
Journal of Parallel and Distributed Computing 60, 807�834 (2000)

Comparative Evaluation of Latency-Tolerating
and -Reducing Techniques for Hardware-Only

and Software-Only Directory Protocols1

Ha# kan Grahn2

Department of Software Engineering and Computer Science, University of Karlskrona�Ronneby,
Soft Center, S-372 25 Ronneby, Sweden

E-mail: Hakan.Grahn�ipd.hk-r.se

and

Per Stenstro� m

Department of Computer Engineering, Chalmers University of Technology,
S-412 96 Go� teborg, Sweden
E-mail: pers�ce.chalmers.se

Received November 10, 1997; accepted October 22, 1999

We study in this paper how effective latency-tolerating and -reducing
techniques are at cutting the memory access times for shared-memory multi-
processors with directory cache protocols managed by hardware and
software. A critical issue for the relative efficiency is how many protocol
operations such techniques trigger. This paper presents a framework that
makes it possible to reason about the expected relative efficiency of a latency-
tolerating or -reducing technique by focusing on whether the technique
increases, decreases, or does not change the number of protocol operations at
the memory module. Since software-only directory protocols handle these
operations in software they will perform relatively worse unless the technique
reduces the number of protocol operations. Our experimental results from
detailed architectural simulations driven by six applications from the
SPLASH-2 parallel program suite confirm this expectation. We find that
while prefetching performs relatively worse on software-only directory
protocols due to useless prefetches, there are examples of protocol optimiza-
tions, e.g., optimizations for migratory data, that do relatively better on

doi:10.1006�jpdc.1999.1606, available online at http:��www.idealibrary.com on

807 0743-7315�00 �35.00
Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1 This paper is an extended version of ``Relative Performance of Hardware- and Software-Only Direc-
tory Protocols under Latency Tolerating and Reducing Techniques'' that was presented at the 11th
International Parallel Processing Symposium in Geneva in April 1997.

2 To whom correspondence should be addressed. Fax: +46-457-271 25.

software-only directory protocols. Overall, this study shows that latency-
tolerating techniques must be more carefully selected for software-centric
than for hardware-centric implementations of distributed shared-memory
systems. � 2000 Academic Press

Key Words: shared-memory multiprocessors; cache coherence; software-
only directory protocols; prefetching; memory consistency models; migratory
sharing; performance evaluation.

1. INTRODUCTION

Private caches and a directory-based cache coherence protocol implemented in
hardware, also called a hardware-only directory protocol, constitute an important
approach to achieving high performance in many recent distributed shared-memory
multiprocessor designs [1, 27�29]. However, in order to reduce the hardware com-
plexity and�or increase the flexibility, many researchers have considered migrating
the coherence protocol, or parts of it, to software [1, 5, 7, 14, 20, 21, 34, 35].
Shared virtual memory (SVM) systems go even further by completely supporting
the protocol mechanisms at the operating system or application level using the virtual
memory system (see, e.g., [23]). We will refer to distributed shared-memory
systems on which the directory protocol is implemented in software and run on a
compute processor as software-only directory protocols [5].

In hardware-only as well as software-only directory protocols performance
is often limited by processor stall times resulting from memory access latencies.
To reduce processor stall times, and thus increase performance, several latency-
tolerating and -reducing techniques have been proposed and evaluated in the context
of hardware-only directory protocols [8, 10, 13, 19, 31, 36]. In addition to the
processor stall times, the invocation of software handlers on the compute processor
in software-only directory protocols can prolong the execution time. While the
handler latency might end up on the memory access path and thus increase the
memory access latency seen by the requesting processor, it is possible to reduce this
latency component if message transmission is done in parallel with protocol
processing [14]. A much more challenging problem is that protocol handling can
result in a high compute processor occupancy which can degrade overall perfor-
mance significantly [14] because of few opportunities to overlap protocol handling
with other high-latency operations. While this problem can be reduced by increas-
ing protocol handling throughput using clustering [24], it cannot be completely
eliminated. The impact of latency-tolerating and -reducing techniques on compute
processor occupancy is the major problem studied in this paper.

To illustrate the problem let us consider data prefetching, a latency-tolerating
technique shown to be effective in hardware-only directory protocols [9, 31]. By
using special prefetch requests, data is brought into the cache prior to its use, thus
reducing the memory stall time. Because it is nearly impossible to implement a
prefetch scheme that only issues prefetches that will eliminate misses, software-only
directory protocols will suffer from a higher protocol handling occupancy which
may offset the reduced memory stall time for eliminated misses. On the other hand,
latency-tolerating or -reducing techniques that reduce the number of protocol

808 GRAHN AND STENSTRO� M

handler invocations are expected to be more effective on software-only than on
hardware-only directory protocols.

