) {
return 0;

unlock(victim->lck);

} else {
victim->bot++;

unlock(victim->lck)

... // Run the task

}
}

sync(Task *t)

{
t->f = INLINED;

memory barrier();

if(t->balarm = STOLEN) {
lock(self->lck);

if(t->balarm == STOLEN) {
unlock(self->lck);

...

} else {
unlock(self->lck);

...

}
}

}

Figure 2. Synchronization between thief and
victim

• The return value of the task (shares space with the
arguments).

We use the f and balarm fields in a THE style protocol
where a thief indicates interest in the task by setting
balarm to a specific value while the owner of the queue
signals synchronizing with the task by writing to the f

field. Consider the simplified code in Figure 2: Both
thief and victim first do their writes, then check if the
other party has written. The thief always acquires the
lock of the victim, both to ensure that there is only
one thief at a time and to resolve the possible deadlock
when both finds the others field written. In that case
the thief backs off while the victim acquires the lock
and then rechecks balarm, at which point it can tell

3

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

c© 2008, Copyright held by the individual authors 119

whether the thief had just arrived at the same time or
earlier. The memory barriers are necessary on modern
architectures with relaxed memory consistency models.

3.1 Waiting

This scheme raises the issue of what to do when a
sync finds that the task has been stolen. The sync can
not complete until the task is finished, so some form
of wait is needed. This easily leads to a considerable
loss in performance since the worker executing the sync
becomes idle. One possibility would be for that worker
(call it A) to steal some work; however, there is a subtle
issue involved in that idea. If A starts executing other
tasks, and the worker that stole the original task (B)
completes, A can not immediately continue from the
blocked sync until the new tasks complete. This is
problematic since the work after the blocked sync is not
in a form that is stealable (this is exactly a consequence
of not forcing the programmer to use a continuation
passing style). Thus we have work in the system that
is logically ready to execute but that no worker can
run.

3.1.1 Leapfrogging

In the leapfrogging tehnique [3], a worker A that needs
to wait at a sync becuase the task to sync with is stolen
can still find some other work to do, while avoiding the
problem mentioned above, by stealing only from B. The
tasks in the pool of B must have been generated while
processing the task stolen from A, and must complete
before that task. Thus ut is not possible that the sync
that A (logically) waits for becomes unblocked while A
processes new tasks.

3.1.2 Parking

In Wool we have implemented a different scheme. The
idea is to rely on modern threading implementations
to reasonably efficient and to use more workers than
processors (cores). Thus a worker that finds a sync
actually does wait, but the thread scheduler (typically
in the kernel) can then run another thread. However,
this entails several workers being time shared on a sin-
gle processor (core) which typically leads to somewhat
higher overheads and, more importantly, worse local-
ity and more cache misses. To deal with this problem
we use a novel technique we call parking. The idea is
that most of the time, only as many workers as there
are cores are actively executing tasks and the rest are
blocked. When a worker needs to wait at a sync, it
unblocks one of the parked workers and then goes to
sleep waiting for the sync’ed task. When it completes,

there will for a while be more workers than cores, but
as soon as some worker finds its task pool empty, it
checks the number of active workers and parks itself.

4 Experimental results

We have used three microbenchmarks to character-
ize the performance and overheads of Wool. These are
fib, discussed above, qs, a recursive divide and con-
quer implementation of the quicksort algorithm, and
a synthetic program called stress where we can con-
trol the amount and granularity of parallelism precisely
(thus being able to “stress test” the implementation).
The fib and qs benchmarks also have cutoff param-
eters below which a sequential algorithm is used. For
fib it is the argument and for qs the number of ele-
ments in the array.

Since the machines we have used vary greatly in per-
formance, we have run our benchmarks with different
inputs, as shown in Table 2 together with the sequential
timings. For these runs, input parameters giving neg-
ligible overhead for parallelism were used. The older
Sun machine (scheutz) has hardware problems which
gives the processors different performance; the sequen-
tial time is an average of ten runs.

We have evaluated our three micro benchmarks on
the three different systems using five variations on the
Wool implementation of waiting and stealing.

wait A worker that tries to sync with a stolen task
simply goes to sleep on a condition variable that
is signalled by the thief when finished with the
task.

park Uses parking with total threads either two or
three times the number of active threads.

leap Uses leapfrogging, that is, a worker that needs to
wait for a thief spends its time stealing tasks from
that same thief.

back Leapfrogging plus exponential back off, both for
unsuccessful leaps and steals. Back off starts at
4000 iterations of a trivial loop (the same as in
the stress program) for steals and 1000 iterations
for stealing.

The speedups we report are wall clock times measured
using the Unix time command and is the average of
five runs. They are relative to the parallel version of
the code running on one processor, but while this is
slower than the best sequential execution for qs and
the fine grained regime of stress, we believe they can be
further reduced although we have no yet implemented
our ideas for these optimizations.

