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Abstract

Statistical fault prediction models and expert estimations are two popular methods for deciding where to focus the fault detection
efforts when the fault detection budget is limited. In this paper, we present a study in which we empirically compare the accuracy of fault
prediction offered by statistical prediction models with the accuracy of expert estimations. The study is performed in an industrial setting.
We invited eleven experts that are involved in the development of two large telecommunication systems. Our statistical prediction models
are built on historical data describing one release of one of those systems. We compare the performance of these statistical fault predic-
tion models with the performance of our experts when predicting faults in the latest releases of both systems. We show that the statistical
methods clearly outperform the expert estimations. As the main reason for the superiority of the statistical models we see their ability to
cope with large datasets. This makes it possible for statistical models to perform reliable predictions for all components in the system.
This also enables prediction at a more fine-grain level, e.g., at the class instead of at the component level. We show that such a prediction
is better both from the theoretical and from the practical perspective.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The high cost of finding and correcting faults in software
projects has become one of the major cost drivers of soft-
ware development. In literature, we can find many case
studies, which show that the activities connected with fault
detection account for a significant part of the project bud-
get. On the other hand, software projects often face budget
limitations that put stringent restrictions on extensive and
expensive quality assurance. To achieve the highest possi-
ble product quality, software developers need to decide
where to focus their fault detection efforts in order to detect
as many faults as possible within a given budget.

If we assume that the cost of fault detection (e.g., inspec-
tion) for a code unit (e.g., a class or a component) is related
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to the size of this unit, we can see that fault detection is
most efficient when it is focused on the code units with
the highest fault density, i.e., with the largest number of
faults per line of code. This assumption implies that if
our fault detection budget is limited and we can not cover
all the code in the system then ideally we should perform
our fault detection activities (e.g., inspections) on code
units in the order of their decreasing fault density. This
would guarantee that we detected as many faults as it
was possible within given budget.

It is commonly known that faults are very rarely distrib-
uted evenly in software systems. Typically, the majority of
faults can be found in a minority of the code units (for an
overview of research concerning this issue see Fenton and
Ohlsson, 2000). Therefore, when the budget is limited, fault
detection should be performed on the code units in order of
their decreasing fault density. To plan such fault detection,
we must be able to predict the fault density of the code
units.
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One approach to perform fault density prediction is to
build statistical fault prediction models. Such models
attempt to predict fault-proneness of the code units based
on their characteristics, e.g., size, complexity, etc. This
approach is very popular in academia – there is a lot of
research describing and evaluating such models (Briand
et al., 2000; Cartwright and Shepperd, 2000; Chidamber
et al., 1998; El Emam et al., 2001; Fioravanti and Nesi,
2001; Khoshgoftaar et al., 2000a,b; Nikora and Munson,
2003; Ping et al., 2002; Zhao et al., 1998). Our own experi-
ence shows, however, that fault prediction models are less
popular and not so widespread in industry.

Another approach to predict the fault-proneness of the
code units are expert estimations. In this approach, human
experts suggest the order in which the code units should be
analyzed. The experts usually base such decisions on their
experience and knowledge about the system. In contrary
to the statistical prediction models, this approach seems
to be very popular in industry but is not well researched
(for an interesting discussion why expert estimations are
popular in industry as well as an overview of studies related
to performing expert estimations in software projects see
Hughes, 1996).

Even though an expert judgement is an accepted and a
common way of performing estimations in many software
engineering related areas (Boehm, 1981; Hughes, 1996;
Shepperd and Cartwright, 2001) we have failed to find
any report presenting a comparative evaluation of the
applicability of expert judgments vs. statistical prediction
models for predicting the fault-proneness of individual
code units. Therefore, in this study our goal is to compare
the accuracy of the fault prediction made by statistical fault
prediction models with the accuracy of expert estimations.

The study is industry based. As study objects we have
selected two large software systems from the telecommuni-
cation domain developed at Ericsson. We denote them as
System A and System B. We use one release of System A
and two releases of System B (called System B1 and System
B2). System B1 is used to build our statistical prediction
models. The models are evaluated on System A and System
B2. To perform the expert estimation we have invited six
persons involved in the development of System A and five
persons involved in the development of System B2.

Each system release that we examine in this study intro-
duces a significant amount of new functionality. Typically,
the new functionality is introduced either as new classes or
as modifications of existing classes. In our dataset we have
found that code inserted as modifications of existing classes
accounts for a minority of the code introduced in each sys-
tem’s release. At the same time the modified classes con-
tained a majority of the faults (see Section 3.1 for
details). Therefore, in this study we focus specifically on
predicting fault density in the modified code.

The reminder of this paper is structured as follows. In
Section 2, we present the work done by others in the area
of fault prediction. Section 3 contains more detailed infor-
mation concerning the systems and the experts in our
study. In Section 4, we introduce the methods that we
use in this study. In Section 5, we present the results, and
in Section 6, we discuss our findings and their validity. Sec-
tion 7 contains the most important conclusions from our
study.
2. Related work

A lot of work has been done in the area of fault detec-
tion improvement. A large portion of this research focuses
on building fault prediction models. Depending on the out-
put (the dependant variable), these fault prediction models
belong to one of the following groups (Khoshgoftaar and
Seliya, 2003):

• Quality prediction models – these models attempt to
quantify the quality of the code unit, e.g. by predicting
the number of faults in the code unit. Examples of such
models can be found in Cartwright and Shepperd
(2000); Chidamber et al. (1998); Nikora and Munson
(2003); Ping et al. (2002); Zhao et al. (1998).