In this paper we introduce a framework for reasoning about the relative efficiency
of latency-tolerating and -reducing techniques on hardware-only and software-only
directory protocols. The key observation is whether a technique is expected to
increase, decrease, or not affect the protocol processing overhead in terms of num-
ber of protocol invocations. The relative performance between hardware-only and
software-only directory protocols is expected to increase in the first and last case
whereas it is expected to decrease in the second case. To demonstrate the usefulness
of our framework, we apply it to three example techniques that represent these
cases: prefetching [9, 10, 30]; migratory optimization [8, 16, 36], a technique that
detects and eliminates protocol actions for migratory data blocks; and release con-
sistency [13]. These techniques increase, reduce, and do not affect the protocol
execution overhead, respectively.

Our experimental observations are based on an aggressive software-only and
hardware-only directory protocol implementation of a CC-NUMA multiprocessor
similar to DASH [28] that we simulate in detail. We drive our simulations with six
applications from the SPLASH-2 parallel program suite [38] and find that
prefetching, a technique that increases the overhead, and that typically improves
the performance of hardware-only directory protocols, actually degrades the perfor-
mance of software-only directory protocols in many cases. Further, we find that the
migratory optimization technique, which reduces the overhead, is relatively more
efficient on software-only than on hardware-only directory protocols. Finally,
release consistency, which virtually does not affect overhead, successfully hides the
write latency for both classes of systems across all applications. However, the
relative performance difference between software-only and hardware-only directory
protocols usually increases. A limitation of our study is that we only consider one
design point with a quite aggressive software-only directory implementation.
However, this means that the impact of a technique on the compute processor
occupancy is expected to be much higher for less aggressive implementations. This
emphasizes the importance of carefully selecting latency-tolerating and -reducing
techniques for software-only directory protocols.

Section 2 first introduces the simulated architectural framework that allows us to
concretely reason about the performance trade-offs followed by the assumptions
that drive our experiments in Section 3. Then, in Sections 4�6 we focus on three
example techniques and present our experimental findings. Finally, in Section 7 we
discuss and generalize our findings before we conclude the paper in Section 8.

2. SIMULATED ARCHITECTURES AND THEIR PERFORMANCE
DIFFERENCES

In Section 2.1 we first describe the hardware-only and software-only directory
protocols we simulated. In Section 2.2 we then introduce a simple performance
model that helps us to reason about the performance trade-offs between hardware-
only and software-only directory protocols in general but using the architectural
framework in Section 2.1 as a case study.

809LATENCY-TOLERATING TECHNIQUES

File: 740J 160604 . By:SD . Date:14:06:00 . Time:14:12 LOP8M. V8.B. Page 01:01
Codes: 2648 Signs: 1929 . Length: 52 pic 10 pts, 222 mm

FIG. 1. The organization of a processor node. The striped area only applies to hardware-only
directory protocols and the shaded area only applies to software-only directory protocols.

2.1. Simulated Hardware-Only and Software-Only Directory Protocol Architectures

The architectural framework is a sequentially consistent cache-coherent NUMA
architecture similar to DASH [28], where a number of processor nodes are con-
nected by a network. Each node consists of a processor with its cache hierarchy, a
memory module, a local bus, and a network interface connecting the processor
node to the network as shown in Fig. 1.

The hardware-only and the software-only directory systems both employ a write-
invalidate protocol with a full-map directory [4]; i.e., for each memory block a
presence flag vector is used to indicate which nodes have a copy of the block.
A processor read operation that misses in the second-level cache (SLC) initiates a
read miss request which is sent to the node where the memory block is mapped,
denoted the home node. If the memory copy is clean, home responds with a block
copy to the local requesting node and updates the directory. Otherwise, if another
cache, denoted remote, has an exclusive and possibly modified copy, home issues a
write-back request to remote; remote then updates home; and finally, home
forwards a block copy to local, updates the directory, and the block ends up clean
in home.3

A processor write to a nonexclusive block in the cache results in an ownership
request sent to home. Home inspects the directory and sends explicit invalidations
to the other caches with a block copy. Each cache receiving an invalida-
tion responds with an acknowledgment to home. When home has collected all
acknowledgments, it grants ownership to local and the block ends up dirty in

810 GRAHN AND STENSTRO� M

3 While this protocol action is further optimized in DASH [28], it does not affect the reasoning in
this paper.

File: 740J 160605 . By:SD . Date:14:06:00 . Time:14:12 LOP8M. V8.B. Page 01:01
Codes: 3085 Signs: 2486 . Length: 52 pic 10 pts, 222 mm

home. During the time write-back requests and invalidations are pending, the block
is in the transient state ``busy'' and read and write requests to the block have to be
retried.