4

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

120 c© 2008, Copyright held by the individual authors

Model Name CPU CPUs Cores Threads Clock OS

Sun Enterprise scheutz Sun UltraSPARC II 8 8 8 248 MHz Solaris
Sun Fire T1000 millennium UltraSPARC T1 1 6 24 1 GHz Solaris

Mac small Intel Core 2 Quad 2 8 8 2.8 GHz MacOS

Table 1. Machine characteristics

fib qs stress
Input Time Input Time Input Time

scheutz 37 5.91 2M 4.51 240M 1.96
millennium 39 11.4 4M 6.78 670M 4.03

small 42 2.16 20M 3.25 2G 1.24

Table 2. Inputs and sequential run times on the different systems

4.1 fib

The fib program (given in figure 1) is a very simple
recursive divide and conquer program which does not
load the memory system very heavily as it only refer-
ences a couple of global variables, the stack and the
Wool administrative data structures, which are small
and/or have a very localized reference pattern. Thus
it measures the CPU overhead together with the un-
avoidable synchronization costs.

Unsurprisingly, small and scheutz achieve very
good speed up, but for millennium performance levels
off after a few workers. This is natural since the pro-
cessor only has six cores, each with four threads. This
design shows its strength when there are many cache
misses or other kinds of stalls, but presumably fib cre-
ates respectable utilization of the core with a single
active thread.

One pattern that we see, will continue to see, is that
wait performs worse than the other alternatives. This
effect is due to load imbalance, which can be seen by
relating cpu time, elapsed time and number of proces-
sors.

4.2 qs

This is another recursive divide and conquer pro-
gram, but in contrast to fib, it makes heavy use of the
memory system. This is expecially true for millennium
for which performance even starts to drop for large
numbers of workers. Here is another interesting phe-
nomenon: The cores in the processor share a common
second level cache, and the threads in a core even share
the first level cache. This means that, as the number of
workers increase, cache miss rates also rise steeply to
the point where memory bandwidth becomes the lim-
iting factor. The eight core small fares best with a
speedup of over five on all eight cores.

4.3 stress

The stress program is a synthetic benchmark de-
signed to be easy to vary the grainsize of. There is a
sequential outer loop that for each iteration starts a
parallel, perfectly balances divide and conquer compu-
tation of a given depth. At the leaves of this tree, a
simple loop is iterated. Thus for n iterations of the
outer loop, depth d of the tree and m iteration of the
leaf loop, the program does n×2d×m iterations of the
innermost loop. Each parallel region is n×2d innermost
iterations.

Table 3 shows timings in nanoseconds and cycles for
single iterations of the innermost loop in stress and
for the cost of uncontended spawn and sync opera-
tions (that is, times with only a single worker). It also
gives the sequential execution time in microseconds and
clock cycles for each parallel region in the program (one
iteration of the outermost loop is a parallel region). In
a recent paper [1], programmers using the Intel TBB
are advised to try to create task granularities on the or-
der of 100k cycles. If one compares this with Figures 5
and 6 one sees that when the parallel region is on the
order of 1300k cycles, both scheutz and small man-
age to reach quite respectable speedups (around 6 on 7
cores). Note that our parallel regions are not the same
as tasks; the parallel region discussed above contains at
least six tasks, so we are within a factor of two of the
above mentioned advice. In fact, our parallel region
is made up of about 217small tasks. With the larger
grain size and a parallel region of around 8400–8600k
cycles, the speed ups are even better.

5 Conclusions

Wool achieves an low spawning overhead and reason-
able stealing cost while providing a direct style API.

5

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

c© 2008, Copyright held by the individual authors 121

Machine time/iteration time / spawn-sync time / parallel region
m=20, d=17 m=200, d=17

ns cycles ns cycles us Kcycles us Kcycles

scheutz 8.2 2 242 60 5321 1310 34184 8388
millennium 6 6 113 113 3054 3054 21653 21653

small 0.71 2 23 65 485 1376 3041 8651

Table 3. Iteration times, uncontended overheads and parallel region sizes for stress

Much work remains, though, before the goal of ex-
tremely low overhead task creation and stealing is real-
ized. In particular, batching synchronization (memory
barriers) in spawn and sync is necessary to get their
overheads close to that of a procedure call. Stealing
could also be improved by avoiding the use of Pthreads
locks and instead use more low level synchronization
instructions as well as by moving to a more adaptive
back off policy.

6 Acknowledgements

Cosmin Arad graciously made small available for
the experimental work.

References

[1] Gilberto Contreras and Margaret Martonosi. Char-
acterizing and improving the performance of the
intel threading building blocks runtime system. In
International Symposium on Workload Characteri-
zation (IISWC 2008), August 2008.

