
Journal of Systems Architecture 50 (2004) 537–561

www.elsevier.com/locate/sysarc
A comparative evaluation of hardware-only and
software-only directory protocols in shared-memory

multiprocessors q

H�akan Grahn a,*, Per Stenstr€om b

a Department of Software Engineering and Computer Science, Blekinge Institute of Technology, P.O. Box 520,

SE-372 25 Ronneby, Sweden
b Department of Computer Engineering, Chalmers University of Technology, SE-412 96 G€oteborg, Sweden

Received 1 October 2001; received in revised form 5 February 2002; accepted 18 August 2003

Available online 3 February 2004

Abstract

The hardware complexity of hardware-only directory protocols in shared-memory multiprocessors has motivated

many researchers to emulate directory management by software handlers executed on the compute processors, called

software-only directory protocols.

In this paper, we evaluate the performance and design trade-offs between these two approaches in the same

architectural simulation framework driven by eight applications from the SPLASH-2 suite. Our evaluation reveals some

common case operations that can be supported by simple hardware mechanisms and can make the performance of

software-only directory protocols competitive with that of hardware-only protocols. These mechanisms aim at either

reducing the software handler latency or hiding it by overlapping it with the message latencies associated with inter-

node memory transactions. Further, we evaluate the effects of cache block sizes between 16 and 256 bytes as well as two

different page placement policies. Overall, we find that a software-only directory protocol enhanced with these

mechanisms can reach between 63% and 97% of the baseline hardware-only protocol performance at a lower design

complexity.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Shared-memory multiprocessors; Cache coherence; Hardware-only directory protocols; Software-only directory protocols;

Performance evaluation
qThis paper is an extended version of ‘‘Efficient Strategies for

Software-Only Directory Protocols in Shared-Memory Multi-

processors’’ that was presented at the 22nd Int�l Symp. on
Computer Architecture in June 1995.

* Corresponding author. Tel.: +46-457-38-58-04; fax: +46-

457-271-25.

E-mail addresses: hakan.grahn@bth.se (H. Grahn), pers@

ce.chalmers.se (P. Stenstr€om).

URLs: http://www.ipd.bth.se/~hgr/, http://www.ce.chalmers.

se/~pers/.

1383-7621/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.1016/j.sysarc.2003.08.014
1. Introduction

Private caches in conjunction with a directory-

based cache coherence protocol have gained a lot

of popularity in many shared-memory multipro-

cessor designs [1,21–23]. The memory-protocol
engine that implements the directory-based pro-

tocol however contributes significantly to the total
ed.

mail to: hakan.grahn@bth.se
http://www.ipd.bth.se/~hgr/, http://www.ce.chalmers.	se/~pers/
http://www.ipd.bth.se/~hgr/, http://www.ce.chalmers.	se/~pers/

538 H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561
logic overhead and engineering effort of each

processing node as demonstrated by the DASH

design [22]. Furthermore, since the protocol is

hard-wired, flexibility in its design and optimiza-

tion is not provided.

Several efforts have addressed these concerns by
migrating the entire protocol-engine functionality,

or parts of it, to software handlers executed on a

separate processor. In the Stanford FLASH [15]

and the Wisconsin Typhoon [29] design efforts, the

approach is to emulate the memory-protocol en-

gine by software handlers on a dedicated protocol

processor. In FLASH, for example, a special-

purpose protocol processor called MAGIC is de-
signed to support a range of protocols including

message-passing primitives. Clearly, flexibility is

met whereas the design of a special-purpose pro-

cessor apparently is costly.

A more radical approach has been taken in

other research projects [1,17,28,31,32] where all or

parts of the memory-protocol engine functionality

is emulated by software handlers on the compute
processor. Chaiken and Agarwal [7] evaluated a

spectrum of such software-extended protocols

with respect to performance and cost ranging from

software-only directory protocols that emulate

directory management entirely in software on the

compute processor to protocols with up to five

pointers in hardware which means that the soft-

ware handler is invoked first when all the five
hardware pointers are exhausted. While the soft-

ware-only directory protocol design point is ex-

tremely attractive from a hardware complexity

viewpoint, they found that it performs significantly

worse than its hardware-only directory protocol

counterpart. We will in this paper present a num-

ber of techniques that increase the performance of

software-only directory protocols, making them
more competitive with hardware-only protocols.

This paper focuses on the performance and

implementation trade-offs between hardware-only

and software-only directory protocols in the same

architectural framework. The major difference

between their performances is due to the impact of

the software handler latency on the execution time.

However, our evaluation reveals three common
case operations that can be supported by simple

hardware mechanisms and can make the perfor-
mance of software-only directory protocols com-

petitive with hardware-only protocols with a

reduced engineering effort. The first technique

aims at removing the software handler latency

from the critical memory access path for cache

misses to data in the local memory. The second
technique removes software handler latency from

the critical memory access path of misses to data in

remote memories and caches by reducing or

overlapping the software handler latency with the

latency of remote miss transactions. Finally, we

also consider to cut the software handler latency

itself by enabling caching of directory information

in the compute processor caches.
Besides the identification of the common case

operations to boost performance of software-only

directory protocols, an important contribution of

this paper is to determine performance trade-offs

between the hardware-only and the software-only

directory protocol design points. This is done in

the same architectural simulation framework

consisting of a cache-coherent NUMA machine
with a full-map write-invalidate directory protocol

that is driven by eight applications from the

SPLASH-2 suite [35]. We find that the perfor-

mance of the software-only directory protocol

using the mechanisms for efficient miss handling of

local and remote application data misses is com-

petitive with that of the hardware-only protocol.

In addition, our data suggest that directory cach-
ing can improve overall application performance

significantly; it only marginally interferes with

caching of application data while significantly

reducing the software handler latency. In total, the

software-only directory protocol performance is

between 63% and 97% of the hardware-only

directory protocol performance for all applica-

tions.
Another important contribution of this paper is

to identify the design trade-offs between hardware-

only and software-only directory protocols. While

the enhanced software-only protocols we propose

require some minor modifications to the memory

controllers and network interfaces in each node,

most of the protocol complexity is migrated to

software. We have also implemented a prototype
of the network interface supporting our suggested

hardware mechanisms.

H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561 539
As for the rest of the paper, we present in the

next section our architectural framework and the

baseline hardware-only and software-only direc-

tory protocols we simulate. Section 3 then presents

a number of simple enhancement techniques to

boost the performance of software-only directory
protocols. In Sections 4 and 5, we present our

experimental methodology and discuss the results

from our simulations, respectively. Then, in Sec-

tion 6 we present and discuss our prototype

implementation of the network interface. Finally,

in Section 7 we put our work in context of related

work before reaching our conclusions in Section 8.
2. Hardware-only and software-only directory proto-

cols

The performance and design trade-offs between

hardware-only and software-only directory pro-

tocols are evaluated in the same architectural

framework which is introduced in Section 2.1.
Sections 2.2 and 2.3 then present the node design

requirements of the baseline hardware-only and

software-only directory protocols, respectively.

Our discussion centers on the functionality and

implementation aspects of the protocol engines

associated with the memory modules; the protocol

engines associated with the caches are identical for

the two types of protocols.
L1

L2

P

First-level
write buffer

Second-level
write buffer

First-level
cache

Second-level
cache

Memory

Processor chip

FLWB SLWB

Inte

Sen

and protocol
engine

Fig. 1. Organization of the processor nodes. The shaded areas only a

Section 2.3.
2.1. Architectural simulation framework and coher-

ence protocol

The architectural framework consists of a

cache-coherent NUMA machine (CC-NUMA)
with a node organization according to Fig. 1. Each

node consists of a processor with a two-level cache

hierarchy and associated write buffers with a sim-

ilar organization as many contemporary micro-

processors.

This paper centers on the mechanisms needed to

support a directory protocol to maintain consis-

tency across the second-level caches in all the
nodes. Let us therefore briefly review the directory

protocol we assume which is similar to the Censier

and Feautrier protocol [5].

A presence flag vector with one flag per node is

associated with each memory block in the node in

which the corresponding page is mapped, called

the home node. In addition, a few state bits encode

whether the memory copy is clean, dirty or in
transition between any of these states. Read-miss

and ownership requests to transient memory

blocks are forced to be retried as in the DASH

[22]. A second-level cache (L2) miss request is sent

to the home of the memory block. If the memory

copy is clean, the miss is immediately serviced by

home which records the identity of the requesting

node (denoted local) in the directory and returns a
copy of the block. In contrast, if the block is dirty,
Network
interface

Network

rrupt Buffer (IB)

d buffer (SB)

L
ocal bus

pply to the software-only directory protocol that is discussed in

Local bus
Data

State memory

Directory

Memory
controller

Fig. 2. The memory module organization for a hardware-only

directory protocol.

540 H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561
home forwards the request to the node keeping the

only copy (denoted remote); remote writes the

block back to home; and finally, home returns

the block to local resulting in as many as four

node-to-node transactions to service the read miss

if local, home, and remote are different nodes.
During the time home has forwarded the request to

remote until the block is written back to home, the

block is in a transient state and marked as busy.

Then, the block becomes clean.

A processor write to an L2 copy that is not

exclusive forces an ownership request to be sent to

home. Home sends explicit invalidations to each

cache with a block copy according to the contents
of the directory. When a cache gets an invalidation,

it invalidates its local copy of the block and sends

an acknowledgment back to home. When home has

received all acknowledgments, it grants ownership

to local. The block is in a transient state and

marked as busy when invalidations are pending

until all acknowledgments have arrived at home

after which the block becomes dirty. We follow the
recommendation in [7,26] and assume for all proto-

cols we consider that the network interface in Fig. 1

has the capability to collect acknowledgments from

remote nodes and notifies the memory-protocol

engine when the last acknowledgment to a pending

write request has arrived. Finally, one design op-

tion is whether or not to notify home when a block

is replaced from a cache. If not, it may cause a
larger number of invalidations and longer write

stall times for the hardware-only directory protocol

but fewer handler invocations for software-only

directory protocols. Simulations revealed that the

performance differences for these alternatives were

small for hardware-only protocols. However, for

software-only directory protocols the latter showed

some advantage which is why we will assume that
in the following.

2.2. Simulated baseline hardware-only directory

protocol

A central part of the hardware-only imple-

mentation of the protocol in the previous section is

the memory-protocol engine in Fig. 1 that inter-
faces to the network and to the local cache via the

local bus.
The memory-protocol engine conceptually con-
sists of three parts, which are shaded in Fig. 2: the

directory, the state memory, and the memory

controller. The directory uses N bits, where N is

the number of nodes in the system, and the state

memory uses three bits for each block.

The memory controller implements the coher-

ence protocol actions. This controller typically

processes an incoming request by carrying out the
following tasks: it decodes the message; it performs

a directory and state-memory lookup, and possi-

bly a state modification according to the coherence

protocol; it composes new messages; and it sends

messages to other nodes. In reality, a fair engi-

neering effort is required to correctly implement

the controller and ascertain that all corner cases

are covered. In addition, the hardware resources to
implement the memory-protocol engine can be

quite substantive; in the DASH prototype, for

example, the logic overhead of the memory-proto-

col engine is about 20% for a similar hardware-

only directory protocol [22]. This has motivated

many researchers to consider software-only direc-

tory protocols whose baseline we present next.