In the hardware-only directory implementation, the memory protocol engine
consists of three parts implemented in hardware: a memory controller, a directory,
and a state memory. The controller is responsible for processing incoming
coherence requests, taking correct actions depending on the state of the memory
block, and also managing the directory. By contrast, in a software-only directory
protocol, the management of the directory is migrated from the complex hard-wired
memory controller to software handlers executed on the compute processor. These
handlers are responsible for processing coherence requests and managing the direc-
tory, which now is stored in main memory as shown in Fig. 1 and not in a special
hardware directory.

Our example software-only directory protocol implementation is fairly aggressive
in the sense that it uses support mechanisms to get rid of some performance
limitations as proposed in [14, 15]. However, because the compute processor
occupancy still shows up as the major performance obstacle in this implementation,
the experimental observations we make will be further emphasized in less aggressive
implementations. The first set of such support mechanisms is an interrupt and a
send buffer (shaded in Fig. 1) connected to the network interface and to the second-
level cache bus. They are used to trigger protocol handler invocations and post
outgoing protocol requests, such as write-back requests, respectively. Another
optimization is to off-load the compute processor in some common cases. By
making the protocol state visible to the memory controller, which we proposed in
[14, 15], all incoming requests that do not change the protocol state, such as local
miss requests to clean blocks, can be directly satisfied and do not have to interrupt
the compute processor.

2.2. A Framework for Reasoning about Relative Efficiency

In order to reason about the relative performance between hardware-only and
software-only directory implementations, especially when latency-tolerating and
-reducing techniques are used, we first present a simple model that isolates where
the execution time is spent in a parallel application. In the leftmost bar of Fig. 2,

FIG. 2. Execution time breakdown for hardware-only (left) and software (right) directory protocols.

811LATENCY-TOLERATING TECHNIQUES

the execution time of a parallel application on a hardware-only system is broken
down into the fraction of busy cycles, Bhw , and three stall time components: read
stall (Rhw), write stall (Whw), and synchronization stall (Shw). While the read stall
time is the time the processors are stalled due to read misses in the caches, the write
stall time is the time the processors are stalled waiting for ownership requests to
complete. Finally, the synchronization stall time is the time the processors wait for,
e.g., locks and barriers. The total execution time under a hardware-only directory
protocol, denoted Ehw , is thus Ehw=Bhw+Rhw+Whw+Shw .

The execution time can be split into the same components under the software-
only directory protocol. In addition to the stall time components, the overhead due
to protocol execution, denoted Psw , exists as shown in the rightmost bar of Fig. 2.
This overhead component arises from the fact that each coherence request to home
interrupts the compute processor in the home node. When a software handler is
invoked, the execution of it may be overlapped with other stall times and does not
interrupt application execution. Otherwise, the handler execution is only partly, or in
the worst case not at all, overlapped with other stall time components. In this case,
the handler execution prolongs the total execution time of the application. The sum
of handler execution times that are not overlapped with other stall times is referred
to as p-time and denoted Psw in Fig. 2. In [14], we found very limited opportunities
to overlap protocol execution with other stall times. Psw is therefore expected to
directly affect the execution time. The total execution time under a software-only
directory protocol, denoted Esw , is thus Esw=Bsw+Rsw+Wsw+Ssw+Psw .

Throughout this paper, we use the execution time ratio (ETR) between hardware-
only and software-only directory protocols as our primary measure of the relative
performance to judge whether a certain latency-tolerating and -reducing technique
will increase or decrease this ratio. Given the execution time equations, ETR is
defined as

ETR=
Esw

Ehw
=

Bsw+Rsw+Wsw+Ssw+Psw

Bhw+Rhw+Whw+Shw
.

2.3. Discussion

As for the relative size of the various components in the two systems, we first
note that Bhw=Bsw for all applications because all our benchmarks use static work
distribution. Second, because the software-only architecture we use in this study
employs the strategies for data forwarding proposed and evaluated in [14], the
read stall time components are the same; i.e., Rhw=Rsw . When it comes to the write
stall time and the synchronization overhead, however, we found in [14] that they
can be significantly higher in a software-only directory than in a hardware-only
directory protocol, i.e., Whw<Wsw and Shw<Ssw . Their impact together with the
protocol execution overhead (Psw) results in an ETR>1 for the baseline systems.
In [14] an ETR between 1.16 and 1.68 was reported.