• Classification models – these models classify code units
as fault-prone or not, i.e., they predict if the code unit
contains faults. Examples of such models can be found
in Briand et al. (2000); El Emam et al. (2001); Fioravanti
and Nesi (2001); Khoshgoftaar et al. (2000a,b).

The models often operate at different levels of the logical
structure of the code. There are models that predict
fault-proneness of classes (Basili and Briand, 1996; Briand
et al., 1999; Cartwright and Shepperd, 2000; El Emam
et al., 2001; Li et al., 2001; Zhao et al., 1998), modules
(Fenton and Ohlsson, 2000; Khoshgoftaar et al., 2002;
Khoshgoftaar et al., 2000a,b; Ohlsson et al., 1998),
components (Ohlsson et al., 2001), or files (Ostrand et al.,
2005).

The prediction models are usually based on different
characteristics of the code units. These characteristics are
commonly presented in the form of different code metrics
(e.g., Khoshgoftaar et al., 2000a,b; Pighin and Marzona,
2005; Zhao et al., 1998) or, for classes, variations of
C&K Chidamber and Kemerer (1994) object oriented met-
rics (e.g., Briand et al., 2000; El Emam et al., 2001; Zhao
et al., 1998). There are also studies that take historical
information about fault-proneness of code units into
account (e.g., Pighin and Marzona, 2003; Pighin and Mar-
zona, 2005).

The construction of a prediction model usually starts
with the selection of the independent variables (i.e., the
variables that are used to predict a dependant variable).
The initial set of independent variables is often large. A
common assumption is that models based on a large num-
ber of variables are less robust and have a lower practical
value (more metrics have to be collected) (Cartwright and
Shepperd, 2000; Fenton and Neil, 1999). Therefore, some
authors (e.g., Cartwright and Shepperd, 2000) focus on
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building only simple models, containing one or at most two
predicators (independent variables).

A commonly used method to select the best fault
predicators is correlation analysis (Cartwright and Shep-
perd, 2000; El Emam et al., 2001; Zhao et al., 1998). The
methods for building prediction models range from uni-
and multivariate linear regression (e.g., Cartwright and
Shepperd, 2000; Chidamber et al., 1998; Nikora and
Munson, 2003; Ohlsson et al., 1998; Ping et al., 2002;
Zhao et al., 1998) and logistic regression (e.g., Briand
et al., 2000; El Emam et al., 2001; Fioravanti and Nesi,
2001; Khoshgoftaar et al., 2000a,b) through regression
trees (e.g., Khoshgoftaar et al., 2000a,b; Khoshgoftaar
et al., 2002) to neural networks (e.g., Khoshgoftaar and
Seliya, 2003; SungBack and Kapsu, 1997).

Despite the fact that expert judgements are an accepted
and widely practiced way of performing estimations
(Boehm, 1981; Hughes, 1996; Shepperd and Cartwright,
2001), we have found only very little research that connects
subjective expert estimations with statistical predictions
based on the characteristics of individual code units. The
examples that we have found are studies (Zhong et al.,
2004a,b) in which expert estimations are used together with
statistical analysis as complementary methods – statistical
methods are used to group code units with similar charac-
teristics and then, it is up to an expert to estimate if a given
group of code units is fault-prone. We have, however,
failed to find any report presenting a comparative evalua-
tion of expert judgments and statistical fault prediction
models.

Subjective expert judgements were, however, evaluated
in the context of inspection effectiveness. Inspections effec-
tiveness is approximated by estimating the number of faults
that remain in a software artefact (document, code unit)
after the inspection is completed (Biffl et al., 2000;
El Emam et al., 2000; Thelin, 2004). This estimation can
later be used to decide where to direct the additional qual-
ity assurance efforts (i.e., which artefacts to re-inspect) and,
therefore, these studies are somewhat similar to our study.
Some positive results were reported when using subjective
judgements for estimating inspection effectiveness (Biffl
et al., 2000; El Emam et al., 2000). However, an empirical
evaluation presented in Thelin (2004) showed that objective
methods (e.g., capture-recapture) outperformed such sub-
jective judgements. However, as we see it, it is not entirely
clear if the conclusions from these studies can apply to the
case that is presented in this paper. The experts in those
studies were predicting a different thing, i.e., the actual
number of faults. In those studies, in contrast to our study,
the estimations were made by experts after they performed
an initial inspection of an artefact. Also, the studies pre-
sented above were experimental and for that reason the
sizes of systems under study were very small as compared
to our study (our results indicate that in case of such stud-
ies ‘‘size matters’’ – see Section 6.1). Also in Biffl et al.
(2000) and Thelin (2004) the estimations concerned the
number of faults in the documentation, not in the code.
3. Study objects

3.1. Systems under study

In this study we use the most current release of System A
and two latest releases of System B. These are large telecom-
munication systems. The sizes of these systems are about 800
classes (500 KLOC), and over 1000 classes (600 KLOC) for
System A and System B, respectively. Both systems are
mature and have been on the market for over 6 years. Over
that time the systems have evolved – a number of releases of
each of them have been produced. Both systems are imple-
mented in object oriented technology using the same pro-
gramming language. One of the systems has been
developed in Sweden. The other one has mostly been devel-
oped in China and is currently being transferred to Sweden.

