
Accelerating Graphics in the Simics Full-system Simulator

Eric Nilsson∗, Daniel Aarno†, and Erik Carstensen‡

Software and Services Group
Intel Corporation

Stockholm, Sweden
Email: {∗eric.nilsson, †daniel.aarno, ‡erik.carstensen}@intel.com

Håkan Grahn
Department of Computer Science and Engineering

Blekinge Institute of Technology
Karlskrona, Sweden

Email: hakan.grahn@bth.se

Abstract—Virtual platforms provide benefits to developers
in terms of a more rapid development cycle since develop-
ment may begin before next-generation hardware is available.
However, there is a distinct lack of graphics virtualization in
industry-grade virtual platforms, leading to performance issues
that may reduce the benefits virtual platforms otherwise have
over execution on actual hardware.

This paper demonstrates graphics acceleration by the means
of paravirtualizing OpenGL ES in the Wind River Simics full-
system simulator. We propose a solution for paravirtualized
graphics using magic instructions to share memory between
target and host systems, and present an implementation utiliz-
ing this method. The study illustrates the benefits and draw-
backs of paravirtualized graphics acceleration and presents a
performance analysis of strengths and weaknesses compared
to software rasterization. Additionally, benchmarks are devised
to stress key aspects in the solution, such as communication
latency and computationally intensive applications.

We assess paravirtualization as a viable method to accel-
erate graphics in system simulators; this reduces frame times
up to 34 times compared to that of software rasterization.
Furthermore, magic instructions are identified as the primary
bottleneck of communication latency in the implementation.

Keywords-simics; full-system simulation; paravirtualization;

I. INTRODUCTION

Virtual platforms are becoming an important tool in the
software industry in order to provide cost-effective time-
to-market gains and meet the ever-shortening product life-
cycles [1], [2], [3], [4]. Virtual platforms deliver these time-
to-market benefits by enabling pre-silicon development [1],
[4] and by providing tools such as deterministic execution,
checkpointing, and reverse execution [4], [5]. These features
are useful for debugging and testing a diverse range of
software, from firmware to end-user applications [3].

There are several techniques to provide fast and func-
tional virtual platforms that are running CPU workloads.
Typical methods include interpretation [6], [7], just-in-time
compilation [5], [7], and hardware-assisted virtualization [5],
[3]. Virtual platforms using these techniques can typically
achieve a simulation performance in the range of 10-1000
million instructions per second [5].

The GPU is a vital part in delivering good user experi-
ences on many devices, ranging from wearable, hand held,

and portable units, to desktop computers. The widespread
use of GPUs and the increasing complexity of these elec-
tronic systems extend the virtualization needs of such de-
vices. However, due to large architectural differences, del-
egating GPU workloads to CPUs may yield poor perfor-
mance.

Instead, by neglecting some hardware compatibility, one
may circumvent the virtual machine and delegate GPU
workloads to the GPU of the simulation host. This way,
host hardware can be utilized in a process known as
”Paravirtualization” [8]. Paravirtualization has been used
to accelerate graphics in the past; most notably, Lagar-
Cavilla et al. accelerate OpenGL 1.5 up to two orders of
magnitude for WMware Workstation and Xen VMMs [9].
To relieve communication bottlenecks, Lagar-Cavilla et al.
suggests using a shared memory model for target-to-host
communications [9].

This paper presents the acceleration of OpenGL ES 2.0 in
the Simics full-system simulator, using magic instructions to
share VM memory directly from a simulated RAM image.
The implementation is evaluated using performance bench-
marks stressing important attributes of the devised solution,
and subsequently compared to software rasterization on
the simulated platform. Furthermore, the study identifies
performance bottlenecks that may obstruct paravirtualized
real-time graphics. The results presented in this paper show
performance improvements of up to 34 times compared to
software rasterized counterparts.