2.3. Simulated baseline software-only directory

protocol

The functionality of the memory-protocol en-

gine is emulated by software handlers on the

compute processor in our baseline software-only

directory protocol; all requests arriving at the

home directory will interrupt the processor on that
node which executes the corresponding handler.

Since all coherence requests are taken care of by

software handlers on the compute processor, the

directory and state bits for each memory block

assumed by the hardware-only protocol can now

H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561 541
be allocated in the memory. More importantly, the

hard-wired memory controller for the hardware-

only directory protocol is replaced by software

handlers.

To enable the emulation of the protocol actions

requires some functionality and organizational
modifications as compared to a hardware-only

directory protocol. First, the processor must sup-

port a low-level interrupt mechanism that rapidly

can switch between program execution and proto-

col execution. Second, an Interrupt Buffer (IB,

shaded in Fig. 1) is needed to buffer incoming

coherence request. When a coherence request is

present, the compute processor is interrupted and
executes the corresponding software handler. Ac-

tive messages [34] are assumed to rapidly select

which coherence routine the processor shall exe-

cute. IB is interfaced to the second-level cache bus

as proposed in [16], i.e., it has the same access

time as the second-level cache and the first

request in IB is accessible through memory-map-

ped addresses. In addition, a Send Buffer (SB,
shaded in Fig. 1) that is interfaced to the second-

level cache bus in the same way as IB allows the

processor to efficiently send messages in response

to coherence requests. We assume that the buffers

use memory-mapped addresses instead of register-

mapped as in [16] to adjust to mainstream pro-

cessor designs.

Coherence interrupts, also called high-avail-

ability interrupts [19], need to be precise as pointed

out in [19] to avoid protocol deadlock; we cannot

delay the software handler execution until a

pending load completes. To see this, consider two

nodes, i and j, which both encounter a cache miss
and the miss from i requires service on node j, and
the miss from j requires service on i. Then, if the
pending load is not interrupted, a circular depen-
dency arises that deadlocks the protocol. A con-

sequence of the need to interrupt the node when a

load is pending is that both the first and second-

level caches must be lockup-free and capable of

handling two cache misses at the same time.

A previously studied livelock issue is that high-

availability interrupts open up the window of vul-

nerability [19]. At the time a block is loaded into
the cache as a result of a cache miss, the processor

may be busy executing protocol actions. As a re-
sult, there is a time window in which the cache

block might be invalidated before the processor

starts accessing it which may trigger a livelock

situation that prevents forward progress. Associa-

tive locking [19], which is applicable to systems

with multiple pending requests and high-avail-
ability interrupts, can be used to close the window.

The associative locking method locks a block

when it is loaded into the cache and defers inval-

idation of the block until the processor has ac-

cessed it, i.e., when the interrupted load instruction

has completed.

Another known deadlock issue is related to the

fact that a software handler may transmit one or
several messages as a result of a coherence request.

However, if the send buffer is full when a software

handler wants to issue a message, the handler

cannot run to completion. As a result, the pro-

cessor cannot service incoming requests either,

which may result in a deadlock situation because

of circular dependences between the buffers on

different nodes. Note that the same problem arises
also in a hardware-only implementation. In, e.g.,

DASH [22], some request- response dependencies

are solved using separate network meshes for re-

quests and replies. The general deadlock problem

can be solved by augmenting the hardware buffers

in software. This technique is referred to as net-

work overflow recovery [20]. A time-out mechanism

signals a network overflow interrupt to the pro-
cessor when the send buffer has been full for a

predefined amount of time. The processor then

moves the contents of the interrupt buffer to a

software buffer allocated in memory, thereby

freeing buffer space in the hardware. The messages

in the memory are rescheduled when the send

buffer has drained.

In summary, while the memory-protocol engine
now can be managed in software, software-only

directory protocols require that processors support

a fast mechanism to switch between normal exe-

cution and software handler execution, and also

lockup-free first and second-level caches to inter-

rupt a pending load instruction so as to avoid

deadlock. Let�s next build intuition into the rela-
tive performance of the hardware-only and soft-
ware-only directory protocol baselines in this

section.

Local bus DRAM

State memory

Memory
controller

Fig. 3. The memory module organization in a software-only

directory protocol with support for efficient handling of read

misses to local memory.

542 H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561
3. Enhancement techniques for software-only direc-

tory protocols

The difference in performance between the

hardware-only and software-only directory proto-
cols in the previous section stems from the latency

of the software handlers that are invoked at the

home node for each read miss and ownership re-

quest. The increase in read stall and write stall

times is one source of performance overhead be-

cause the software handler latency appears on the

critical path of cache miss and ownership han-

dling. Another performance overhead is incurred
at the compute processor in home when handling

requests initiated by other nodes. We have identi-

fied three simple enhancements to common case

operations of the baseline software-only directory

protocol. These enhancements, which either seek

at removing the software handler latency from the

critical access path or reducing it, are as follows:

• Eliminating software handler latency from the

critical path of misses read to the local memory.

This technique is described in Section 3.1.

• Eliminating software handler latency from the

critical path of read misses to remote memory

or caches. This technique is described in Section

3.2.

• Reducing software handler latency by enabling
caching of directory information. This tech-

nique is described in Section 3.3.

3.1. Optimization of read miss requests to the local

node

In order to avoid software handler invocation

on cache misses to data in the local node, we
augment the software-only directory protocol

implementation with a separate state memory, as

in the hardware-only implementation, as shown in

Fig. 3. A memory controller is added that returns a

block copy to the local processor as long as the

block is clean, i.e., no software handler invocation

is needed. If the block is dirty or marked busy,

however, the memory controller responds with a
reject message which is handled by the network

interface. The network interface handles a local

read reject as if it came from another node and
puts the miss request in the IB which interrupts the

processor. To assure correctness, the state memory

is not allowed to be cached in the local processor

caches. Note that the memory controller in Fig. 3

is much simpler than the controller in Fig. 2 be-
cause it only has to retrieve the state of the

memory block instead of implementing the entire

protocol.

Since a read miss to a clean block located in the

same node does not interrupt the compute pro-

cessor, the directory––which is still managed by

software handlers––is not updated. In Alewife

[1,6,7], a special local-bit is used to indicate whe-
ther the local cache has a copy of the block or not

[7]. We propose to neglect keeping track of whe-

ther there is a block copy in the local cache or not.

Instead, we rely on snooping of invalidation re-

quests (to other nodes) on the bus in order to

maintain coherence in the local cache. Note that

this would be difficult in a node organization such

as in SGI Origin that uses a node controller in-
stead of a bus [21]. However, if there are no remote

copies that must be invalidated, the software

handler must explicitly invalidate the block in the

local cache.

3.2. Optimization of read miss requests to remote

nodes

Let us consider techniques that remove the

software handler latency from the access path of

misses to data in other nodes by first developing a

simple performance model for this case.

Fig. 4 shows the latencies involved in a read-

miss transaction to a memory block that is dirty in

a remote node in a scenario where local, home, and

remote all are different nodes. A read miss to a
dirty block incurs the latency of four network hops

Prot 1 Prot2C2Net Net Net Net

time

Read miss Load block
(local)

(home) (remote) (home)

(local)

Fig. 4. Timing of a read miss to a dirty memory block.

H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561 543
(Net) plus the latency of two software handler

executions at the home node (Prot1 and Prot2)

plus the time to retrieve the block from the remote

cache (C2). In contrast, Prot1 and Prot2 in a

hardware-only directory protocol are smaller in

comparison to Net. Clearly, if the number of
handler invocations can be reduced or if they can

be carried out in parallel with the message trans-

mission over the network, Prot1 and Prot2 can be

removed from the critical memory-access path.

The following techniques aim at doing so. They

require some minor modifications to the network

interface of Fig. 1.

3.2.1. Performing state-memory lookup in hard-

ware, SW-1

We have already exposed the state memory bits

of a memory block to the memory controller to

avoid software handler invocations on misses from

the local compute processor. It is natural to do the

state memory lookup for miss requests from other

nodes in hardware which thus frees the software
handlers from this common case operation.

Moreover, when a memory block is busy, which

can be derived directly from the state bits, the sole

task of the software handler is to return a retry

message. By supporting these common case oper-

ations in the network interface, Prot1 and Prot2 in

Fig. 4 can be reduced by the time of state memory

access and, in case of busy memory blocks, by the
time to send a retry message, i.e., the processor is

not interrupted in that case. As we will see, this

strategy enables other enhancement techniques.

To implement this, the network interface must

have access to the state of a memory block. To

check whether a block is in a transient state, the

network interface only needs to look at one bit in

the state of a block, the busy-bit, given that the
states are coded in an appropriate way. Since the

network interface already routes and sends mes-

sages, it can send retries with virtually no extra

functionality. This enhancement technique com-

bined with the enhancement of misses to local data

is called SW-1.

3.2.2. Reducing the software handler latency of dirty

misses, SW-2

Once we have incorporated an explicit state

memory and the functionality to decode the state

bits as in the previous section, further enhance-

ments of the network interface can have dramatic

effects on the processor stall time components.
One strategy is to let the network interface for-

ward read and write requests to dirty memory

blocks directly to remote without interrupting

the processor which potentially removes Prot1 in

Fig. 4 from the stall time incurred by dirty

misses.

To support this strategy, the network interface

must be capable of reading and writing the first
word in a block frame in memory and change the

state bits. When forwarding a request, the node

controller inspects the clean/dirty state bit. More-

over, since the memory block frame is unused

when a block is dirty, the identity of remote can be

stored in the first word of the memory block. After

having read the identity of remote, the network

interface issues a write back request to remote;
stores the identity of local in the first word of the

block frame in memory; and finally, sets the busy-

bit for the block. In the rest of the paper we refer

to this enhancement as SW-2.

3.2.3. Hiding software handler latency of clean

misses, SW-3

Misses to clean blocks that reside in another
node than local incur two network traversals plus

handler execution time (Net þ Prot1þ Net in Fig.
4). Once we let the network interface perform state

lookup, it is possible to remove Prot1 from the

critical memory access path by letting the network

interface directly send the block to local if the state

of the block is clean; the processor interrupt to

update the directory can occur in parallel with the
second network traversal. This is a natural

enhancement of SW-2 since we now have removed

544 H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561
Prot1 for misses to clean as well as to dirty

blocks. Of course, unlike the SW-2 strategy for

removing Prot1 for dirty blocks, Prot1 will still be

charged to the home processor and can show up as

protocol execution overhead for misses to clean

blocks.
The functionality enhancement apart from

those of SW-2, is the ability for the network

interface to read the block from memory. A new

network interface action is also needed that in-

volves first sending the block to local and then

putting a message in the processor interrupt buffer.