The systems are logically divided into a number of sub-
systems. Each subsystem is built of components. Each
component consists of a number of classes. The numbers
of components that have been modified in the examined
releases of the products are 35 in System A, 41 in System
B1, and 43 in System B2. That corresponds to 249 modified
classes in System A, 319 modified classes in System B1, and
180 modified classes in System B2. The information about
faults is available at the class level. Therefore, we are able
to assign faults to the particular classes and, through them,
to the components.

When analyzing the code and the fault data we have
found that in all three cases (System A, System B1, and
System B2) the most fault-prone code is the code intro-
duced as modifications of existing classes. In System A,
the code introduced as modifications of the classes from
the previous release accounts for 37% of the code written
(63% of the new code was introduced as new classes). These
37% of the code contained 62% of the faults found in the
project release that we examine in this study. A similar
trend has also been observed in System B. In System B1,
about 44% of the introduced code modifies classes from
the previous release. These 44% contain 78% of all faults.
In System B2, the modified code accounted for 45% of code
introduced in this release. The modified classes in System
B2 contained 59% of faults. It seems that in the systems
under study the modified code units were more fault-prone
than new ones. Therefore, in this study we focused on pre-
dicting fault-densities only in modified code units.

3.2. Participating experts

In total, we have invited eleven experts to this study. Six
of them have been involved in the development of System
A, and five of them have been involved in the development
of System B2. The experts were appointed by members of
the respective software development projects as the persons
most qualified to perform such predictions. All of our
experts have several years of working experience with tele-
communication systems. Their main tasks are system
design and implementation. All our experts are familiar
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with the architectures and functionalities of their respective
systems. They also know the scopes of the releases under
study. They know what functionality was added in the
releases they were asked to perform estimations for.

The major difference between experts involved in per-
forming estimations concerning System A and those per-
forming estimations concerning System B2 is their
experience with the respective products. System B2 is cur-
rently being transferred from an offshore development site.
Therefore, all of the experts involved in performing estima-
tions concerning System B2 have limited experience (up to
one year) of working with System B2, as compared to the
six-year experience of the experts involved in the develop-
ment of System A.

At the time of the study, the development of the examined
releases of the systems was finished. One risk of such study
set-up is that the experts may basically know the fault distri-
bution. We believe it has not been the case in our study.
First, such statistics are actually never made public in a pro-
ject. Second, the work in the project is organized according
to the ‘‘component responsibility’’ principle – each devel-
oper is fully responsible for one or more components.
Because of that, in practice, when faults are discovered
and reported the developers do not have a global picture
concerning the fault distribution – they are only interested
in information concerning the faults that were found in the
components they are responsible for at a given point of time.
Therefore, their predictions concerning the faults made in
this study are not based on any global statistics but on their
own ‘‘gut-feeling’’, based on experience and knowledge of a
system under study and the scope of a project.

4. Methods

In this section, we present the methods, which we use in
this study. Section 4.1 presents the methods we used to
Table 1
Metrics collected at the class level

Name Variable Description

Independent metrics

Coup Coupling Number of classes the class is c
NoC Number of children Number of immediate subclasse
WMC Weighted methods per

class
Number of methods defined loc

RFC Response for class Number of methods in the class
DIT Depth of inheritance tree Maximal depth of the class in t

2000)
LCOM Lack of cohesion ‘‘How closely the local methods

Pfleeger, 1997). In the study, LC
2000; Chidamber et al., 1998; G
Ping et al., 2002; Zhao et al., 19

ClassStmt Number of statements Number of statements in the co
MaxCyc Maximum cyclomatic

complexity
The highest McCabe complexity

ClassChg Change Size Number of new and modified L

Dependent variables

Faults Number of faults Number of faults found in the c
FaultDensity Fault density Fault density of the class
build our prediction models. Section 4.2 presents the way
we collected and used the data gathered from our experts.
In Section 4.3, we present the methods we use to evaluate
and compare our prediction models with the estimations
of our experts.

4.1. Building prediction models

Our prediction models are built based on data from Sys-
tem B1. The goal of our models is to predict fault density of
different code units. As we see it, the fault density can be
predicted in two ways:

• By predicting the fault density (Faults/Size) – fault den-
sity is a dependant variable in the model.

• By predicting the number of faults (Faults) and dividing
the predicted number of faults by real size (Size) of the
code unit – Faults are predicted by the model, while size
is measured.

In this study, we have collected data that makes it pos-
sible for us to perform predictions both at the class and at
the component level. The metrics collected at the class level
are summarized in Table 1. These are mostly C&K (Chid-
amber and Kemerer, 1994) design metrics, and code met-
rics. The metrics collected at the component level are
summarized in Table 2. These are simple code metrics mea-
suring the size of the component and the size of the change.
Within the components we have performed measurements
only on those classes that were modified.