II. METHODS AND RESULTS

OpenGL paravirtualization in Simics encompasses three
overall components: the target system libraries, the host
system libraries, and a communications channel between
them named the ”Simics pipe”. Most OpenGL glue code, on
both target and host, is generated by a program from specifi-
cation files detailing function signatures and arguments. An
exception is methods that require state saving, which are
implemented manually.

The target system libraries implement the OpenGL and
EGL (the interface to the underlying platform windowing
system) APIs; unmodified binaries in the target system are
linked with these libraries as usual. However, instead of



communicating with the graphics device, the target sys-
tem libraries serialize and forward the command stream
to the simulation host. The transmission is not necessarily
performed at once, nor in the designated order, because
of uncertainties regarding argument data proportion. For
instance, the number of vertices to be rendered does not
have to be apparent at a given time, but implicit in a later
OpenGL invocation. Accordingly, certain paravirtualized
function calls have to be delayed until more information
is known about the OpenGL state.

In collaboration with the target system libraries, the host
system libraries decode and interpret the received byte
stream. Subsequently, the host system libraries may safely
perform the relayed workload and return any results to the
target system.

Both target and host system libraries maintain a subset of
the OpenGL state, such as bound vertex buffers and attribute
properties. These states must be maintained because of the
asynchronous nature of the command stream.

Because of differences in the creation and maintenance
of windows on different platforms (Fedora, Android, etc.),
the window to which the target OpenGL application renders
is kept on the simulation host. This is problematic; the
target system libraries must communicate with a fraudulent
window in the simulation host – and the native target
window. For example, it is important that the native window
reports successful initialization, lest the OpenGL application
concludes an error and quits. The issue is overcome by
selectively overriding symbols in the target libraries so that
a subset of functions may be overloaded. This way, one may
extend the original EGL library to invoke the simulation host
prior to performing its actions.

To communicate with the simulation host, the Simics pipe
uses ”magic instructions”. A magic instruction is a nop
instruction that invokes a callback-method in the simulation
host when executed on simulated hardware [3]. Because of
the inherent performance demands brought on by real-time
graphics, they constitute a suitable communications medium
for rendering information between target and host systems.

During a magic instruction, we may utilize any available
registers; the number and size of registers is the data-sharing
bottleneck of this method. Thus, we transmit the starting
address of the serialized command stream in a 64-bit register.
Having escaped the simulation context, Simics can translate
the transmitted virtual address to a physical one using the
virtual machine MMU. Consequently, the physical address
can be used to locate the memory page in the simulated
RAM image. The pages constituting the buffer are locked
in RAM, protecting the buffer from being paged to the
swap area. This ensures that pages are not swapped to
disk when the simulation state is paused. Subsequently, all
memory pages are continuously retrieved by iterating the
original virtual address with the target page size, effectively
traversing the virtual memory table.

A. Experimental Methodology

To evaluate the implementation, performance of par-
avirtualized graphics in Simics is compared to software
rasterization. Simics itself simulates an Intelr CoreTM i7
processor and an Intelr X58 chipset. Throughout simula-
tion, hardware-assisted virtualization using KVM runs x86
instructions natively on the host hardware. Like the host
system, the simulation target runs Fedora 19 Linux and use
the Mesa llvmpipe driver software rasterizer [10].

The experiments are performed on a system with the
following specifications:

• Intelr CoreTM i7-4770HQ
• Intelr IrisTM Pro Graphics 5200
Two benchmarks are devised on-site to stress suspected

bottlenecks: one benchmark performs a large number of
OpenGL invocations, while the other has a computationally
intensive workload. Given a target frame time of 16 ms,
the benchmarks are configured to run at 10 to 20 ms per
frame when hardware accelerated on the host system; a
16 ms frame time roughly corresponds to 60 frames per
second. The benchmarks are shaped this way to reflect the
expected load of a real-time interactive application. As such,
the benchmarks should be representative of typical scenarios
induced by modern applications using OpenGL, such as
responsive UIs. The benchmark suite is open source [11].