The central question to be explored in this paper is whether the ETR can be
reduced by carefully selecting among latency-tolerating and -reducing techniques
proposed in the literature. By choosing techniques that can hide the stall time

812 GRAHN AND STENSTRO� M

components there is a hope that the hardware-only and software-only directory
protocols can actually perform equally well, thus giving an advantage to the latter
in terms of implementation complexity. Before we present and explore the perfor-
mance consequences of the various improvement techniques, we next present the
methodology that drove our experiments.

3. EXPERIMENTAL METHODOLOGY

The simulation models are built on top of the CacheMire Test Bench [2], a
simulation framework and programming environment. The framework consists of
multiple SPARC processors simulated at the instruction level and an architectural
simulator of the multiprocessor model. The processors issue memory references to
the architectural simulator, which delays the processors according to its timing
model. Thus, the same interleaving as in the target system is obtained. Instruction
and private data references are not fed into the architectural simulator since we
assume they hit in cache and are carried out in a single cycle.

3.1. Simulation Environment and Architectural Parameters

We simulate multiprocessor architectures with 16 processor nodes according to
Fig. 1, and in Table 1 we have collected the architectural parameters. Memory
pages are allocated using a first-touch policy, i.e., a page is allocated to the node
whose processor first accesses it. Instruction references and references to private
data are assumed to always hit in the first-level cache (FLC); i.e., they do not incur
any memory system latencies. The default memory consistency model in this study

TABLE 1

Architectural Parameters

Parameter Value ad Comments

Block size 64 bytes
First-level (FLC) and second-level cache (SLC)

sizes
8 KByte FLC (write-through, direct-mapped)+

256 KByte SLC (full inclusion, direct-mapped,
lockup-free)

Write-buffer sizes 16 entries
Page size 4 KByte
Processor speed 500MHz, single-issue (1 pclock=2ns)
FLC acces time 2 ns=1 pclock
SLC access time (for a block) 16 ns=8 pclocks (SRAM, interleaved)
Memory access time (for a block) 120 ns=60 pclocks (DRAM, interleaved)
Interrupt and send buffer access times 10 ns=5 pclocks
Bus speed (128-bits wide, split transaction) 100 MHz, 10 ns arbitration+10 ns tranfer
Network interface speed 100 MHz, 400 Mbytes�s into and out of each

node
Network latency (infinite bandwidth) 150 ns=75 pclocks (approximately the latency in

a 100-MHz mesh network with 32-bit flits)
Software handler execution time 100 pclocks+additional time as described in the

text

813LATENCY-TOLERATING TECHNIQUES

is sequential consistency and the processor is stalled on each shared data access
until it is completed. Acquires and releases are supported by a queue-based lock
mechanism, similar to the one implemented in the DASH [28]. In the software-
only directory protocols this mechanism is implemented by software handlers.

The network interface is responsible for routing messages between the node and
the network. It also collects invalidation acknowledgments and notifies the
memory-protocol engine when the last acknowledgment has arrived. The interrupt
and send buffers are interfaced to the SLC bus. They have the same access time as
the SLC and are accessible through memory mapped addresses. In a real system
special precautions must be taken to handle deadlocks. However, such mechanisms
are similar in both the hardware-only and the software-only directory protocols
and we do not address them in this study; simulations assume infinite buffers. The
network interface speed and the network latency and bandwidth are comparable to
those of the MAGIC controller and the mesh, respectively, in the Stanford FLASH
[20]. The network speed (100 MHz) may seem conservative compared to the pro-
cessor speed (500 MHz). However, a 500-MHz single-issue processor has the same
instruction rate as a 250-MHz ideal dual-issue processor. Thus, our assumptions
correspond well to the SGI Origin, which has multiple-issue processors running at
195 MHz and a network running at 100 MHz [27].

Table 2 shows the time it takes to satisfy a read-miss request from different levels
in the memory hierarchy in the hardware-only implementation assuming no conten-
tion. In our simulations, however, a request usually takes longer as a result of
contention. Contention is correctly modeled in all parts of the processor nodes.
Clearly, in a software-only directory protocol, software handler invocations also
prolong the request latencies.