Similarly to (Cartwright and Shepperd, 2000), we have
decided to build simple prediction models that are based
on one predicator only. Such models do not suffer from
the risk of multicolinearity, which is a typical risk for mul-
tivariate models (Fenton and Neil, 1999). Therefore, simple
models are usually more likely to be stable over releases.
oupled to (Chidamber and Kemerer, 1994; Fenton and Pfleeger, 1997)
s (Chidamber and Kemerer, 1994)
ally in the class (Chidamber and Kemerer, 1994)

including inherited ones (Chidamber and Kemerer, 1994)
he inheritance tree (Chidamber and Kemerer, 1994; Fenton and Ohlsson,

are related to the local instance variables in the class?’’ (Fenton and
OM was calculated as suggested by Graham (Cartwright and Shepperd,
raham, 1995; Henderson-Sellers et al., 1996; Nikora and Munson, 2003;
98)
de (used as the size metric in our study)

of a function within the class

OC (from previous release)

lass



Table 2
Metrics collected at the component level

Name Variable Description

Independent metrics

CompStmt Number of statements Number of statements in the component (only statements from modified classes
in the component were counted)

CompMeth Number of methods Number of statements in the component (only methods from modified classes
in the component were counted)

CompClass Number of modified
classes

Number of modified classes in the component

CompChg Changesize Number of new and modified LOC (compared to previous release)

Dependent variables

CompFaults Number of faults Number of faults found in the component
CompFaultDensity Fault density Fault density of the component (CompFaults divided by the accumulated

size of the modified classes in the component)
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An additional benefit from using simple models is that they
require less data to be collected, as compared to multivar-
iate models. Obviously, by using one metric only, we delib-
erately give up the potential benefit from introducing more
information, carried by other metrics, into the model. We
selected univariate models based on code characteristics
because, due to their simplicity and easiness of application,
they can be considered as very basic prediction models that
every other prediction method should be benchmarked
against. It is so because any other prediction method will
be at least equally expensive to apply, so in order to justify
its application it would need to be more accurate than sim-
ple univariate regression.

In order to select the best single fault predicators from
the class and the component metrics we perform a correla-
tion analysis. The correlation analysis is commonly used
for that purpose by other researchers (Ohlsson et al.,
1997; Zhao et al., 1998). It quantifies the relation between
two metrics as a value between �1 and 1. An absolute
value of a correlation close to 1 characterizes good predica-
tor variables. The values close to zero indicate a very weak
linear relationship between the variables, and thus a low
applicability of one variable to predict the other.

In this study we build two prediction models. One of
them predicts faults at the class level and the other one pre-
dicts faults at the component level. The models are built
using a univariate linear regression. The univariate linear
regression estimates the value of the dependant variable
(the number of faults or the fault-density) as the function
of an independent variable (Nikora and Munson, 2003):

f ðxÞ ¼ aþ bx ð1Þ

Even though our prediction models attempt to predict the
actual value of fault density, in this study we use this infor-
mation only as an indicator of the order in which the code
units should be analyzed.

4.2. Expert estimation

The expected outcome of the expert estimation is a rank-
ing of the code units according to their decreasing fault
density. Such a ranking makes it possible to compare the
accuracy of an expert estimation with the accuracy of a
prediction made by our prediction models.

In the beginning of this study we have performed a num-
ber of interviews with our experts. The goal was to estab-
lish an appropriate level for performing the expert
predictions. The question was if the experts should perform
estimations at the class or at the component level. It
quickly turned out that the class level presents too fine-
grained information. Even though the experts knew what
each component does, it was very difficult for them to pre-
dict the responsibility of particular classes within compo-
nents. Additionally, the amount of data (249 classes for
System A, and 180 for System B2) was considered unman-
ageable. The number of components is significantly smaller
– there are 35 components with modified classes in System
A and 43 in System B2. Therefore, in this study the expert
estimation is performed only at the component level.

The expert estimation was performed individually by
each of our experts. During the individual rankings the
experts were provided with the list of modified compo-
nents. Additionally, for each component, we enclosed the
information concerning the subsystem to which the compo-
nent belongs, as well as the accumulated size of the modi-
fied classes within the component. The experts were asked
to rank the components according to their decreasing fault
density. Additionally, for System A we managed to orga-
nize a consensus meeting. As input to this meeting we pro-
vided the experts with the individual rankings. The goal of
the consensus meeting was to prepare a common ‘‘joint’’
ranking of components. In all cases, the experts were
allowed to not rank all the components.

Before performing the estimations each of the experts
individually was given a detailed description of the study
in order to assure full understanding of the task. The
experts were informed that their goal is to rank compo-
nents according to their decreasing fault density, not
according to the number of faults or their perceived sever-
ity. To further assure the understanding of the task the
experts were also presented with a detailed description of
how their estimations will be evaluated.



1232 P. Tomaszewski et al. / The Journal of Systems and Software 80 (2007) 1227–1238
4.3. Prediction evaluation

We evaluate the statistical prediction models and the
expert predictions from the perspective of the increase of
the efficiency of fault detection that they provide. We con-
sider a prediction method better if, by following it, we are
able to detect more faults by analyzing the same amount of
code as compared to another prediction method. There-
fore, we evaluate different predictions by plotting the per-
centage of faults that would be detected if analyzing a
system according to a certain prediction method against
the accumulated percentage of code that would have to
be analyzed.