For each benchmark, the elapsed times of 1000 frames
are collected. To gain some understanding on how well the
given performance scales, three instances of each benchmark
are run with smaller and larger input data, tuned to yield
approximately half and double frame time. The specifics of
each benchmark are described below.

Benchmark: Chess: To stress the latency between tar-
get and host systems, the ’Chess’ benchmark performs a
multitude of lightweight OpenGL invocations per frame,
rendering a grid of chess-like tiles. For each frame rendered,
depending on the number of tiles, the benchmark performs
a large number of magic instructions. This induces high
utilization of the Simics Pipe, which is intended to stress
suspected magic instruction overhead.

A long sequence of draw calls is representative of drawing
multitudes of shapes with OpenGL, such as a UI. Ac-
cordingly, the benchmark is suitable for the purpose of
representing a large number of graphics invocations.

The Chess benchmark is run with 60× 60, 84× 84, and
118 × 118 tiles. In every frame, 9 magic instructions are
performed for each tile.

Benchmark: Julia: To stress the computational prowess
of paravirtualized graphics in Simics, the ’Julia’ benchmark
performs a lone, computationally intensive, OpenGL invoca-
tion that renders the Julia fractal [12]. The load of a fractal
computation can easily be tuned by adjusting the number
of iterations per pixel. Therefore, the Julia benchmark is
suitable to profile a computationally intensive workload.



Table I. SOFTWARE RASTERIZATION RESULTS IN SIMICS.

Benchmark Input Elapsed time (ms)
Min Max Std Avg

Chess
60× 60 tiles 76.88 439.27 19.48 114.41
84× 84 tiles 167.36 402.87 9.38 192.08

118× 118 tiles 238.86 701.16 17.63 259.54

Julia
225 iterations 397.82 2183.99 83.45 461.64
450 iterations 744.91 2662.67 62.88 776.41
900 iterations 1338.40 2669.19 113.87 1415.23

Table II. PARAVIRTUALIZATION RESULTS IN SIMICS.

Benchmark Input Elapsed time (ms)
Min Max Std Avg

Chess
60× 60 tiles 185.19 362.23 11.19 201.85
84× 84 tiles 309.08 401.26 15.51 336.83

118× 118 tiles 612.77 719.14 14.12 650.67

Julia
225 iterations 21.89 47.65 3.82 26.56
450 iterations 38.79 101.56 10.01 49.83
900 iterations 34.74 156.35 8.55 41.81

The Julia benchmark is run with 225, 450, and 900
iterations, all of which induce 16 magic instructions per
frame.

B. Threats to Validity

Because of complications caused by virtual time, mea-
suring time in system simulation sometimes dictate special
measures. For instance, in terms of real-time rendering, the
observer is far more interested in a frame rate relative to
wall-clock time rather than virtual time.

In order to measure frame time in relation to wall-clock
time, profiling must take place outside of the simulation.
One way of achieving this is to listen in on activity passing
through a target serial port; this is a traditional front-end
to the machine. In this way, a simulation breakpoint can be
triggered at the occurrence of a certain sequence of bytes
written to a UART serial port. This is the method used to
measure frame time in Simics.

When using serial ports in this manner, one may introduce
a profiling cost. For example, file descriptors do not im-
mediately transmit a byte sequence over the system UART.
For our set-up, we measure this overhead cost to be, on
average, 1.5 ms. This average is subtracted from presented
measurements.

C. Results

Results accumulated from software rasterized and paravir-
tualized execution are presented in Tables I and II. In Fig. 1,
the results are presented as histograms, visualizing elapsed
time in milliseconds to sample density. For each experiment,
collected frame time samples (1000) are subdivided into 100
bins. Any measurements outside of the standard deviation
are not included in the figures.