When a read miss from local to a clean memory

block arrives at home, the network interface first
does a state lookup; inspects the clean/dirty state

bit; reads the block from memory; sends the block

to local; and finally, puts a message into the

interrupt buffer. When the processor is inter-

rupted, it only has to update the directory with

the identity of local. This strategy is referred to as

SW-3.

3.2.4. Hiding software latency of dirty misses, SW-4

Whereas SW-2 and SW-3 can remove Prot1 in

Fig. 4 from the critical memory access path for

misses to dirty and clean blocks, the next strategy

aims at removing Prot2 from read miss and owner-

ship transactions to dirty blocks. This strategy is

built on top of SW-2 and lets the network interface

send the block directly to local when remote writes
it back to home while interrupting the processor

for directory update in parallel with the return of

the block to local. In addition to the functionality
Table 1

Optimization strategies for software-only directory protocols

Strategy Functionality in the network interface

SW-1 Memory state lookup by network interface as

processor

SW-2 Forwarding of requests to dirty blocks which

memory modifications and access to first wor

SW-3 SW-2 plus return of block to local on clean m

processor is interrupted which requires access

block

SW-4 SW-2 plus return of block or ownership to lo

misses before the processor is interrupted

SW-5 Combination of SW-1 to SW-4
needed for the SW-2 strategy, this strategy needs a

network interface action aiming at first sending the

block to local before the processor is interrupted.

Throughout the paper we refer to this strategy as

SW-4.

3.2.5. Combining all optimization strategies for

remote misses, SW-5

The most aggressive strategy is to combine

SW-1 through SW-4 which potentially removes or

hides Prot1 and Prot2 for misses to clean as well as

dirty blocks. The network interface functionality

needed is not beyond what is needed by the other

strategies. This combined strategy is referred to as
SW-5.
In summary, we propose to apply a range of

optimization strategies to the baseline software-

only directory protocol. All strategies address how

common case operations can be done in hardware

while still letting the directory be managed at a

slower pace in software. The most aggressive

strategy assumes that the network interface can
inspect the individual state bits of the memory

block and can forward messages based on the state

bits before interrupting the compute processor so

as to overlap software latency with network la-

tency. Note however that the controller associated

with the network interface is significantly simpler

in that it only does request forwarding based on

the state bits and does not have to manipulate the
directory itself. Table 1 summarizes its function-

ality and the expected performance effects of each

optimization.
Expected performance enhancement

well as Optimizes local misses and can slightly

reduce Prot1 and Prot2 for remote misses

requires state-

d in a block

Can remove Prot1 for dirty misses

isses before the

to the memory

Same as SW-2 but can also hide Prot1 for

clean misses

cal on dirty Same as SW-2 but can also hide Prot2 for

dirty misses

Can remove or hide Prot1 and Prot2 for all

misses

H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561 545
3.3. Reducing software handler latency by caching

directory information

Since the latency of the software handler is

charged on the compute processor in home, a low
handler latency is desirable. One possible solution

to reduce the handler execution time is to cache the

directory. However, it is an open question if there

is any locality in the directory accesses from the

software handler. Conversely, caching of directory

data can interfere with application code and data

caching. The net performance effect is thus not

clear.
When a directory entry is cached, another

block––possibly belonging to the application––can

be evicted from the cache. If the evicted block is

needed later, this results in a replacement miss.

This miss may incur a long latency if it is handled

by a remote node. Thus, a higher access penalty

may be encountered by the application program as

a result of directory caching. Assume that the
compute processor encounters a miss rate of MA

and MS for the application and the software han-

dlers, respectively, and that the corresponding miss

penalties are MPA and MPS respectively. The

average miss penalty for the compute processor is

then:

Tmiss ¼ MA �MPA þMS �MPS

Because a software-handler miss always hits in

the local memory, MPS is significantly lower than
MPA. Therefore, a rather modest increase in MA

resulting from cache conflicts between directory

entries and application data may significantly

prolong the total execution time of the application.

In Section 5 we will quantitatively evaluate whe-
ther it pays off to cache directory data.
4. Experimental methodology

In Section 5, we simulate the baseline hardware-

only implementation of Section 2.2 and the dif-

ferent software-only directory implementations
described in Sections 2.3 and 3. The simulation

models are built on top of the CacheMire Test

Bench [4], a program-driven simulator and pro-

gramming environment. The simulator consists of
two parts: a functional simulator of multiple

SPARC processors and a memory system simula-

tor. The functional simulator generates memory

references which are fed to the memory system

simulator, which delays the processors according

to its timing model. Thus, the same timing is ob-
tained as in the target system we model and a

correct interleaving of events is maintained.

4.1. Simulation environment and architectural

parameters

We simulate multiprocessor architectures with

16 processor nodes according to Fig. 1, and in
Table 2 we have collected the architectural

parameters. Memory pages are allocated using a

static round-robin policy to simplify the analysis.

We will also evaluate a first-touch (FT) policy, i.e.,

a page is allocated to the node whose processor

first accesses it. Instruction references and refer-

ences to private data are assumed to always hit in

the L1 cache, i.e., they do not incur any memory
system latencies. The default memory consis-

tency model in this study is sequential consis-

tency and the processor is stalled on each shared

data access until it has completed. Acquires and

releases are supported by a queue-based lock

mechanism, similar to the one implemented in the

DASH [22]. In the software-only directory proto-

cols this mechanism is implemented by software
handlers.

The only difference between the network inter-

faces for the hardware-only and the software-only

directory protocols are the functionalities sum-

marized in Table 1. In a real system, special pre-

caution must be taken to handle deadlocks.

However, such mechanisms are similar in both the

hardware-only and the software-only directory
protocols and we do not address them in this

study; simulations assume infinite buffers.

Table 3 shows the time it takes to satisfy a read

miss request from different levels in the memory

hierarchy in the hardware-only implementation

assuming no contention. In our simulations,

however, a request usually takes longer time as a

result of contention. Contention is correctly
modeled in all parts of the processor nodes.

Clearly, in a software-only directory protocol,

Table 3

Average read miss latency times for a hardware-only implementation assuming a conflict-free system

Latency numbers for read requests 1 pclock¼ 1 ns (1 GHz) Comment

Fill from L1 cache 1 pclock

Fill from L2 cache 8 pclocks

Fill from local memory 88 pclocks L1+L2 look-up, 2 local bus transactions,

1 memory access

Fill from Home (clean, 2-hop) 288 pclocks L1+L2 look-up, 4 bus transactions,

1 memory access, 2 network �hops�
Fill from Remote (dirty, 4-hop) 598 pclocks L1+ L2 look-up, 6 bus transactions, 2 memory

access, 4 network �hops�, 1 remote L2 look-up

Table 2

Architectural parameters

Parameter Value and comments

Block size 64 bytes

First-level (L1) and second-level (L2) cache sizes 8 Kbyte L1 cache (write-through, direct-mapped)+ 256 Kbyte

L2 cache (full inclusion, direct-mapped, lockup-free)

Write-buffer size 16 Entries

Page size 4 Kbyte

Processor speed 1 GHz, single-issue (1 pclock¼ 1 ns)
L1 access time 1 ns¼ 1 pclock
L2 access time (for a block) 8 ns¼ 8 pclocks (SRAM, interleaved)
Memory access time (for a block) 60 ns¼ 60 pclocks (DRAM, interleaved)
Interrupt and send buffer access times 5 ns¼ 5 pclocks
Bus speed (128-bits wide) 200 MHz, 5 ns arbitration+ 5 ns transfer

Network interface speed 200 MHz, 800 Mbytes/s into and out of each node

Network latency (infinite bandwidth) 75 ns¼ 75 pclocks (approximately the latency in a 200 MHz
mesh network with 32-bit flits)

Software handler execution time 100 pclocks+ additional time as described in the text

546 H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561
software handler invocations also prolong the re-
quest latencies.

A critical timing assumption is how many cycles

we charge for the software handlers. To achieve a

fast start-up of the software handlers, the proces-

sor must have a fast interrupt mechanism. It can

be implemented either as conventional interrupt

hardware in the processor or as a multithreaded

processor, e.g., Sparcle [2] which is used in the
MIT Alewife [1]. In this study we take the latency

numbers (in processor clock cycles) from the

optimized Sparcle processor described in [2] and

use them as a base for how fast a software handler

can be dispatched.

We assume 100 pclocks as the default protocol

execution time which does not include the time to

access the directory and state information. Rather,
these 100 pclocks include the following actions:
interrupt handling (4 pclocks); reading the mes-
sage from the IB (10 pclocks); dispatch of the

corresponding software handler (4 pclocks);

administration of the software directory (78

pclocks); and restart of the application program (4

pclocks). On top of this we charge 130 pclocks to

read or write the global state of a memory block; 2

or 160 pclocks for directory access if the directory

is cached or not, respectively, and the same to read
or write a memory block; and finally, 10 pclocks to

send a message depending on the type of coherence

action. For example, for a read miss to a clean

block, 65 pclocks (read the state) plus 80 pclocks

(read the block) plus 10 pclocks (send the reply)

plus 80 pclocks (update the directory) are added to

the basic 100 pclocks, resulting in 335 pclocks to

service a read miss to a clean block. Note that the
processor in home is interrupted and application

H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561 547
execution in home is prolonged with the handler

execution time.

Since we do not address how the memory

allocation scheme for the directory is imple-

mented, we assume a very simple mapping from a

data address to the corresponding directory ad-
dress. We associate four bytes of status including

directory and state information with each data

block, i.e., the status of 16 data blocks is allocated

in one memory block. The mapping from a data

address to the corresponding status entry looks as

follows (in C-syntax):

Addressdirectory

¼ 0x70000000jððAddressdata=block sizeÞ � 4Þ

The state and directory information of a block

are not cached by default in the simulations. We

will experimentally study the performance impact

of directory caching in Section 5.2. For SW-1 to

SW-5 we also assume that a dedicated state

memory is supported.

4.2. Benchmark programs

In order to understand the relative performance

of hardware-only and the variations of the soft-

ware-only directory protocols, we use 8 scientific

and engineering applications written in C using the

ANL macros and compiled by gcc (version 2.7.2)
with optimization level-O2. All applications are

from the SPLASH-2 suite [35].

A short description of the applications together

with the data set sizes we use are shown in Table 4.