To obtain a point of reference for our evaluations, we
introduce two reference models:

• Random model – the model describing a completely ran-
dom search for faults.

• Best model – the theoretical model that makes only the
right choices about which code unit to analyze first.

The Random model provides a baseline for evaluating
our models, as it describes what results, on average, we could
expect if we analyzed the code not following any model at
all. The Random model is the same for all systems – on aver-
age by analyzing n% of code we find n% of faults. The Ran-
dom model looks the same for the prediction at the class and
at the component level.

The Best model provides a boundary of how good the
prediction can be. In this theoretical model, the code units
are selected according to their actual fault density. The Best
model looks differently for different systems, because it
depends on the actual distribution of faults in the system.
The Best model is also different for predictions at the class
and at the component level. The class level prediction has
finer granularity and therefore, at least theoretically, it is
able to provide more precise results. In this study we assess
the practical value of having finer granularity prediction by
comparing the Best model for components and for classes.

The evaluation of model predictions vs. expert estima-
tions is performed by checking how each particular solu-
tion performs compared to the Best model, the Random
model, and to each other. The closer the prediction is to
the Best model the better it is. If the prediction is better
than the Random model then we can say that using it pre-
sents an improvement over not using any method at all.

5. Results

5.1. Building prediction models

As described in Section 4.1, we begin building our pre-
diction models with selecting the best individual fault pred-
icator. We do that by performing a correlation analysis. In
the correlation analysis we look for the best predicator of
either fault density or the number of faults, as from the
number of faults we can calculate the fault density by
dividing the predicted number of faults by the size of a code
unit (i.e., a class or a component). The correlation analysis
is performed for both class and component level metrics.
The class level metrics are explained in Table 1, and the
component level metrics are explained in Table 2. The
results of correlation analysis are presented in Table 3.

The highest correlations are marked in bold in Table 3.
As it can be noticed, the most promising fault predicator
for both classes and components is the size of the modifica-
tion (ClassChg metric at the class level, and CompChg
metric at the component level). In both cases the correla-
tion coefficients are the highest when predicting the number
of faults. Therefore, we build models that predict the num-
ber of faults and we divide their output by the size of the
respective code unit, i.e., the class or component.

The models based on ClassChg and CompChg are built
using the linear regression. The results of model building
are presented in Table 4. As both models are based on
the information concerning the size of the modification,
not surprisingly they look quite similar.

5.2. Expert estimation

5.2.1. Expert predictions concerning System A

In total, six experts performed predictions concerning
System A. At first they performed ranking of the compo-
nents individually. Later the group of experts was
presented with the task of making one joint decision using
individual results as input to the discussion. The distribu-
tion of ‘‘votes’’ of individual experts, the group consensus,
and the actual ranks of the components are presented in
Table 5. Only those components that were selected by at
least one expert are presented.

In the individual rankings none of our experts ranked all
35 components. In fact, each expert ranked between 5 and
8 components. Altogether, the experts pointed out 15
different components, i.e., none of them had any opinion
about the fault-proneness of the remaining 20 components.
These 15 ranked components together account for about
60% of the code.

The ‘‘group consensus’’ was apparently more difficult to
reach than the individual rankings because the experts
ranked only 4 components. These four components
accounted for about 30% of the code.

It can be noticed that in the individual rankings the
components can be divided into two subgroups. One
subgroup contains components that were selected by a
majority of the experts, i.e., four and more experts pin-
pointed them. These are components with numbers: 2, 4,
5, 6, 10, 12. The other group consists of components
selected only by one or two interviewees, i.e., components
with numbers: 1, 3, 7, 8, 9, 11, 13, 14, 15. It is quite clear
that apart from two exceptions (components 2 and 6) there
is a discrepancy between the ranks assigned by the experts
to the components. This means that, despite the fact that
most experts considered a certain component fault-prone,
their estimation of its fault-density was different.
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All components ranked in the ‘‘group consensus’’ rank-
ing are the components that were selected by the majority
of experts in the individual rankings. Components 2 and 6
were ranked according to the trend from the individual
rankings, which was not surprising because the experts
were quite consistent in ranking them as the first and
the third in the individual rankings. Ranking components
10 and 4 as the second and the fourth, respectively, must
have been an outcome of the group discussion, because
such a ranking was not suggested by any individual
expert.

5.2.2. Expert predictions concerning System B2

Five experts performed predictions concerning System
B2. Their individual rankings together with the actual
ranks of the components are presented in Table 6. Only
those components that were selected by at least one expert
are presented. Out of 43 components that were modified in
System B2, the experts pointed out 16 components, i.e.,
none of our experts had any opinion regarding remaining
27 components. The 16 components selected by our experts
account for about 66% of the code.

Similarly to the predictions concerning System A, in
System B2 the ranked components can be divided into
two subgroups. One subgroup consists of the components
that were selected by the majority of experts, i.e., that were
selected by at least 3 experts. To this group belong compo-
nents with numbers: 2, 5, 6, 8, 12. The other subgroup con-
sists of components that were selected by the minority of
our experts. These are components with numbers: 1, 3, 4,
7, 9, 10, 11, 13, 14, 15, 16.