Fig. 1 indicates that the Chess benchmark, when software
rasterized, yields a broad sample distribution, seemingly
distributed around a single point. The right-hand side of
the graph, showing impaired performance induced by par-
avirtualization, visualize a distribution decrease. This is
supported by the data presented in Table II. We observe
that software rasterization outperforms its paravirtualized
counterpart, regardless of the number of tiles rendered. The
benchmark is devised to identify any bottlenecks related to
the number of paravirtualized function calls. Evidently, the
prediction of a target-to-host communication latency issue
is confirmed.

In Simics, magic instructions incur a context switch cost
when resuming execution on the host. This causes the
simulation to no longer execute natively, which inhibits
performance improvements granted by hardware-assisted
virtualization. It also entails that Simics can no longer utilize
JIT, forcing the simulator to rely on interpretation. This
explains why magic instructions have such a great impact
on performance.

By measuring the elapsed time of 1000 magic instructions,
we conclude that this induces an average overhead of 5 ms
(not taking into account any profiling cost). These findings
indicate that magic instruction overhead could account for
the majority of elapsed frame time.

Fig. 1 shows that the Julia benchmark yields double to
triple peak sample density distribution, both in software
rasterized and paravirtualized Simics. What causes this
behavior is unclear; the fractal algorithm should perform
roughly equally frame-to-frame. The benchmark is intended
to demonstrate how paravirtualization performs under com-
putational stress, which is where the benefits of hardware
acceleration should be made apparent. Accordingly, weak-
nesses in software rasterization is highlighted with frame
times above the two second mark; corresponding paravirtu-
alized maximum frame time measures a mere 156 ms. This
confirms performance improvements of using paravirtualiza-
tion with magic instructions to accelerate graphics.

These measurements are collected using hardware-
assisted virtualization for accelerated performance. If
hardware-assisted virtualization is not available, such as
if the simulated platform is other than x86, we expect a
major hit to performance. For software rasterization, this
impact accounts for frame time increases well over two
orders of magnitude. Meanwhile, performance impacts to
paravirtualized performance is often not significant, some-
times as low as one third of the original frame time. For
the Chess benchmark, paravirtualized frame time increases
with up to one order of magnitude, one order less than the
performance hit to software rasterization. Across the board,
paravirtualization suffer less performance impact, rendering
the benchmarks up to three orders of magnitude faster
than software rasterization. We conclude that the effects
of paravirtualization increase by one order of magnitude
without hardware-assisted virtualization. This entails that
workloads that are otherwise sub-optimal for paravirtual-



95 100 105 110 115 120 125 130

6
0
x
6
0

Software Rasterization

190 195 200 205 210

Paravirtualization

185 190 195 200

8
4
x
8
4

320 325 330 335 340 345 350

240 245 250 255 260 265 270 2751
1
8
x
1
1
8

635 640 645 650 655 660 665

400 420 440 460 480 500 520 540

2
2
5

22 23 24 25 26 27 28 29 30 31

740 760 780 800 820 840

4
5
0

40 45 50 55 60

1350 1400 1450 1500

9
0
0

34 36 38 40 42 44 46 48 50

Figure 1. Sample histograms depicting 1000 frames subdivided into 100
bins, presented in milliseconds. Top 2× 3: Chess. Bottom 2× 3: Julia.

ization – those performing a large amount of function
invocations – bring about performance improvements. Thus,
the impact of magic instruction overhead is reduced, likely
because a costly context switch is not inflicted on Simics.
We reason that some software rasterized workloads (Chess)
may attain decent simulation performance simply because
of a fast simulator; when native execution is not available,
neither JIT nor interpretation may attain the same speeds as
paravirtualization.

The samples collected without hardware-assisted virtual-
ization are not presented in detail in this paper.

III. CONCLUSION

This paper presents graphics acceleration by the means
of paravirtualization in the Simics full-system simulator.
The implementation generates EGL and OpenGL libraries
and communicates with low-latency magic instructions. To
evaluate the implementation, benchmarks are developed to
highlight solution weaknesses and strengths; an analysis of
results is presented, as well as benefits and drawbacks of
paravirtualized methodology.