Statistics are gathered in the parallel section of the

programs to avoid initialization effects, which we
Table 4

The parallel programs together with the data set sizes we use in our

Application Description

Barnes Barnes–Hut hierarchical N -body simul
Ocean Simulate eddy currents in an ocean ba

Water-Nsquared Molecular dynamics simulation, OðN 2Þ
Water-Spatial Molecular dynamics simulation, OðNÞ
Cholesky Blocked sparse Cholesky factorization

FFT 1-D SQRT (n) six-step fast Fourier tra

LU Blocked LU-decomposition of a dense

Radix Integer radix sort
assume to be negligible in an execution with more

realistic data sets. The applications chosen have

different characteristics. In Cholesky, FFT, and

Radix cold misses dominate, while coherence

misses dominate in the other applications. Barnes

has an unpredictable communication pattern,
while the other applications have a more regular

and predictable communication pattern. By using

a 256 Kbyte second-level cache the primary

working set for all applications fits in the cache

[35].
5. Experimental results

In this section we present our experimental re-

sults starting with the effects of the different

strategies for software-only directory protocols

under sequential consistency in Section 5.1. In

Section 5.2, we study the effects of directory

caching, in Section 5.3, we analyze what limits

further improvements, and finally in Section 5.4,
we evaluate how different cache block sizes impact

the performance of software-only directory proto-

cols.
5.1. Efficiency of software-only directory protocol

strategies

In this section, we evaluate the relative effec-
tiveness of the different strategies for software-only

directory protocols proposed in Section 3.2 by

comparing their performances with the baseline

hardware-only and software-only directory proto-

cols in Section 2. We use the round-robin page
simulations

Data set size/input data

ation 16 384 particles

sin 258� 258 grid
algorithm 512 molecules, 3 time steps

algorithm 512 molecules, 3 time steps

tk29.O

nsform 64K points

matrix 512· 512 matrix, 16· 16 blocks
256K keys, radix 1024

||0

|20

|40

|60

|80

|100
|120

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Water-Spatial

P_TIME
SYNC

WRITE
READ
BUSYH

W

B
A

S
IC

-S
W

S
W

-1

S
W

-2

S
W

-3

S
W

-4

S
W

-5

1.00

1.12 1.12 1.11
1.06

1.11
1.06

||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e FFT

P_TIME
SYNC
WRITE
READ
BUSYH
W

B
A

S
IC

-S
W

S
W

-1

S
W

-2

S
W

-3

S
W

-4

S
W

-5

1.00

1.64 1.71
1.58

1.45 1.50
1.37

||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

|220

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Radix

P_TIME
SYNC
WRITE
READ
BUSYH

W

B
A

S
IC

-S
W

S
W

-1

S
W

-2

S
W

-3

S
W

-4

S
W

-5

1.00

1.96 2.00

1.74
1.63 1.62

1.53

||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Barnes

P_TIME
SYNC
WRITE
READ
BUSYH

W

B
A

S
IC

-S
W

S
W

-1

S
W

-2

S
W

-3

S
W

-4

S
W

-5

1.00

1.73
1.59 1.59

1.33

1.54

1.30

||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

|220

|240

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Ocean

P_TIME
SYNC
WRITE
READ
BUSYH

W

B
A

S
IC

-S
W

S
W

-1

S
W

-2

S
W

-3

S
W

-4

S
W

-5

1.00

2.22 2.22
2.12

1.88
2.08

1.83

||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e LU

P_TIME
SYNC
WRITE
READ
BUSYH

W

B
A

S
IC

-S
W

S
W

-1

S
W

-2

S
W

-3

S
W

-4

S
W

-5

1.00

1.81
1.71 1.69

1.47

1.68

1.47

||0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Water-Nsquared

P_TIME
SYNC
WRITE
READ
BUSYH

W

B
A

S
IC

-S
W

S
W

-1

S
W

-2

S
W

-3

S
W

-4

S
W

-5

1.00

1.39 1.39 1.37

1.23
1.35

1.21

||0
|20

|40

|60

|80

|100

|120

|140

|160

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Cholesky

P_TIME
SYNC
WRITE
READ
BUSYH

W

B
A

S
IC

-S
W

S
W

-1

S
W

-2

S
W

-3

S
W

-4

S
W

-5

1.00

1.63 1.61 1.58

1.38

1.58

1.38

Fig. 5. Normalized execution times for the software-only directory protocol optimizations relative to the hardware-only directory

protocol.

548 H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561
allocation strategy in this section in order to

interpret the results more easily. In Fig. 5, we show
the relative execution times of the different opti-

mization strategies. All execution times are nor-

H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561 549
malized to the execution time of the hardware-only

protocol. For each application seven bars are

shown. The first two bars to the left correspond to

the baseline hardware-only (HW) and software-

only (BASIC-SW) directory protocols in Sections

2.2 and 2.3, respectively. They are followed by the
strategies listed in Table 1 in Section 3.2. For each

bar, we decompose the execution time from bot-

tom to top into the following components: the

busy time, the read, the write, and the synchroni-

zation stall times, i.e. stall times for acquiring or

releasing a lock; and finally, for software-only

directory protocols, the overhead in servicing

coherence actions by software-handler execution
(P_TIME).

Let us first compare the baseline protocols. As

expected, BASIC-SW does significantly worse

than HW; the execution times are between 12%

(Water-Spatial) and 122% (Ocean) longer than

under HW. From the execution time breakdown,

we can see that all stall time components are

longer under BASIC-SW which confirms the
intuition from Section 3; the software latency is on

the critical memory access path which makes the

read and write stall times longer. The applications

we use have very different miss rates as can be seen

from Table 5 that shows the cold, coherence, and

replacement read-miss rates. Since the applications

differ in the number of misses, we also see a big

difference in the relative performance; while e.g.,
Water-Spatial has few misses (0.19%) and requires

few software handler invocations, protocol han-

dling dominates in Ocean which has a high miss

rate (1.48%) and a low processor utilization under
Table 5

Application miss rates of a software-only directory protocol, with 25

Application Application miss rates

Cold (%) Coherence (%) Replacement (%

Barnes 0.10 1.14 0.07

Ocean 0.02 0.69 0.70

Water-Nsquared 0.04 0.29 0.08

Water-Spatial 0.03 0.16 0.00

Cholesky 0.21 0.12 0.13

FFT 1.19 0.29 0.05

LU 0.07 0.16 0.17

Radix 0.45 0.35 0.26
BASIC-SW as well as under HW. Next we study

how the stall time components are affected when

applying the strategies proposed in Section 3.

Starting with SW-1 (as defined in Table 1), in

which state lookup is performed by the network

interface, we would expect P_TIME to be reduced.
This is true for all applications as can be seen in

Fig. 5. However, for most applications, the write

stall time increases slightly. When the network

interface does state lookup, the latency seen by a

write request arriving at a node until the reply

leaves the node actually increases. In BASIC-SW,

the processor fetches both the state and the

directory for a block at the same time. In contrast,
in SW-1 the state is first fetched by the network

interface, and then the directory data is fetched by

the processor resulting in one additional interac-

tion with the memory controller and two extra bus

transfers. In total, the resulting execution time

under SW-1 is shorter than or the same as under

BASIC-SW for all applications except FFT and

Radix. For these two applications, the write stall
time increases more than for the other applications

since they already have longer write stall times

than the other applications.

When we allow the network interface to for-

ward read and write requests to dirty blocks di-

rectly to remote without interrupting the compute

processor, as in SW-2, we would expect to see a

reduction of the read stall time and the P_TIME
evolving from the handling of dirty blocks. As

expected, these components go down to various

degrees under SW-2 for most applications. This

results in an overall reduction of the execution
6 Kbyte L2 caches and round-robin page allocation

Handler miss rates

) Directory conflict (%) Total (%)

0.06 1.37 7.18

0.07 1.48 3.68

0.02 0.43 18.68

0.00 0.19 1.64

0.02 0.48 6.70

0.03 1.56 3.11

0.00 0.40 0.42

0.07 1.13 3.04

550 H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561
time by up to 13% (Radix) compared to BASIC-

SW. The reason that we see relatively small bene-

fits from SW-2 is that the fractions of all read

misses that go to dirty blocks are low; below 10%

for all applications except FFT (27%) and Radix

(29%). In a previous study [12], we found that
about 90% of the read misses were to dirty blocks

for three of four applications from the older

SPLASH suite, and thus we saw much larger gains

from SW-2 in that study.

In SW-3, the network interface returns data to

local on read miss requests to clean blocks before

interrupting the processor and is effective for

applications with misses to clean blocks, e.g., cold
misses. In the SPLASH-2 applications, much data

is updated by one processor and read by many

which results in many misses to clean blocks.

Thus, SW-3 shows dramatic reductions of mainly

the read stall time for all applications. The read

stall time is reduced by between 40% (LU) and

17% (Water-Spatial) under SW-3 as compared to

BASIC-SW. In total, the execution times under
SW-3 is between 5% (Water-Spatial) and 23%

(Barnes) lower than under BASIC-SW.

By letting the node controller return a dirty

block to local before interrupting the processor as

in SW-4, we further optimize the handling of dirty

misses and ownership requests to dirty blocks. We

can see that the read stall times are only slightly

reduced as compared to SW-2 for most applica-
tions. SW-4 is not so effective for the same reason

as SW-2; only a small fraction of the read misses is

to dirty blocks. SW-4 has the largest effect on

Radix where the read stall time and execution time

drop by 21% and 7% respectively, when we go

from SW-2 to SW-4. In [12] we observed signifi-

cantly larger gains from SW-4 because misses to

dirty blocks were more common in the applica-
tions used in that study.

When we combine all strategies covered so far,

which we do in SW-5, we can see additional gains

for the software-only directory protocol. SW-5 has

only 6% longer execution time than HW for the

Water-Spatial application meaning that it has 94%

of HW�s performance. For Ocean, which already
for HW has a very poor processor utilization, we
find that the software-only directory protocol has

83% longer execution time, i.e., it reaches 55% of
HW�s performance. We have also observed that
the read stall times under SW-5 is at most 11%

longer than under HW for all applications but LU

(37% longer).

In summary, we have seen that one can afford

to let the compute processor update the directory
given that parallelism is exploited between message

transfer and protocol actions. In SW-3 and SW-4,

the processor updates the directory in parallel with

the reply sent to local, thus minimizing the miss

penalty seen by local. SW-3 optimizes the handling

of clean misses, while SW-4 optimizes the handling

of dirty misses. Both strategies are essential to

achieve good performance for both types of mis-
ses. They are combined in SW-5.
5.2. Effects of caching the directory information

In this section we evaluate the effects of cach-

ing the directory in the processor. In Fig. 6, we

show the resulting execution times for a software-

only directory protocol without (SW-5) and with
(SW-5+Dir) directory caching normalized to the

execution time of a hardware-only protocol

(HW). In the figure results are shown for both

round-robin (RR) and first-touch (FT) page allo-

cation.

By comparing the execution times of RR/SW-5

and RR/SW-5+Dir in Fig. 6, we find that they are

reduced by between 3% (Water-Spatial) and 20%
(Ocean). The reduction stems from a lower han-

dler execution time that reduces the write and

synchronization stall times as can be seen in Fig. 6.

We also note that the overhead for handler exe-

cution time that is not hidden (P_TIME) has de-

creased significantly for all applications. The

resulting execution times under RR/SW-5+Dir is

only 3–46% longer than under RR/HW. In [12],
where the older SPLASH suite was used, we varied

the L2 cache size from 4 Kbyte to infinitely sized

L2 caches and found the results consistent for all

applications with the results for the 256 Kbyte L2,

i.e., caching the directory results in shorter execu-

tion times.