A critical timing assumption is how many cycles we charge for the software
handlers. We assume 100 pclocks as the default protocol execution time, which does
not include the time to access memory, the buffers, and the directory and state
information. On top of this we charge 130 ns to read or write the global state of
a memory block; 2 or 160 ns for a directory access depending on whether the
directory is cached or not, and the same to read or write a memory block; and
finally, 10 pclocks to send a message depending on the type of coherence action.
For example, for a read miss to a clean block, 65 pclocks (read the state) plus 80

TABLE 2

Average Read-Miss Latency Times for a Hardware-Only
Implementation Assuming a Conflict-Free System

1 pclock=2ns
Latency numbers for read requests (500 MHz)

Fill from FLC 1 pclock
Fill from SLC 8 pclocks

Fill from local memory 88 pclocks
Fill from home (clean, 2-hop) 288 pclocks
Fill from remote (dirty, 4-hop) 598 pclocks

814 GRAHN AND STENSTRO� M

TABLE 3

The Parallel Programs Together with the Data Set Sizes We Use in Our Simulations

Application Description Data set size�Input data

Barnes Barnes�Hut hierarchical N-body simulation 16, 384 particles
Ocean Simulate eddy currents in an ocean basin 258-by-258 grid

Water�Nsquared Molecular dynamics simulation, O(N 2) algorithm 512 molecules, 3 time steps
Cholesky Blocked sparse Cholesky factorization tk29.0

FFT 1-D - n six-step fast Fourier transform 64K points
Radix Integer radix sort 256K keys, radix 1024

pclocks (read the block) plus 10 pclocks (send the reply) plus 80 pclocks (update
the directory) are added to the basic 100 pclocks, resulting in 335 pclocks to service
a read miss to a clean block.

As suggested in [15], we assume that directory entries are cached when the
software handlers access them. Since we do not address how the memory allocation
scheme for the directory is implemented, we assume a very simple mapping from a
data address to the corresponding directory address. We associate 4 bytes of status
including directory and state information with each data block; i.e., the status of 16
data blocks is allocated in one memory block. The mapping from a data address
to the corresponding status entry appears as follows (in C-syntax):

Addressdirectory=0_70000000 | ((Addressdata�block�size)* 4).

3.2. Benchmark Programs

In order to understand the relative performance of hardware-only and the
variations of the software-only directory protocols, we use six scientific and
engineering applications written in C using the ANL macros and compiled by gcc
(version 2.7.2) with optimization level &O2. All applications are from the
SPLASH-2 suite [38].

A short description of the applications together with the data set sizes we use is
shown in Table 3. Statistics are gathered in the parallel section of the programs to
avoid initialization effects, which we assume to be negligible in an execution with
more realistic data sets. The applications chosen have different characteristics. In
Cholesky, FFT, and Radix cold misses dominate, while coherence misses dominate
in the other applications. Barnes has an unpredictable communication pattern,
while the other applications have a more regular and predictable communication
pattern. By using a 256-Kbyte second-level cache the primary working set for all
applications fits in the cache [38].

4. EXECUTION TIME EFFECTS OF PREFETCHING

The first technique we will study is prefetching. We start with a qualitative
discussion in Section 4.1 and then a quantitative evaluation of two prefetching
schemes in Section 4.2.

815LATENCY-TOLERATING TECHNIQUES

4.1. Qualitative Evaluation

Prefetching is a latency-tolerating technique that appears in the literature as a
software-controlled [3, 26, 30] as well as a hardware-based technique [6, 9, 10].
We start with the general characteristics of prefetching and then specifically discuss
the schemes we use in this study. In this study we only consider nonbinding, read-
shared prefetching, i.e., the block is fetched in a shared mode. We will discuss other
forms of prefetching as well in Section 7.

The goal of read-shared, nonbinding prefetching is to bring data into the cache
in advance so the processor encounters a cache hit instead of a miss, a so-called
useful prefetch. The data is fetched in a shared state and is still visible to the
coherence protocol, as opposed to binding prefetching where data is loaded directly
into, e.g., a register. As a result, the data might be evicted from the cache, due to
an invalidation or a replacement, before the processor accesses it. In this situation
the processor still encounters a miss and the prefetch is useless. Useless prefetches
also originate from the fact that the prefetch scheme might fetch blocks that the
processor never accesses. All these useless prefetches both cause unnecessary
network traffic and, more important to this study, increase the occupancy in the
memory protocol engine of the home node. This occupancy is usually no problem
in a hardware-only directory protocol since each prefetch occupies the controller
only a short amount of time. By contrast, in a software-only directory protocol this
occupancy is directly translated into protocol execution overhead in the home
node, i.e., p-time increases. We will refer to the ratio between the number of useful
prefetches and the total number of prefetches as the prefetch efficiency. Further, we
will refer to the fraction of the total number of read misses removed by useful
prefetches as the coverage.