In Section II-C, compiled results showcase great improve-
ments for computationally intensive graphics. Performance
is improved by up to 34 times, reducing frame time from
1415 ms to 42 ms; a frame time of 42 ms roughly cor-
responds to 24 FPS. Furthermore, paravirtualization lower
maximum frame times, significantly improving standard de-
viation. Compared to software rasterization, paravirtualiza-
tion is estimated to obtain an additional order of magnitude
faster frame time without hardware-assisted virtualization.

Along with performance improvements, Section II-C de-
tail a communications latency issue inherent in magic in-
struction overhead. This emerges as a performance bottle-
neck in great numbers of paravirtualized function invoca-
tions. While magic instructions are – evidently – fast enough
to accommodate real-time graphics, improvements to this
overhead should greatly improve their capacity.

To conclude: this paper demonstrates accelerated graphics
in Simics using paravirtualization with magic instructions as
a communications bridge. Graphics acceleration in Simics
is relevant because it facilitates debugging, testing, and
profiling of software that depends on GPU utilization. Con-
sequently, paravirtualization is practical because it offers a
good trade-off between development cost and performance.
The findings of this paper may help in extending the use
of Simics to application development dependent on GPUs,
including computer graphics and general-purpose workloads.

The benefits of paravirtualized graphics are performance
improvements of up to two orders of magnitude, paired with
larger benefits in non-hardware accelerated use-cases. Magic
instruction overhead is identified as the main performance
bottleneck, resulting in a weakness to large amounts of
framework invocations. Accordingly, the findings of this pa-
per contribute to our understanding of the difficulties facing
graphics acceleration in virtual platforms by demonstrating
the use of paravirtualization as a successful formula to
accelerate graphics in Simics.

REFERENCES

[1] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hållberg, J. Högberg, F. Larsson, A. Moestedt,
and B. Werner, “Simics: A full system simulation platform,”
Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002.

[2] J. J. Yi and D. J. Lilja, “Simulation of computer architectures:
Simulators, benchmarks, methodologies, and recommenda-
tions,” IEEE Trans. Comput., vol. 55, no. 3, pp. 268–280,
Mar. 2006.

[3] R. Leupers and O. Temam, Processor and System-on-Chip
Simulation, 1st ed. Springer Publishing Company, Incorpo-
rated, 2010.

[4] D. Aarno and J. Engblom, Software and System Development
using Virtual Platforms: Full-System Simulation with Wind
River Simics.

[5] ——, “Simics* overview,” Intel Technology Journal, vol. 17,
no. 2, pp. 8–31, Dec. 2013.

[6] J. E. Smith and R. Nair, “The architecture of virtual ma-
chines,” Computer, vol. 38, no. 5, pp. 32–38, May 2005.

[7] P. S. Magnusson, F. Dahlgren, H. Grahn, M. Karlsson, F. Lars-
son, F. Lundholm, A. Moestedt, J. Nilsson, P. Stenström,
and B. Werner, “Simics/sun4m: A virtual workstation,” in
Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ser. ATEC ’98, 1998, pp. 10–10.

[8] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, “Paravir-
tualization for hpc systems,” in Proceedings of the 2006
International Conference on Frontiers of High Performance
Computing and Networking, ser. ISPA’06, 2006, pp. 474–486.

[9] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and
E. de Lara, “Vmm-independent graphics acceleration,” in
Proceedings of the 3rd International Conference on Virtual
Execution Environments, ser. VEE ’07, 2007, pp. 33–43.

[10] Mesa Project, “llvmpipe,” Available: http://bit.ly/19G8Xbp,
accessed: 21-04-2015.

[11] Intel, “Opengl es 2.0 benchmarks,” Available: http://bit.ly/
IntelOpenGLES, accessed: 14-04-2015.

[12] J. Tsiombikas, “Fast and easy high resolution fractals with a
pixel shader,” Available: http://bit.ly/1xnKMcl, accessed: 21-
04-2015.