To understand the results above, recall the

simple miss penalty formula from Section 3.3:

Tmiss ¼ MA �MPA þMS �MPS

||0

|20

|40

|60

|80

|100

|120

|140

|160

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e Cholesky FFT LU Radix

P_TIME
SYNC

WRITE

READ

BUSYR
R

/H
W

R
R

/S
W

-5

R
R

/S
W

-5+
D

ir

F
T

/H
W

F
T

/S
W

-5+
D

ir

1.00

1.38
1.24

0.86

1.05

R
R

/H
W

R
R

/S
W

-5

R
R

/S
W

-5+
D

ir

F
T

/H
W

F
T

/S
W

-5+
D

ir

1.00

1.37
1.22

0.83

1.11
R

R
/H

W

R
R

/S
W

-5

R
R

/S
W

-5+
D

ir

F
T

/H
W

F
T

/S
W

-5+
D

ir

1.00

1.47

1.21

0.85
1.00

R
R

/H
W

R
R

/S
W

-5

R
R

/S
W

-5+
D

ir

F
T

/H
W

F
T

/S
W

-5+
D

ir

1.00

1.53
1.35

0.95

1.34

||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e Barnes Ocean Water-Nsquared Water-Spatial

P_TIME
SYNC
WRITE
READ
BUSYR

R
/H

W

R
R

/S
W

-5

R
R

/S
W

-5+
D

ir

F
T

/H
W

F
T

/S
W

-5+
D

ir

1.00

1.30
1.15

0.96
1.15

R
R

/H
W

R
R

/S
W

-5

R
R

/S
W

-5+
D

ir

F
T

/H
W

F
T

/S
W

-5+
D

ir

1.00

1.83

1.46

0.65

1.04

R
R

/H
W

R
R

/S
W

-5

R
R

/S
W

-5+
D

ir

F
T

/H
W

F
T

/S
W

-5+
D

ir

1.00
1.211.14

0.95
1.07

R
R

/H
W

R
R

/S
W

-5

R
R

/S
W

-5+
D

ir

F
T

/H
W

F
T

/S
W

-5+
D

ir
1.001.061.031.001.03

Fig. 6. Normalized execution times for the applications with a hardware-only protocol (HW) and a software-only directory protocol

without (SW-5) and with (SW-5+Dir) directory caching, using two different page allocation policies: round-robin (RR) and first-touch

(FT).

H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561 551
Clearly, in a software-only directory protocol

without directory caching, MS is always equal to

the number of directory accesses. Since MPA is
significantly higher than MPS a small increase in
MA as a result of conflicts in the cache may in-
crease the total execution time of the application

even though MS has decreased significantly. To

quantify these effects, we measured the miss rates

for the applications and the software handlers. The

resulting miss rates are summarized in Table 5.

The directory-conflict column in the table is the

miss rate an application encounters as a result of

cache conflicts between a directory entry and a
data block. By comparing the directory-conflict

miss rates with the total miss rate the application

encounters, we observe that caching the directory

only contributes very little to the total application

miss rate, e.g., for Barnes only 0.06% as compared
to 1.37%. Therefore, having a separate small cache

for directory data will probably not be worth

implementing considering the relatively small po-

tential performance improvement. Further, we see

in Table 5 that the miss rates for the software
handlers are only between 0.42% (LU) and 7.18%

(Barnes) for all applications but one. These num-

bers for the handlers indicate that there is high

locality in the accesses to the directory entries.

This result is not obvious since accesses to a home

node originate from many different nodes. For

Water-Nsquared, the handler miss rate is 18.68%.

This indicates that there is less locality in the
directory accesses for that application.

In Fig. 6 we also present results using a better

page allocation strategy, first-touch (FT). The

motivation is that by allocating pages close to the

processors that use them, the read miss latency

552 H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561
should decrease. Further, in the software-only

directory protocol we can take advantage of the

optimization of local misses as described in Section

3.1. We can observe that for some applications,

e.g., Barnes and Water-Spatial, the page allocation

policy does not impact the performance. For other
applications, e.g., Ocean, Cholesky, and LU, we

see significant performance improvements by using

a better page allocation policy. Comparing the

performances of FT/HW and FT/SW-5+Dir we

find that the software-only directory protocol has

between 3% (Water-Spatial) and 60% (Ocean)

longer execution times than the hardware-only

protocol.
In summary, when both the local and remote

miss optimizations are applied and the directory

information is cached, as in SW-5+Dir, the exe-

cution times are only between 3% and 60% longer

than for HW. Further, our results indicate that

caching the directory information consistently re-

sults in better performance, and that there is very

little cache interference between the application
data and the directory information. Finally, the

miss rates for directory accesses are low, only be-

tween 0.42% and 7.18%, for seven of eight appli-

cations which indicates a high locality in the

directory accesses. Henceforth, we only consider

FT/SW-5+Dir and refer to it as SW.

5.3. Limitations of software-only directory protocols

While SW results in virtually the same read stall

times as HW, the performance differences stem

from the write and synchronization stall times and
Table 6

Software handler execution statistics under the SW directory protoco

Application Overlapped fraction of software

handler execution (%)

F

w

p

Barnes 17.29 6

Ocean 45.68 1

Water-Nsquared 36.19 3

Water-Spatial 8.66 7

Cholesky 45.81 2

FFT 26.27 1

LU 37.08 2

Radix 35.95 2
the time each processor handles coherence actions

from other nodes through software handler exe-

cutions, starting with the handler execution over-

head.

Software handler execution overhead (P_TIME

in Fig. 5) shows up when a processor is interrupted
while executing application code. In contrast, if the

processor is stalled as a result of a cache miss, an

ownership acquisition, or a synchronization oper-

ation, the software handler execution could be

completely or partly overlapped by these stall time

components. Thus, it becomes interesting to see to

what extent handler execution can be overlapped

by the stall time components. In Table 6 we show
this data for SW.

Simulation results show that at most 46%, and

sometimes as low as only 9%, of the software

handler execution time is overlapped by the stall

time components. To understand why this overlap

is so small, Table 6 also summarizes the fraction of

interrupts that occur when a processor is busy as

well as the processor utilization. Across the
applications, we see that the processor is busy

between 11% and 73% of the cases when an

interrupt occurs. In Barnes, for example, the pro-

cessor is busy in 61% of the cases which compares

well with the processor utilization in Barnes which

is 57%.

In contrast, the processor utilization for FFT is

25%, but the processor is busy only when 11% of
the interrupts occur. Such a large discrepancy is

also present for Water-Nsquared and Cholesky.

We have found that the discrepancy stems from

the fact that interrupts are clustered in these
l

raction of interrupts that arrive

hen the processor is busy vs.

rocessor utilization

Ratio: highest/lowest

number of interrupts

to any processor

0.60% vs. 57% 2.89

7.08% vs. 13% 1.35

5.42% vs. 61% 2.24

3.25% vs. 79% 555.06

3.93% vs. 44% 1.61

1.04% vs. 25% 1.15

5.19% vs. 20% 2.49

5.93% vs. 32% 3.70

H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561 553
applications; e.g., for Cholesky a new interrupt

occurs within 200 pclocks after the previous one in

25% of the cases, within 500 pclocks in 68% of the

cases, and finally, within 1000 pclocks in 88% of

the cases. Clearly, since the average software la-

tency is between 120 and 140 pclocks for SW, the
processor does not have much time to do useful

work between the interrupts. Overall, most of the

software latency cannot be overlapped by the

other stall time components because the processor

is often busy when an interrupt occurs.

Another important limitation to analyze stems

from synchronization overhead. An observation

extracted from Fig. 6 is that the synchronization
time under SW (i.e., FT/SW-5+Dir) is higher than

under HW. This effect is especially pronounced in

Barnes, Water-Nsquared, LU, and Radix. An

explanation for this difference would be that soft-

ware handler execution causes load imbalance

because the interrupts are not uniformly distrib-

uted across the processor nodes. To test this

intuition, we recorded the highest and lowest
numbers of interrupts coming to any processor for

each application. The ratios of these numbers are

shown in Table 6 for SW.

For Barnes the ratio is 2.89, i.e., the processor

that receives most interrupts, receives almost 3

times as many interrupts as the processor that is

interrupted the fewest number of times. For

Water-Nsquared, LU, and Radix the correspond-
ing ratios are 2.24, 2.49, and 3.70, respectively.

This explains why Barnes, Water-Nsquared, LU,

and Radix have a considerably higher synchroni-

zation overhead under SW than under HW. In

contrast, for all other applications except one

(Water-Spatial) the ratio is well below two which

indicates a good balance of the number of inter-

rupts between the processors. For Water-Spatial,
however, the processor that receives most inter-

rupts handles more than 500 times as many

interrupts as the processor with the fewest number

of interrupts. This is explained by the fact that

some nodes have only one page allocated to them,

thus they only need to handle very few interrupts.

Since the total number of interrupts for Water-

Spatial is low, the performance is not significantly
affected by this load imbalance. In [12], we found

interrupt ratios as high as 10 for MP3D, an
application in the older SPLASH suite. Ideally, if

the coherence interrupts would be uniformly dis-

tributed among the processor nodes, we would

expect the synchronization overhead to be virtu-

ally the same as under HW.

Finally, the software handler execution time
will appear on the critical memory access path for

ownership acquisitions since the processor in home

must examine the directory before sending invali-

dations, and as a result, the software handler

execution time can not be removed from the write

stall time seen by local. An approach to address

the problem is to use a relaxed memory consis-

tency model [11], where the write latency can be
overlapped by application execution as long as

synchronizations are not encountered. In [13], we

evaluate the performance effects of relaxed models

as well as other latency tolerating techniques.

5.4. Effects of block size variations

An important design parameter is the size of a
memory block. Larger block sizes have a potential

to reduce the cache miss rate, i.e., the read stall

time, and at the same time reduce the protocol

execution overhead. Too large a block size may

introduce false sharing [10], which may increase

both the number of invalidations for each write

and the cache miss rate. In order to understand

what the trade-offs are in the context of hardware-
only and software-only protocols, we simulated

block sizes of 16, 32, 64, 128, and 256 bytes. The

resulting execution times are shown in Fig. 7,

where HW-X and SW-X denote the hardware-only

and the software-only directory protocols,

respectively, and X the block size in bytes. The

execution times are normalized to the execution

time of HW-64, i.e., a hardware-only protocol
with 64-byte blocks.