When prefetching is applied to both hardware-only and software-only directory
protocols, we are interested in whether the ETR will increase or not. Prefetching
attacks and reduces the read stall time. In the ideal case the read stall time is
equally reduced in both hardware-only and software-only directory protocols; i.e.,
R$hw=R$sw<Rhw=Rsw . The write and synchronization stall times may increase a
little as a result of contention. However, the big difference between hardware-only
and software-only protocols is p-time, which increases as a result of useless
prefetches, i.e., Psw increases. The important question is whether the read stall time
reduction is large compared to the increase in protocol execution overhead or not
and for which schemes this can be obtained.

Useless prefetches are present to various degrees in all prefetching schemes, and
we consider two different prefetching schemes in this study: hardware-based adap-
tive sequential prefetching [10] and an ideal scheme. The first scheme we evaluate
is adaptive sequential prefetching [10]. While the implementation details are found
in [10], we here concentrate on the behavioral aspects. In sequential prefetching a
fixed number of consecutive blocks, K, are prefetched for each cache miss the pro-
cessor encounters. The K prefetched blocks are those directly following the missing
block in the address space. However, the optimal number of blocks to prefetch on
each miss varies during the execution. In adaptive sequential prefetching this
shortcoming is addressed. By measuring the number of useful prefetches, i.e., the

816 GRAHN AND STENSTRO� M

number of prefetched blocks that the processor actually accesses before they are
evicted from the cache, the scheme tunes the value of K according to the dynamic
behavior of the application which maintains a high prefetch efficiency.

The second scheme we evaluate is an ideal prefetching scheme that has a fixed
coverage and a fixed prefetch efficiency. At the time a processor encounters a poten-
tial cache miss, we statistically determine whether it should have been covered by
a useful prefetch or actually results in a cache miss. If the miss is determined to be
covered by a useful prefetch, a number of useless prefetches are generated depend-
ing on the prefetch efficiency. A potential drawback of this approach is as follows.
If the prefetch efficiency is very low, e.g., below 100, many useless prefetches are
issued simultaneously, which may result in a clustering effect not present in a real
scenario. However, since prefetch studies in the literature [10, 31] have reported
significantly higher efficiency numbers, we believe that this effect is negligible. By
varying the coverage and the prefetch efficiency in our simulations, we can cover
the behavior of a large portion of prefetching schemes proposed in the literature.

4.2. Quantitative Evaluation

In this section we quantitatively evaluate how the relative performance changes
between a hardware-only and a software-only directory protocol when prefetching
is applied. We start in Section 4.2.1 with adaptive sequential prefetching and
continue in Section 4.2.2 with the ideal scheme.

4.2.1. Adaptive sequential perfetching. In this section we evaluate how the
relative performance between a hardware-only and a software-only directory
protocol changes when adaptive sequential prefetching is applied. The execution
times of the six applications are shown in Fig. 3. For each application, four bars are
shown. The two left bars correspond to the execution times for a hardware-only
directory protocol without (HW) and with (HW-ADAP) adaptive sequential
prefetching, and the two right bars correspond to the execution times for a
software-only directory protocol without (SW) and with (SW-ADAP) adaptive
sequential prefetching. For each bar, the execution time is decomposed, from bot-
tom to top and with the notations from Fig. 2, into the following components: the
busy (Bx), the read stall (Rx), the write stall (Wx), and the synchronization stall
time (Sx), where x is either hw or sw. Finally, for software-only directory protocols,
the protocol execution overhead (Psw) is shown at the top. To simplify the
discussion, we will use these notations in the rest of this paper.

We first focus on the relative execution times of HW and SW in Fig. 3. By com-
paring the execution times, we find that the execution time ratios between SW and
HW are between 1.12 (Water�Nsquared) and 1.59 (Ocean). These ETR values are
in accordance with the results earlier presented in [14, 15].

Prefetching aims at reducing the read stall times, thus obtaining a shorter execu-
tion time. As we see in Fig. 3, the execution times under HW-ADAP are lower than
those under HW for four of the applications. In addition, simulation results show
that prefetching reduces Rhw with 7, 11, 1, 25, 47, and 620 for Barnes, Ocean,
Water�Nsquared, Cholesky, FFT, and Radix, respectively.