It seems that the agreement concerning the rankings was
quite low among the experts that performed predictions in
System B2. From the components selected by the majority
of the experts, the highest agreement was achieved for the
components with numbers 5 and 12. We see this agreement
as weaker, as compared to the agreement concerning com-
ponents 2 and 6 in System A. This is, however, our subjec-
tive judgment only.

5.3. Evaluation of prediction

Our prediction starts with building the reference models.
For both systems we build three reference models, one
describing an average result of random picking of code
units for analysis (Random model), and two models
describing the theoretical best result that can be obtained.
One of them describes the maximum that can be obtained
when predicting faults at the class level (Best model class),
the other when predicting at the component level (Best
model component).

The reference models created for System A are presented
in Fig. 1. The reference models created for System B2 are
presented in Fig. 2. As can be noticed, both graphs look
similar, and some common conclusions can be drawn for
both systems. In both systems, the Random model is quite
far from the best possible model, which indicates that there



Table 4
Prediction models build in the study

Model name Prediction level Model calculated Model applied

ComponentPred Component Faults = 0.002 * ComChg + 0.209 FaultDensity = (0.002 * ComChg + 0.209)/CompStmt
ClassPred Class Faults = 0.002 * ClassChg + 0.018 FaultDensity = (0.002 * ClassChg + 0.018)/ClassStmt

‘‘Prediction level’’ indicates if the models works at class or at component level. ‘‘Model calculated’’ is the model obtained by linear regression. ‘‘Model
applied’’ is the transformation of the ‘‘Model calculated’’ so that it predicts fault density instead of the number of faults.

Table 5
The rankings of individual experts and the joint ranking of all experts

Component

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Expert1 ranking 1 4 2 3 5
Expert2 ranking 3 1 2 4 5
Expert3 ranking 5 3 6 7 1 2 4
Expert4 ranking 2 6 3 1 5 4 7
Expert5 ranking 3 5 1 2 4 6 7 8
Expert6 ranking 4 1 2 5 7 8 3 6

Only 15 components out of 35 were selected, and only those components are presented in the table below. Lower rank value indicates higher fault-density
in the component predicted by expert. The components are presented in the order of their decreasing actual fault density.

Table 6
The rankings of individual experts concerning System B2

Component

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Expert1 ranking 1 4 3 2
Expert2 ranking 4 1 3 6 2 5
Expert3 ranking 1 3 4 2
Expert4 ranking 8 9 3 2 7 1 4 5 6 9 10 11
Expert5 ranking 2 4 5 1 3

16 components out of 43 were selected, and only those components are presented in the table below. Lower rank value indicates higher fault-density in the
component predicted by expert. The components are presented in the order of their decreasing actual fault density.
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is large room for efficiency improvement that can be filled
by an accurate fault prediction. For example, by analyzing
20% of the code randomly we can find 20% of faults. Ide-
ally, in both systems by analyzing the most fault-prone 20%
of the code we should be able to find up to 70% of the
faults in case of the class level prediction (see Best model
class in Figs. 1 and 2), and up to about 50% of the faults,
if the prediction is made at the component level (see Best
model component in Figs. 1 and 2).

Although theoretical, the higher maximum possible
improvement achieved by predicting at the class level indi-
cates that the class level prediction should be able to give
better results. The class level prediction is made based on
more fine-grained information and, therefore, it is more
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precise. From Fig. 1 we see that, theoretically, the best
component level prediction is capable of providing about
two-third of the improvement over the random model
offered by the best class level prediction (in Fig. 1 the dis-
tance between Best model component and Random model
is more or less equal to 2/3 of the distance between the Best
model class and the Random model). The gain from using
a class level prediction is even more visible in System B2. In
Fig. 2, we can see that the best component level prediction
can be only half as good as the best class level prediction.
The reader must bear in mind that this discussion concerns
the best possible models that predict fault density at the
respective code unit levels. It does not reflect the perfor-
mance of our models.

The evaluation of expert estimations and our prediction
models when applied to System A is presented in Fig. 3. In
Fig. 3, we present all the individual expert estimations,
‘‘group consensus’’ estimation, both of our statistical pre-
diction models (ClassPred, ComponentPred), and three ref-
erence models (Random model, Best model class, and Best
model component).

From Fig. 3, we can conclude that both statistical pre-
diction models clearly outperform the expert estimations.
They not only offer higher accuracy in the range of code
covered by any of the expert estimations (approximately
up to 50% of code of System A) but also provide predic-
tions that are significantly better compared to the Random
model for the rest of the code. By comparing ClassPred
with the best of the expert estimations for the percentage
of code covered by the expert estimations we can see that
ClassPred offers three times as large improvement over
the Random model as the best of expert estimations.

Other findings from Fig. 3 concern the practical gain
from using more fine grained information and predicting
at the class level. As we can see there is a clear gain con-
nected with predicting at the class level. For example, for
the range of code covered by expert estimations the gain
from using ClassPred is almost equal to the maximum pos-
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Fig. 3. Statistical prediction model vs. expert prediction in System A – the
evaluation of accuracy.
sible gain from using any component level prediction
model, i.e., compared to the Best model component.