Considering the execution times for the hard-

ware-only directory protocol we note that for four

of the applications (Barnes, Ocean, Cholesky, and

FFT) we observe a constant decrease of the exe-

cution time as the block size increases from 16

bytes up to 256 bytes. However, remember that we

do not model contention in the interconnection
network, and thus, the execution time estimations

are optimistic for larger block sizes. For the other

||0

|50

|100

|150

|200

|250

|300

|350

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e FFT

P_TIME
SYNC
WRITE
READ
BUSYH

W
-16

H
W

-32

H
W

-64

H
W

-128

H
W

-256

S
W

-16

S
W

-32

S
W

-64

S
W

-128

S
W

-256

1.89

1.29
1.00

0.86 0.79

3.34

1.97

1.33
1.03

0.88

||0

|20

|40

|60

|80
|100

|120

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Water-Spatial

P_TIME
SYNC
WRITE
READ
BUSYH

W
-16

H
W

-32

H
W

-64

H
W

-128

H
W

-256

S
W

-16

S
W

-32

S
W

-64

S
W

-128

S
W

-256

1.09
1.02 1.00 0.98 1.00

1.15
1.06 1.02 1.00 1.03

||0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Barnes

P_TIME
SYNC
WRITE
READ
BUSYH

W
-16

H
W

-32

H
W

-64

H
W

-128

H
W

-256

S
W

-16

S
W

-32

S
W

-64

S
W

-128

S
W

-256

1.15
1.06 1.00 0.98 0.97

1.45

1.24 1.20
1.13 1.12

||0

|50

|100

|150

|200

|250

|300

|350

|400

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Ocean

P_TIME
SYNC
WRITE
READ
BUSYH

W
-16

H
W

-32

H
W

-64

H
W

-128

H
W

-256

S
W

-16

S
W

-32

S
W

-64

S
W

-128

S
W

-256

1.85

1.28
1.00 0.87 0.83

4.05

2.37

1.60
1.25 1.12

||0

|20

|40

|60

|80

|100

|120

|140

|160

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Water-Nsquared

P_TIME
SYNC
WRITE
READ
BUSYH

W
-16

H
W

-32

H
W

-64

H
W

-128

H
W

-256

S
W

-16

S
W

-32

S
W

-64

S
W

-128

S
W

-256

1.25

1.03 1.00 1.00 1.00

1.50

1.17 1.13 1.11 1.12

||0

|50

|100

|150

|200

|250

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Cholesky

P_TIME
SYNC
WRITE
READ
BUSYH

W
-16

H
W

-32

H
W

-64

H
W

-128

H
W

-256

S
W

-16

S
W

-32

S
W

-64

S
W

-128

S
W

-256

1.51

1.17
1.00 0.94 0.92

2.34

1.56

1.22
1.08 1.02

||0

|50

|100

|150

|200

|250

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Radix

P_TIME
SYNC
WRITE
READ
BUSYH

W
-16

H
W

-32

H
W

-64

H
W

-128

H
W

-256

S
W

-16

S
W

-32

S
W

-64

S
W

-128

S
W

-256

1.60

1.14
1.00

1.24
1.46

2.38

1.64
1.41

1.66

2.00

||0

|20

|40

|60

|80

|100
|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e LU

P_TIME
SYNC
WRITE
READ
BUSYH

W
-16

H
W

-32

H
W

-64

H
W

-128

H
W

-256

S
W

-16

S
W

-32

S
W

-64

S
W

-128

S
W

-256

1.13
1.04 1.00 0.98

1.06

1.39
1.24 1.18 1.17

1.30

Fig. 7. Normalized execution times of the applications for 16, 32, 64, 128, and 256 byte blocks.

554 H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561
applications the best block size, as indicated
by our results, seems to be 64 (Radix) or 128

bytes (Water-Nsquared, Water-Spatial, and

LU). Larger block sizes increase the execution time

as a result of false sharing [10] for those applica-

tions.
By looking at the execution times for the soft-
ware-only directory protocol, similar effects as for

the hardware-only protocol can be observed but

they are more pronounced. For four of the appli-

cations (Barnes, Ocean, Cholesky, and FFT) the

execution time decreases more rapidly than for the

H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561 555
hardware-only directory protocol as the block size

increases from 16 to 256 bytes. For Water-Nsqu-

ared, Water-Spatial, and LU, the execution time

decreases up to a block size of 128 bytes, and then

it increases slightly again. Finally, for Radix, we

see a steep decrease in execution time for increas-
ing block sizes up to 64 bytes, and then the exe-

cution time increases rapidly as a result of false

sharing. As expected, the results in Fig. 7 show

that the protocol execution overhead decreases

with larger block sizes for all applications until

false sharing occurs. Then, both the write stall time

and the protocol execution overhead increases as

false sharing increases.
In contrast to the execution time variations

between different block sizes for the hardware-only

directory protocol, the execution time variations

are much more dramatic for the software-only

directory protocol. In other words, the perfor-

mance of the software-only directory protocol is

more sensitive to the block size choice than the

hardware-only directory protocol performance is.
The ratios between the execution times for the

worst block size choice and for the best block size

choice are between 1.11 (Water-Spatial) and 2.39

(FFT) for the hardware-only directory protocol.

The corresponding ratios for the software-only

directory protocol are 1.15 (Water-Spatial) and

3.80 (FFT), which indicates the higher sensitivity

to the block size choice.
For all applications, the execution time ratios

between software-only and hardware-only direc-

tory protocols generally decrease as the block size

increases, i.e., the execution time decreases faster
Network

Local bus

Send buffer

Fetch Execute

Pending
register

Wait
queue

Acknowledg
counters

Fig. 8. A logic overview of
for the software-only than for the hardware-only

directory protocol for increasing block sizes. Lar-

ger block sizes result in fewer coherence interrupts,

which then decreases the performance difference

between hardware-only and software-only direc-

tory protocols.
6. Implementation of the optimization strategy

In this section we discuss some issues concern-

ing the hardware complexity. We have made a

design of a network interface, as well as a proto-

type VHDL implementation using Mentor
Graphics� System Design Station. The prototype

has been synthesized to a 0.8 lm full custom

technology and simulated, but not manufactured.

Most modifications of the processor node are

enhancements of the network interface function-

ality. Like the optimization of local misses, the

optimization of remote misses requires a separate

state memory for each block (see Fig. 3). The state
memory has to be accessible from both the pro-

cessor and the network interface, and therefore, is

not allowed to be cached to ensure correctness.

Fig. 8 shows a high-level overview of the network

interface which is one example implementation

that we use in this study. The extra logic required

for the software-only approach as compared to a

hardware only approach is shaded in Fig. 8. The
Fetch box is responsible for selecting the next

message to handle, the Launch box is responsible

for depositing messages after service in the net-

work interface, and the Execute box does the logic
Network

Local bus

Interrupt buffer

Launch

ment

the network interface.

556 H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561
operations according to the contents of a message.

The other boxes are referred to in the text when

necessary.

Messages to other nodes are routed through the

network interface and to the network. Further,

messages to this node in response to a local cache
request are routed to the local bus. Finally, all

other messages to this node, i.e., coherence mes-

sages to home, are handled by the network inter-

face as follows. When a message arrives, the

network interface first inspects if it is an invalida-

tion acknowledgment, and thus the corresponding

acknowledgment counter is decremented. If the

counter reaches zero, i.e., all acknowledgments
have arrived, the network interface sends owner-

ship to local (possibly another node) and puts an

invalidation acknowledgment in the interrupt

buffer so the processor can update the directory.

Our simulation results indicate that at most two

invalidation counters are allocated simultaneously

in more than 90% of the cases and more than 16

counters were never needed. The upper limit de-
pends on the number of processors and the max-

imum number of pending writes each processor

can have.

If the incoming message is not an invalidation

acknowledgment, the network interface launches a

state-lookup request for the block to the memory

module in the node and puts the message in the

pending register (see Fig. 8). When the memory
module returns the state of the block to the net-

work interface, additional data can be supplied. If

the block is clean, the memory sends a block copy

along with the state information. For dirty blocks,

the identity of remote is stored in the first word of

the empty block frame, and the memory module

sends this word along with the state information.

Finally, in all other cases, memory only supplies
the block state to the network interface. As will be

discussed later, we assure correctness by only

allowing one pending state lookup at a time.

When the state of the block is returned from

memory, the message is removed from the pending

register and rescheduled in the execute box. If the

block is marked busy, i.e., there is a pending

coherence operation to the block, the network
interface sends a retry message to local. If the

memory block is not busy, the network interface
marks it as busy and takes the following actions

depending of the global state of the block. Write

requests to clean blocks are inserted in the inter-

rupt buffer since the processor needs to inspect the

directory to find out where to send the invalida-

tions. For read requests to clean blocks, the net-
work interface sends a block copy to local and puts

the request in the interrupt buffer so the processor

can update the directory. In this way, the directory

management is done in parallel with the block data

transfer to local.

The network interface forwards read and write

requests to dirty blocks to remote (whose identity

is supplied from memory along with the state
information) by issuing a write-back request and

then stores the identity of local in the first word of

the block frame in memory. When the block copy

is written back to home, the network interface

forwards a copy to local (whose identity is found

in the block frame in memory) and puts a message

in the interrupt buffer for directory update. Fur-

ther, the network interface is responsible for
writing the block back to memory. Note that the

processor also in this case updates the directory for

the block in parallel with the block data transfer.

By storing the identities of remote and local in the

first word of the empty block frame in memory,

the network interface does not need to access the

directory. As a result, the directory can be com-

pletely managed by software handlers.
We only allow the network interface to do state

lookup for one coherence request at a time. Con-

sider two read requests arriving at a dirty block. If

we allowed state lookup for both requests simul-

taneously, they will both find the block dirty and

two write back requests are issued to remote. Even

worse, both read requests store their own identity

in the first word of the block frame. As a result, we
will loose one of the node identities from which the

reads originated. A request going to the processor

interrupt buffer marks the memory block as busy

for similar reasons. The notion of busy blocks also

prevents races between local read misses and re-

mote requests since the local read miss only is

served by the memory controller if the block nei-

ther is busy nor is dirty. If a new request that re-
quires a state lookup arrives to the node when a

state lookup already is pending, the new request is

H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561 557
put in a wait queue (see Fig. 8). When the previous

state lookup completes, the requests in the wait

queue have priority over new requests coming from

the network, the local bus, and the send buffer. The

request from the wait queue is rescheduled and

handled by the execute box in the same way as if it
came directly from, e.g., the network. Note that

messages that do not require a state lookup by the

network interface are still handled even when a

state lookup request is pending.

The state machine in the network interface is

expected to be less complex than the memory

controller of a hardware-only protocol. In a

hardware-only protocol the state machine must,
e.g., inspect the directory, and based on the value

of each entry in the directory either issue an

invalidation or not. By contrast, the state machine

in the network interface does not manage the

directory, and thus can be made simpler.
7. Discussion and related work

Several research projects are headed towards

software managed coherence protocols. The re-

search has evolved along two main directions: ei-

ther a separate protocol processor is used to

execute the software handlers that emulate the

coherence protocol or the handlers are executed on

the compute processor.
The first direction is represented by, e.g., the

Stanford FLASH [14,15] and the Wisconsin Ty-

phoon [29]. These projects suggest using a separate

processor to execute the software handlers. The

processor can be located in a central node con-

troller as in FLASH or located in the network

interface as in Typhoon. In Typhoon-0 and Ty-

phoon-1 [30], the network interface and the proto-
col processor are decoupled, i.e., a commodity

processor in the processing node is used for proto-

col processing. These projects have the goal to

achieve flexibility in the protocol design. However,

it is an open question whether the performance

justifies the cost of an extra processor. In fact, the

small performance difference obtained in this study

between the hardware-only and the software-only
directory protocols indicates that the expected

performance gain from a separate protocol pro-
cessor is low as compared to running the software

handlers on the compute processor.