[2] Matteo Frigo, Charles E. Leiserson, and Keith H.
Randall. The implementation of the Cilk-5 multi-
threaded language. In SIGPLAN Conference on
Programming Language Design and Implementa-
tion, pages 212–223, 1998.

[3] David B. Wagner and Bradley G. Calder. Leapfrog-
ging: a portable technique for implementing effi-
cient futures. SIGPLAN Not., 28(7):208–217, 1993.

6

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

122 c© 2008, Copyright held by the individual authors

0

2

4

6

8

10

2 3 4 5 6 7 8

linear speedup
wait

park x 2
park x 3
leapfrog

leapfrog backoff

0

5

10

15

20

25

30

5 10 15 20

linear speedup
wait

park x 2
park x 3
leapfrog

leapfrog backoff

0

2

4

6

8

10

2 3 4 5 6 7 8

linear speedup
wait

park x 2
park x 3
leapfrog

leapfrog backoff

Figure 3. Speedups for fib (threshold 4)
on (top to bottom) scheutz, millennium and
small

0

2

4

6

8

10

2 3 4 5 6 7 8

linear speedup
wait

park x 2
park x 3
leapfrog

leapfrog backoff

0

5

10

15

20

25

30

5 10 15 20

linear speedup
wait

park x 2
park x 3
leapfrog

leapfrog backoff

0

2

4

6

8

10

2 3 4 5 6 7 8

linear speedup
wait

park x 2
park x 3
leapfrog

leapfrog backoff

Figure 4. Speedups for qs (threshold 2)
on (top to bottom) scheutz, millennium and
small

7

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

c© 2008, Copyright held by the individual authors 123

0

2

4

6

8

10

2 3 4 5 6 7 8

linear speedup
wait

park x 2
park x 3
leapfrog

leapfrog backoff

0

5

10

15

20

25

30

5 10 15 20

linear speedup
wait

park x 2
park x 3
leapfrog

leapfrog backoff

0

2

4

6

8

10

2 3 4 5 6 7 8

linear speedup
wait

park x 2
park x 3
leapfrog

leapfrog backoff

Figure 5. Speedups for stress on (top to bot-
tom) scheutz, millenniumand small for n = 20
and d = 17

0

2

4

6

8

10

2 3 4 5 6 7 8

linear speedup
wait

park x 2
park x 3
leapfrog

leapfrog backoff

0

5

10

15

20

25

30

5 10 15 20

linear speedup
wait

park x 2
park x 3
leapfrog

leapfrog backoff

0

2

4

6

8

10

2 3 4 5 6 7 8

linear speedup
wait

park x 2
park x 3
leapfrog

leapfrog backoff

Figure 6. Speedups for stress on (top to bot-
tom) scheutz, millennium and small for n =
200 and d = 17

8

PAPER SESSION 4: LIBRARY SUPPPORT FOR MULTICORE COMPUTING

124 c© 2008, Copyright held by the individual authors

	Preface
	Program committee
	Workshop Program
	Paper session 1: Programming on specialized platforms
	A Domain-specic Approach for Software Development on Multicore Platforms Jerker Bengtsson and Bertil Svensson
	On Sorting and Load-Balancing on GPUs Daniel Cederman and Philippas Tsigas
	Non-blocking Programming on Multi-core Graphics Processors Phuong Hoai Ha, Philippas Tsigas, and Otto J. Anshus

	Paper session 2: Language and compilation techniques
	OpenDF - A Dataflow Toolset for Reconfigurable Hardware and Multicore Systems Shuvra S. Bhattacharyya, Gordon Brebner, Johan Eker, Jörn W. Janneck, Marco Mattavelli, Carl von Platen, and Mickael Raulet
	Optimized On-Chip Pipelining of Memory-Intensive Computations on the Cell BE Christoph W. Kessler and Jörg Keller
	Automatic Parallelization of Simulation Code for Equation-based Models with Software Pipelining and Measurements on Three Platforms Håkan Lundvall, Kristian Stavåker, Peter Fritzson, and Christoph Kessler

	Paper session 3: Coherence and consistency
	A Scalable Directory Architecture for Distributed Shared Memory Chip Multiprocessors Huan Fang and Mats Brorsson
	State-Space Exploration for Concurrent Algorithms under Weak Memory Orderings Bengt Jonsson
	Model Checking Race-Freeness Parosh Aziz Abdulla, Frédéric Haziza, and Mats Kindahl

	Paper session 4: Library suppport for multicore computing
	NOBLE: Non-Blocking Programming Support via Lock-Free Shared Abstract Data Types Håkan Sundell and Philippas Tsigas
	LFTHREADS: A lock-free thread library Anders Gidenstam and Marina Papatriantafilou
	Wool - A Work Stealing Library Karl-Filip Faxén