Quite surprisingly the ‘‘Group consensus’’ estimation
turns out to be one of the worst estimations made by our
experts. Some of the individual estimations are actually
not only more correct but they also account for more code.

The evaluation of expert estimations and our prediction
models when applied to System B2 is presented in Fig. 4.
As in the case of System A, we present all the individual
expert estimations, both of our statistical prediction models
(ClassPred, ComponentPred), and three reference models
(Random model, Best model class, and Best model
component).

In Fig. 4, we can see that for small percentages of the
code (i.e., up to about 15% of the code) both statistical pre-
diction methods and expert estimations provide equal gain
over the Random model. When over 15% of code is ana-
lyzed, the gain from using the statistical prediction model
is significantly larger compared to the gain from using
any of the expert estimations. It is clearly visible in the case
of the class level prediction (i.e., the ClassPred model).
ClassPred provides a constant improvement over the Ran-
dom model. It not only outperforms all expert estimations,
but provides a significant improvement over the Random
model for the range of code not covered by any of the
expert estimations.

The CompPred model is visibly worse than ClassPred. It
is, however, not worse than the best of expert estimations.
Additionally, the CompPred model provides an improve-
ment over the Random model even for the range of code
not covered by the expert estimations.
6. Discussion

6.1. Findings

The results obtained in our study seem to support the
idea of building fault prediction models. We have shown
that statistical models have some advantages over human
expert estimation. The biggest advantage of statistical
models is that they are not negatively affected by the size
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of the dataset. Therefore, statistical prediction models are
able to estimate the fault-proneness of all code units even
in large systems. Ranking all code units in a large system
may be a difficult task for human experts. For example,
our experts were quite confident when it comes to ranking
the first couple of components. Beyond a certain number of
components they admitted they would put remaining com-
ponents in a random order.

The other advantage of prediction models is a direct
effect of their ability to cope with large datasets. As we
have shown, the statistical prediction models can success-
fully operate on fine-grained data, e.g., they can predict
the fault-proneness of individual classes instead of predict-
ing the fault-proneness of entire components. Our results
indicate that human experts, irrespectively of their experi-
ence, may not be able to grasp large and complex system
structures. This makes it difficult for human experts to
make predictions at a low level of a system structure. At
the same time we have shown that predicting at a low level
brings not only theoretical but also practical benefits. In
both systems, which we analyzed, the theoretical best pre-
diction at the component level provides on average only
about 40–60% of the improvement that can be offered by
the best theoretical prediction at the class level (compare
Best model component with Best model class in Figs. 3
and 4). The superiority of the class level prediction is also
visible in practice. Our class level prediction model notice-
ably outperforms our component level prediction model in
all cases.

There is also one more advantage of predication models,
which we have not evaluated in this study. It is their cost.
They are reasonably cheap to build and even cheaper to
apply – normally, they can be implemented in a form of
e.g., a script that collects and processes all the required
information automatically. An expert estimation is more
expensive, since for each project it must be set up and per-
formed independently. Obviously, to perform expert esti-
mation we need experts. Sometimes, in relatively new
projects, or when projects are overtaken by another team
of designers, the experts may simply not be available.

On the other hand, an expert estimation has some posi-
tive aspects, also not evaluated in this study. Our statistical
prediction models predict faults, but do not classify them in
any way. Naturally, not all faults are the same – some of
them may be more difficult to find than the others. Some
faults may be more severe than the others. It is possible
that the experts tend to pin-point more correctly the com-
ponents that are more likely to contain these kinds of
faults. Due to the lack of appropriate data we could not
verify this hypothesis in our study.

Another benefit of the expert estimation can be its flex-
ibility. The experts can take into account information that
is not present in the statistical model. For example, in our
statistical prediction models the size of the modification is
considered to be the best fault predicator and all our mod-
els are based on it. However, it may happen so, that even
though the change in the component is relatively small,
there were a number of people involved in introducing it,
which may make such a change more prone to faults com-
pared to a change introduced by a single designer. Such
rare, project-specific issues are likely to be captured by
experts but it is very difficult to predict them in advance
and incorporate them into a statistical prediction model.
However, when analysing estimations of our experts, we
have found a number of worrying factors. The experts do
not agree with each other, they either select different com-
ponents, or, if they select the same components, they esti-
mate their fault density differently.

Another interesting observation that can be made when
comparing the performance of experts in System A and in
System B2 is that much longer experience with the product
does not affect the accuracy of the expert prediction. Our
experts involved in performing the estimations concerning
System A have about five years longer experience with the
product than the experts involved in the estimations con-
cerning System B2. However, the accuracy of the expert
predictions concerning both systems is not very different.
In both systems the experts have selected a similar number
of components. These components account for a similar
percentage of code (see Sections 5.2.1 and 5.2.2 for the
details concerning the expert prediction results). From Figs.
3 and 4 we can see that the fault detection efficiency
improvement gained by using expert predictions is similar
in both systems. Since it is unreasonable to assume that
product related experience has no impact on the accuracy
of fault prediction, the only possible conclusion is that there
is some threshold value connected with experience, after
which the accuracy of predictions is more or less similar.
It is, however, important to remember that what we discuss
here is a product related experience, not the experience as a
whole. All our experts had experience in the development
domain (i.e., telecommunications), which may additionally
explain the similarity in their performance.