Several design efforts aim at executing the

software handlers on the compute processor, e.g.,

the MIT Alewife [1,6], the Cooperative Shared

Memory [17,36], and the STARTART-NG [8] projects.
Both the Alewife and the Cooperative Shared

Memory efforts suggest using a hardware protocol

that handles a limited number of copies and rely

on software handlers only when the hardware

directory overflows. In [7], Chaiken and Agarwal

evaluate the cost and performance of a number of

protocols ranging from protocols with zero hard-

ware pointers, i.e., software-only directory proto-
col, to a full-map protocol. They suggest that a

minimum of one hardware pointer shall be sup-

ported in hardware. In contrast, our results indi-

cate that also software-only directory protocols

can be competitive with hardware-only protocols.

Wood et al. evaluate mechanisms for Cooper-

ative Shared Memory in [36] and compare different

hardware-only and software-extended protocols.
The software-extended protocol that is most sim-

ilar to our work is called Dir1SWþ. It can in
hardware keep track of one shared cached copy of

the block. Further, it also supports request for-

warding to dirty remote blocks and then passing

the block directly to the requesting cache as in our

SW-4 strategy. However, when the number of

shared copies exceeds 1, a software handler is
executed in order to broadcast invalidations upon

a write. Our interpretation is that the Dir1SWþ
protocol does not keep track of which nodes have

a copy of a memory block if more than one copy

exists. This approach can have a devastating effect

on performance in large systems. In contrast, our

approach is to always let the directory maintain

exact information about which nodes have a copy
of a block. Finally, in our study we have used

larger data sets for the benchmarks and provide a

much more detailed analysis of which strategies

are most important to support in hardware.

In [27], Qin and Baer study the performance of

a software-based coherence protocol in the context

of SMP clusters. Their approach relies on a sepa-

rate protocol processor in the cluster node. They
find that the performance of the software scheme,

extended with some extra forwarding logic similar

558 H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561
to our suggestions and software hints, is compar-

ative to the performance of a pure hardware

scheme.

An interesting approach is found in [28], where

a software-based shared memory system called

DSZOOM-WF is presented. They implement an
all-software protocol on a system where each node

is an SMP cluster. In DSZOOM-VF all coherence

protocol actions are run on the requesting pro-

cessor, which otherwise stalls waiting for data, and

thus removes all protocol software overhead. In

the paper, the software-based approach demon-

strates performance comparable to a hardware-

based shared memory implementation.
The STARTART-NG [8] project suggests connecting

commodity microprocessors by a bus and thus

building clusters. The clusters are then connected

by a network and coherence between the clusters is

maintained through a software-only directory

protocol. A hardware unit snoops on the cluster

bus and when a processor issues a request to

globally shared memory, the bus request is inter-
cepted, a compute processor is interrupted and a

software handler is executed to service the request

which may trigger handler invocations at other

clusters as well. A severe disadvantage in STARTART-

NG, that we have addressed and solved in this

study, is that read miss requests to the local

memory incur software handler overhead. The

succeeding STARTART-Voyager [3] project suggests to
add an extra service processor in the network

interface, similar to the Wisconsin Typhoon pro-

posal.

A node architecture with a local bus, such as

our proposed architecture as well as STARTART-NG,

is more suited if we want to build clusters con-

taining several processors per node than, e.g.,

FLASH and Alewife, which both have a central
node controller within each processor node. A

central node controller is harder to scale to several

processors. Our suggested node organization with

a local bus is expected to be more efficient than

other proposed solutions. In FLASH for example,

all local accesses go through the protocol proces-

sor and in STARTART-NG, which also has a node

organization with a bus, a read miss to the mem-
ory in the local node interrupts the compute pro-

cessor. In contrast, Alewife can always handle
local read misses to clean blocks without software

handler overhead, but like in FLASH the miss has

to go through a central node controller.

A software-only solution related to our work is

Blizzard [32], which provides user-level shared

memory on a message passing machine without
any hardware support for shared memory. Like

our software-only directory protocol, Blizzard in-

vokes software handlers on the compute proces-

sors when a load or store to shared memory

cannot be satisfied in the local cache. Several

implementations of Blizzard are proposed and

evaluated. The implementation most related to our

work is Blizzard-E, which manipulates the error
correcting code at the memory to check if an ac-

cess can complete or a handler needs to be in-

voked. For example, upon a write to a read-only

block, an exception occurs and a user-level handler

is executed. However, their results are difficult to

compare with ours since they do not present the

performance of Blizzard-E relative to a hardware-

only architecture with a similar organization.
In [25], Moga et al. propose and evaluate a

software-controlled COMA (SC-COMA) archi-

tecture. They rely on a special hardware unit

(Access Checking Device) to detect misses in the

attraction memory, i.e., the local memory, in each

node. Upon an attraction memory miss, the pro-

cessor is interrupted and a software handler is

executed and a remote request is issued. In con-
trast, in our approach the local processor is not

interrupted for a miss in the local node. Instead, a

remote request is issued directly from hardware as

in a hardware-only implementation. As for the

home memory node, both our approach and SC-

COMA support caching of directory information,

but do not allow tag/state information to be ca-

ched since it is accessed by both software handlers
and the hardware. In SC-COMA, there is no

support for request forwarding in hardware for

misses to dirty blocks in remote nodes, i.e., the

main processor is interrupted for each request

arriving to home. Finally, also the processor in

remote is interrupted in SC-COMA when servicing

a read miss to a dirty block. In total, servicing a

dirty remote miss interrupts three processors in
SC-COMA while only the processor in home is

interrupted in our approach.

H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561 559
Shasta [31] is a software-only directory protocol

targeted for a pure message-passing substrate and

implements a relaxed consistency model, therefore

aiming in a slightly different direction than our

approach. As a pure software approach, Shasta

also provides more flexibility than our approach.
Shasta relies on rewriting the application to

introduce code that does fine-grain access control

for each load and store to shared data. This

potentially increases the code size and execution

time of the application. Further, Shasta uses a

polling scheme in the home nodes instead of

interrupts to detect when a message arrives. Home

does polling for incoming requests when the proto-
col waits for a reply. In addition, the access control

code is inserted at function calls or loop back

edges, further increasing the code size and the

execution time for the application. The polling

overhead can be significant for applications with

little degree of sharing which leads to many

unnecessary polling actions. Finally, no compari-

son between Shasta and a hardware-only imple-
mentation with similar architecture has been done.

In Section 5.3, we found that a performance

limitation of software-only directory protocols is

that the processor often is busy executing appli-

cation code when an interrupt occurs. This can be

addressed by, e.g., using multiple processors in

each node. Then, the possibility to find an idle

processor that can handle the coherence interrupt
increases [18]. Another way to address the problem

is to use a processor supporting simultaneous

multithreading [33], such as the Intel Xeon pro-

cessor [24] or the Compaq Alpha 21464 [9]. Then,

the software handler execution could be integrated

in the processor�s instruction stream without dis-

turbing the execution of the application code.
8. Conclusions

The design complexity of hardware-based

directory protocols has motivated us to study

protocols in which the memory-protocol engine is

migrated to software handlers executed on the

compute processor. In this paper we have focused
on one such class, called software-only directory

protocols, in which the directory is located in main
memory and maintained by software handlers. All

directory actions cause an interrupt on the com-

pute processor which potentially can result in a

significant protocol execution overhead. On a read

miss, software handlers are invoked on the com-

pute processor in the node where the block is
allocated. Therefore, the latency of the read miss

includes the time to execute the software handler.

In this paper we have studied three important

performance issues for software-only directory

protocols: read misses to local memory; read misses

to remote nodes; and the effects of caching the

directory when executing a software handler. We

have also proposed several strategies to remove the
latency of the software handler from the latency of

a miss by executing the handler in parallel with the

inter-node protocol transactions so as to overlap

the software latency by network latency.

Based on architectural simulations using eight

parallel benchmarks from the SPLASH-2 suite

[35], we have evaluated seven software-only

directory protocol variations by comparing their
performances with the performance of a hardware-

only directory protocol. We have found that the

software handler latency can be effectively re-

moved from the critical memory access path for

read misses. Further, caching the directory impacts

very little on the total miss rate of an application.

In addition, caching the directory decreases both

the handler execution time and the application
execution time for all studied applications. In

total, the best software-only directory protocol

resulted in a performance in the range 63–97% of

the hardware-only directory protocol perfor-

mance.

We have also identified the hardware function-

ality needed to support this strategy and it includes

direct access to the data and state of each memory
block. For example, by using a separate state

memory for each memory block we have shown

that read misses to local memory can be serviced

without software handler overhead. Further,

software-only directory protocols also rely on

processors supporting a fast mechanism to switch

from execution of application code to software

handler execution.
Two factors prevented further optimizations:

overhead in servicing coherence actions for other

560 H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561
processors and load imbalance due to nonuniform

distribution of interrupts across nodes. Since we

found that the processor is often busy executing

application code when an interrupt occurs, soft-

ware handler execution will only partially be

overlapped by the processor stall time compo-
nents. Second, synchronization overhead is usually

higher in a software-only directory protocol owing

to the fact that some compute processors handle

significantly more coherence actions than others.

These factors dominated the performance differ-

ence between the software-only and the hardware-

only directory protocols and limited further gains.

Overall, our study shows that if block data
transfer is supported efficiently in hardware, one

can afford to let the compute processor update the

directory at a slower pace. Although this study

gives some evidence that such an approach is

promising, more detailed implementation studies

are needed to compare the complexity of alterna-

tives.
Acknowledgements

We would like to thank the people in the RPM

project at the University of Southern California

and the people in the FLASH project at Stanford

University, as well as the anonymous reviewers for

their valuable comments.
References

[1] A. Agarwal, R. Bianchini, D. Chaiken, K.L. Johnson, D.

Kranz, J. Kubiatowicz, B.-H. Lim, K. Mackenzie, D.

Yeung, The MIT Alewife machine: Architecture and

performance, in: Proc. 22nd Int�l Symp. Comp. Arch.,
June 1995, pp. 2–13.

[2] A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim, D.

Yeung, G. D�Souza, M. Parkin, Sparcle: An evolutionary
processor design for large-scale multiprocessors, IEEE

Micro. 13 (3) (1993) 48–61.

[3] B.S. Ang, D. Chiou, D.L. Rosenband, M. Ehrlich, L.