817LATENCY-TOLERATING TECHNIQUES

File: 740J 160612 . By:SD . Date:14:06:00 . Time:14:12 LOP8M. V8.B. Page 01:01
Codes: 2582 Signs: 2009 . Length: 52 pic 10 pts, 222 mm

FIG. 3. Normalized execution times for hardware-only and software-only directory protocols
without (HW and SW) and with adaptive sequential prefetching (HW-ADAP and SW-ADAP).

Continuing with the performance effects under the software-only directory
protocol, we find by comparing the read stall times under SW and SW-ADAP that
prefetching reduces Rsw with 11, 1, 20, 43, and 580 for Ocean, Water�Nsquared,
Cholesky, FFT, and Radix, respectively. So in that respect, prefetching helps perfor-
mance. For Barnes Rsw is the same for SW and SW-ADAP. Unfortunately, both
Wsw and Ssw increase by up to 130 (Barnes) and 2390 (FFT), respectively, under
SW-ADAP compared to SW as a result of longer queuing delays in the home node.
The average number of messages in the interrupt buffer at the time a new request
is deposited in the buffer increases under prefetching. For example, for FFT the
average number of messages in the buffers in the network interface upon deposit of
a new message is increased from 0.09 to 3.69 when prefetching is applied.

By examining the protocol execution overhead, we observe a significant increase
of Psw under SW-ADAP compared to SW; Psw has increased by between 70

(Radix) and 390 (FFT). This higher protocol execution overhead is expected
according to the discussion in Section 4.1. The increase of Psw stems from a higher
number of coherence requests to home, and our simulation results show that
SW-ADAP generates between 10 (Radix) and 260 (Barnes) more software handler
invocations than SW.

Finally, by adding all the execution time components under SW and SW-ADAP,
we conclude that the total execution time, Esw , has decreased for two applications
(Cholesky and Radix) and increased by up to 50 (FFT) when adaptive sequential
prefetching is applied to the software-only directory protocol. As a result, the execution
time ratios (ETR) between SW-ADAP and HW-ADAP are higher than those between
SW and HW for all applications. We summarize the resulting ETR values in Table 4.

818 GRAHN AND STENSTRO� M

TABLE 4

Execution Time Ratios between Software-Only and Hardware-Only Directory Protocols
without and with Adaptive Sequential Prefetching

Water�
Barnes Ocean Nsquared Cholesky FFT Radix

ETR=Esw (SW)�Ehw (HW) 1.20 1.59 1.12 1.22 1.33 1.41
ETR=Esw (SW-ADAP)�Ehw (HW-ADAP) 1.27 1.61 1.14 1.25 1.51 1.45

One reason the adaptive sequential prefetching scheme incurs so much protocol
execution overhead can be tracked to a low prefetch efficiency, which turns out to
be between 330 (Barnes) and 470 (Radix). In other words, for each successful
prefetch, i.e., a prefetched block that the processor accesses before the block is
evicted from the cache, between one and two useless prefetches are issued. Even
though useless prefetches increase contention in a hardware-only directory protocol,
they can have a devastating effect on the performance of software-only directory
protocols. Therefore, a high prefetch efficiency in a prefetching scheme is more
important in software-only than in hardware-only directory protocols.

4.2.2. Ideal prefetching scheme with fixed coverage and prefetch efficiency. In
order to better understand how the efficiency of prefetching schemes impacts the
performance of software-only directory protocols, we have simulated an ideal
prefetching scheme with a fix coverage and prefetch efficiency. We start with a
default coverage and prefetch efficiency, which is based on findings in other studies,
and then do a variation analysis at the end of this section. In [9], Dahlgren and
Stenstro� m evaluated hardware-based stride and sequential prefetching. They reported
coverage numbers between 2 and 800 and prefetch efficiencies between 13 and 920.
Mowry evaluated software prefetching in his thesis [31] and presented coverage
numbers between 75 and 980, while the prefetch efficiency varied between 11
and 850. As default numbers in our study, we have chosen a coverage of 500

and a prefetch efficiency of 250, which represent a fairly conservative prefetching
scheme.

The execution times of the six applications are shown in Fig. 4. For each applica-
tion, four bars are shown. The two left bars correspond to the execution times for
a hardware-only directory protocol without (HW) and with (HW-PRE) prefetch-
ing, and the two right bars correspond to the execution times for a software-only
directory protocol without (SW) and with (SW-PRE) prefetching.