As a final remark we would like to make a methodolog-
ical comment. As in can be observed in this section we
believe that many of the problems our experts were facing
were simply due to the size of the systems used in this
study. Therefore, when conducting similar studies, we find
it very important to assure that the size factor is present if
the findings are to be applicable to large systems.

6.2. Validity

The reader must bear in mind that this paper has been
meant more as an experience report than a formal experi-
ment report. Our selection of projects was convenience-
based – we have selected projects that were available to
us. Also, since the entire exercise has not been performed
as a controlled experiment, we can not assure that e.g.,
the experts did not have some at least partial knowledge
about the actual fault-proneness of the components. For
the reasons described in Section 3.2, and because of their
poor performance, we believe this was not the case but
we can not claim that we have eliminated this risk utterly.
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The number of experts involved in each project may also be
considered small and therefore it is difficult to perform any
meaningful statistical analysis of their performance. How-
ever, there are a number of issues that make it easier to
generalize findings from our study. The study was per-
formed in an industrial setting. We used real, large telecom-
munication systems. Our experts had real experience and
knowledge about the project. Additionally, they were moti-
vated and interested in the study, which should have con-
tributed positively to the quality of their predictions.

We also believe that our statistical prediction models
obtained in this study are general. When building them,
we followed the good academic practice of building models
on different data than the data used to evaluate the models.
We evaluated our models not only using the next release of
the system the models were built on, but also using another
system. We believe that all these factors make the evalua-
tion of our statistical prediction models reliable. Addition-
ally, the models built in our study share many similarities
with models built by other researchers to predict faults
and fault densities in modified code units. What we essen-
tially do in our models is a prediction of the number of
faults in the modified code using the size of modification,
and prediction of fault-density in modified code units using
the relative modification size. The same measures were sug-
gested as the best predictors for respective purposes by
other researchers (e.g., Nagappan and Ball, 2005; Selby,
1990).

Therefore, we believe that some general lessons can be
learned from our study. It seems very probable that most
experts would face the problems our experts faced, e.g.,
problems with coping with large amounts of data. It is also
very likely that prediction at a low level, like e.g., at the
class level, would give better results compared to prediction
at a higher level, e.g., at the component level. We are
almost sure that for most medium-to-large systems the
class level prediction is not feasible to be performed by
people.

Most issues concerning the expert estimation validity,
like experts’ possible knowledge about the actual fault dis-
tribution, should result in better than average performance
of the experts. It might be considered as an argument sup-
porting our conclusions, because even with this ‘‘handi-
cap’’, the expert estimations were outperformed by the
statistical prediction models.
7. Conclusions

The goal of this study was to compare the accuracy of
fault predictions made by statistical fault prediction models
with the accuracy of fault predictions made by human
experts. We compared both prediction methods by apply-
ing them to two large software systems from the telecom-
munication domain. To perform the study we invited
eleven experts involved in the development of these systems
and we built two statistical fault prediction models. Our
statistical fault prediction models were built based on data
different from the data used in the evaluation.

The evaluation was performed from the perspective of
an increase of the fault detection efficiency that could have
been obtained if analyzing the code units in the order sug-
gested by the experts or in the order suggested by our sta-
tistical models. Both prediction methods were evaluated
against three reference models: a model based on a random
selection of the code units for analysis, the theoretically
best model for predicting faults at the class level, and the
theoretically best model for predicting faults at the compo-
nent level.

We found that both the expert estimations and the sta-
tistical prediction models provided an improvement over
the random selection of code units for analysis. When com-
paring the performance of the expert estimations with the
performance of the statistical models we found that the sta-
tistical prediction models outperformed the expert estima-
tions. For example, for the systems that we analyze in
this study, we find that for the portion of code covered
by the expert estimations our statistical fault prediction
models offered a higher improvement as compared to the
best of the expert estimations. Moreover, the statistical pre-
dictions continued to provide an efficiency improvement
over not using any model even after the point where our
experts gave up.

We identified a number of reasons for the statistical
models being better. Statistical models are not affected by
the size of the dataset so they perform equally well on small
and large systems, while the human ability to grasp the
complexity of larger systems is limited. In addition, the
ability to deal with large datasets makes it possible for
the statistical models to perform more fine-grained predic-
tions, i.e., predictions at a lower level. We showed that a
more fine-grained prediction, e.g., a prediction at the class
level instead of at the component level, is not only better
from a theoretical but also from a practical perspective.
Our class level prediction model was more accurate com-
pared to our component level prediction model in both
examined systems.

In this study we also discussed other advantages and dis-
advantages of statistical prediction models and expert esti-
mations. The statistical prediction methods are reasonably
cheap to build and apply, as well as they can be used in the
absence of experts, e.g., when a project is transferred to
another development organization. On the other hand,
expert estimations are more flexible and can take into
account some project specific issues that can affect fault-
proneness of the components. Such project specific issues
are usually hard to incorporate into otherwise general sta-
tistical fault prediction models.
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