Rudolph, Arvind, STARTART-Voyager: A flexible platform for

exploring scalable SMP issues, in: Proc. Supercomput-

ing�98, November 1998.
[4] M. Brorsson, F. Dahlgren, H. Nilsson, P. Stenstr€om, The

CacheMire test bench––A flexible and effective approach

for simulation of multiprocessors, in: Proc. 26th Ann.

Simulation Symp., March 1993, pp. 41–49.
[5] L.M. Censier, P. Feautrier, A new solution to coherence

problems in multicache systems, IEEE Trans. Comput. C-

27 (12) (1978) 1112–1118.

[6] D. Chaiken, J. Kubiatowicz, A. Agarwal, LimitLESS

directories: A scalable cache coherence scheme, in: Proc.

Fourth Int�l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IV), April

1991, pp. 224–234.

[7] D. Chaiken, A. Agarwal, Software-extended coherent

shared memory: Performance and cost, in: Proc. 21st Int�l
Symp. Computer Architecture, April 1994, pp. 314–324.

[8] D. Chiou, B.S. Ang, R. Greiner, Arvind, J.C. Hoe, M.J.

Beckerle, J.E. Hicks, A. Boughton, STARTART-NG: Delivering

seamless parallel computing, in: Proc. EURO-PAR�95,
Lecture Notes in Computer Science, No. 966, Springer-

Verlag, Berlin, 1995, pp. 101–116.

[9] K. Diefendorff, Compaq chooses SMT for Alpha, Micro-

processor Report 13 (16) (1999) 5–11.

[10] M. Dubois, J. Skeppstedt, P. Stenstr€om, Essential misses

and data traffic in coherence protocols, J. Parallel Distrib-

uted Comput. 29 (2) (1995) 108–125.

[11] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A.

Gupta, J. Hennessy, Memory consistency and event

ordering in scalable shared-memory multiprocessors, in:

Proc. 17th Int�l Symp. Computer Architecture, May 1990,
pp. 15–26.

[12] H. Grahn, P. Stenstr€om, Efficient strategies for software-

only directory protocols in shared-memory multiproces-

sors, in: Proc. 22nd Int�l Symp. Computer Architecture,
June 1995, pp. 38–47.

[13] H. Grahn, P. Stenstr€om, Comparative evaluation of

latency-tolerating and -reducing techniques for hardware-

only and software-only directory protocols, J. Parallel

Distributed Comput. 60 (7) (2000) 807–834.

[14] J. Heinlein, K. Gharachorloo, S. Dresser, A. Gupta,

Integration of message passing and shared memory in the

Stanford FLASH multiprocessor, in: Proc. Sixth Int�l
Conf. Architectural Support for Programming Languages

and Operating Systems (ASPLOS-VI), October 1994, pp.

38–50.

[15] M. Heinrich, J. Kuskin, D. Ofelt, J. Heinlein, J. Baxter,

J. P. Singh, R. Simoni, K. Gharachorloo, D. Nakahira, M.

Horowitz, A. Gupta, M. Rosenblum, J. Hennessy, The

performance impact of flexibility in the Stanford FLASH

multiprocessor, in: Proc. Sixth Int�l Conf. Architectural
Support for Programming Languages and Operating

Systems (ASPLOS-VI), October 1994, pp. 274–285.

[16] D.S. Henry, C.F. Joerg, A tightly-coupled processor-

network interface, in: Proc. Fifth Int�l Conf. Architectural
Support for Programming Languages and Operating

Systems (ASPLOS-V), October, 1992, pp. 111–122.

[17] M.D. Hill, J.R. Larus, S.K. Reinhardt, D.A. Wood,,

Cooperative shared memory: Software and hardware for

scalable multiprocessors, ACM Trans. Comput. Syst. 11

(4) (1993) 300–318.

[18] M. Karlsson, P. Stenstr€om, Performance evaluation of a

cluster-based multiprocessor built from ATM switches and

H. Grahn, P. Stenstr€om / Journal of Systems Architecture 50 (2004) 537–561 561
bus-based multiprocessor servers, in: Proc. Second Int�l
Symp. High Performance Computer Architecture (HPCA-

2), February 1996, pp. 4–13.

[19] J. Kubiatowicz, D. Chaiken, A. Agarwal, Closing the

window of vulnerability in multiphase memory transac-

tions, in: Proc. Fifth Int�l Conf. Architectural Support for
Programming Languages and Operating Systems (ASP-

LOS-V), October 1992, pp. 274–284.

[20] J. Kubiatowicz, A. Agarwal, Anatomy of a message in the

Alewife multiprocessor, in: Proc. 7th ACM Int�l Conf.
Supercomputing, July 1993, pp. 195–206.

[21] J. Laudon, D. Lenoski, The SGI Origin: A CC-NUMA

highly scalable server, in: Proc. 24th Ann. Int�l Symp. on
Computer Architecture, June 1997, pp. 241–251.

[22] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A.

Gupta, J. Hennessy, The DASH Prototype: Logic over-

head and performance, IEEE Trans. Parallel Distributed

Syst. 4 (1) (1993) 41–61.

[23] T. Lovett, R. Clapp, STiNG: A CC-NUMA computer

system for the commercial marketplace, in: Proc. 23rd Int�l
Symp. on Computer Architecture, June 1996, pp. 308–317.

[24] D. Marr et al., Hyper-threading technology architecture

and microarchitecture, Intel Technol. J. 6 (1) (2002) 1–12,

Available from <http://developer.intel.com/technology/itj/

2002/volume06issue01/art01_hyper/vol6iss1_art01.pdf>.

[25] A. Moga, A. Gefflaut, M. Dubois, Hardware versus

software implementation of COMA, in: Proc. 26th Int�l
Conf. on Parallel Processing, August 1997.

[26] J. Piscitello, A software Cache coherence protocol for

Alewife, Master�s thesis, Department of Electrical Engi-
neering and Computer Science, MIT, May 1993.

[27] X. Qin, J.-L. Baer, Optimizing software Cache-coherent

cluster architectures, in: Proc. Supercomputing�98, Novem-
ber 1998.

[28] Z. Radovic, E. Hagersten, Removing the overhead from

software-based shared memory, in: Proc. Supercomput-

ing�2001, November 2001.
[29] S.K. Reinhardt, J.R. Larus, D.A. Wood, Tempest and

Typhoon: user-level shared-memory, in: Proc. 21st Int�l
Symp. Computer Architecture, April 1994, pp. 325–336.

[30] S.K. Reinhardt, R.W. Pfile, D.A. Wood, Decoupled

hardware support for distributed shared memory, in: Proc.

23rd Int�l Symp. on Computer Architecture, June 1996.
[31] D. Scales, K. Gharachorloo, C. Thekkath, Shasta: A low

overhead, software-only approach for supporting

fine-grain shared-memory, in: Proc. Seventh Int�l Conf.
Architectural Support for Programming Languages and

Operating Systems (ASPLOS-VII), October 1996,

pp. 174–185.

[32] I. Schoinas, B. Falsafi, A.R. Lebeck, S.K. Reinhardt, J.R.

Larus, D.A. Wood, Fine-grain access control for distrib-

uted shared memory, in: Proc. Sixth Int�l Conf. Architec-
tural Support for Programming Languages and Operating

Systems (ASPLOS-VI), October 1994, pp. 297–306.

[33] D.M. Tullsen, S.J. Eggers, H.M. Levy, Simultaneous

multithreading: maximizing on-chip parallelism, in: Proc.

22nd Int�l Symp. Computer Architecture, June 1995, pp.
392–403.

[34] T. von Eicken, D.E. Culler, S.C. Goldstein, K.E. Schauser,

Active messages: a mechanism for integrated communica-

tion and computation, in: Proc. 19th Int�l Symp. Computer
Architecture, May 1992, pp. 256–266.

[35] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The

SPLASH-2 programs: Characterization and methodologi-

cal considerations, in: Proc. 22nd Int�l Symp. Computer
Architecture, June 1995, pp. 24–36.

[36] D.A. Wood, S. Chandra, B. Falsafi, M.D. Hill, J.R. Larus,

A.R. Lebeck, J.C. Lewis, S.S. Mukherjee, S. Palacharla,

S.K. Reinhardt, Mechanisms for cooperative shared mem-

ory, in: Proc. 20th Int�l Symp. Computer Architecture,
May 1993, pp. 156–167.

H�akan Grahn is an Assistant Professor
of Computer Engineering at Blekinge
Institute of Technology. He received a
M.Sc. degree in Computer Science and
Engineering in 1990 and a Ph.D. de-
gree in Computer Engineering in 1995,
both from Lund University. His main
interests are computer architecture,
shared-memory multiprocessors, and
performance evaluation. He has au-
thored and co-authored thirty papers
on these subjects and graduated one
Ph.D. student. He received the Best
Paper Award at the PARLE�94 (Par-
allel Architectures and Languages, Europe) conference. From
January 1999 to June 2002 he was head of department for the
Department of Software Engineering and Computer Science.
Dr. Grahn is a member of the ACM, the IEEE, and the
Computer Society. For more information, please refer to URL
http://www.ipd.bth.se/~hgr/.

Per Stenstr€om is a Professor of Com-
puter Engineering and Vice-dean of
the School of Computer Science and
Engineering at Chalmers University of
Technology, Sweden. His research
interests are devoted to design princi-
ples for high-performance computer
systems. He is an author of two text-
books and close to a hundred research
publications. He has served on more
than 30 program committees of major
conferences in the computer architec-
ture and parallel processing field and is
an editor of IEEE Trans. on Com-
puters and the Journal of Parallel and Distributed Computing.
He was the General Chair of the ACM/IEEE 28th Int. Sym-
posium on Computer Architecture. Dr. Stenstr€om is a Senior
member of the IEEE and a member of the ACM.

http://developer.intel.com/technology/itj/2002/volume06issue01/art01_hyper/vol6iss1_art01.pdf
http://developer.intel.com/technology/itj/2002/volume06issue01/art01_hyper/vol6iss1_art01.pdf
http://www.ipd.bth.se/~hgr/

	A comparative evaluation of hardware-only and software-only directory protocols in shared-memory multiprocessors
	Introduction
	Hardware-only and software-only directory protocols
	Architectural simulation framework and coherence protocol
	Simulated baseline hardware-only directory protocol
	Simulated baseline software-only directory protocol

	Enhancement techniques for software-only directory protocols
	Optimization of read miss requests to the local node
	Optimization of read miss requests to remote nodes
	Performing state-memory lookup in hardware, SW-1
	Reducing the software handler latency of dirty misses, SW-2
	Hiding software handler latency of clean misses, SW-3
	Hiding software latency of dirty misses, SW-4
	Combining all optimization strategies for remote misses, SW-5

	Reducing software handler latency by caching directory information

	Experimental methodology
	Simulation environment and architectural parameters
	Benchmark programs

	Experimental results
	Efficiency of software-only directory protocol strategies
	Effects of caching the directory information
	Limitations of software-only directory protocols
	Effects of block size variations

	Implementation of the optimization strategy
	Discussion and related work
	Conclusions
	Acknowledgements
	References