As seen in Fig. 4, the execution times under HW-PRE are lower than those under
HW for all applications. In addition, simulation results show that prefetching
reduces Rhw with between 240 (Cholesky) and 390 (Radix). Since we now have
a fixed coverage, we see smaller differences in the Rhw reduction between different
applications than for adaptive sequential prefetching.

Continuing with the performance effects under the software-only directory
protocol, we find by comparing the read stall times under SW and SW-PRE that
prefetching reduces Rsw between 230 (Cholesky) and 420 (FFT). Unfortunately,

819LATENCY-TOLERATING TECHNIQUES

File: 740J 160614 . By:SD . Date:14:06:00 . Time:14:12 LOP8M. V8.B. Page 01:01
Codes: 2414 Signs: 1570 . Length: 52 pic 10 pts, 222 mm

FIG. 4. Normalized execution times for harware-only and software-only directory protocols without
(HW and SW) and with ideal prefetching (HW-PRE and SW-PRE).

all other stall times have increased under SW-PRE compared to SW. Wsw has
increased by between 30 (FFT) and 220 (Ocean), Ssw has increased by between
20 (Radix) and 540 (Barnes), and Psw has increased by between 390 (Radix)
and 1370 (Barnes) under SW-PRE. These stall times increase for the same reason
as for adaptive sequential prefetching, i.e., a higher number of coherence requests
to home, which results in higher contention in the processor nodes. By adding all
the execution time components under SW and SW-PRE, we conclude that the total
execution time, Esw , has increased by between 20 (FFT and Radix) and 180

(Ocean) under SW-PRE. In summary, the execution time ratios (ETR) between
SW-PRE and HW-PRE are higher than those between SW and HW for all
applications. The resulting ETR values are shown in Table 5.

The reason ideal prefetching incurs so much protocol execution overhead is the
low prefetch efficiency, just as for adaptive sequential prefetching. An interesting
question is then how high coverage and prefetch efficiency are necessary for
prefetching to be effective, i.e, when does the reduction of Rsw outweigh the increase

TABLE 5

Execution Time Ratios between Software-Only and Hardware-Only Directory
Protocols without and with Ideal Prefetching

Water�
Barnes Ocean Nsquared Cholesky FFT Radix

ETR=Esw (SW)�Ehw (HW) 1.20 1.59 1.12 1.22 1.33 1.41
ETR=Esw (SW-PRE)�Ehw (HW-PRE) 1.39 1.92 1.22 1.36 1.45 1.48

820 GRAHN AND STENSTRO� M

File: 740J 160615 . By:SD . Date:14:06:00 . Time:14:12 LOP8M. V8.B. Page 01:01
Codes: 2736 Signs: 2210 . Length: 52 pic 10 pts, 222 mm

of Psw? Therefore, we have also simulated coverage values between 25 and 900

and prefetch efficiencies between 25 and 900. As a case study we present
experimental results for Ocean since the effects are most pronounced for that
application, but the other applications indicate the same trends.

In Fig. 5, we show the normalized execution times for the software-only directory
protocol with (SW-PXX) and without (SW) prefetching, where XX is the prefetch
efficiency (25, 50, 75, and 900) for a given coverage. We start by concluding that
prefetching reduces Rsw for all coverage and prefetch efficiency numbers, although
the reduction is quite small when the coverage is only 250. However, we observe
that even though prefetching reduces Rsw , the performance gain is many times out-
weighed, or at least greatly reduced, by longer write and synchronization stall times
and higher protocol execution overhead.

Looking at the results in more detail, we can see some interesting trends as the
coverage and the prefetch efficiency vary. We emphasize that the exact execution
times are not the most important thing to observe, but the trends are more impor-
tant. First, we have observed that a prefetch efficiency below or equal to 250

results in longer or equal execution times for all applications as compared to those
without prefetching. By contrast, for hardware-only protocols we have observed
execution time reductions for all applications even with only 250 prefetch efficiency
and a very low coverage (250).

Second, we can see that if the coverage is very low, i.e., less than or equal to
250, a high prefetch efficiency is not essential, as long as it is at least 500. For
a prefetch efficiency of 500 the total execution time is approximately equal (only
slightly worse or slightly better) to that without prefetching. However, as the
coverage increases, a high prefetch efficiency becomes more important. As shown in
Fig. 5, the largest contention problem arises when the coverage is high and the

FIG. 5. Normalized execution times of the software-only directory protocol with (SW-PXX) and
without (SW) prefetching for various coverage values and prefetch efficiencies for Ocean.

821LATENCY-TOLERATING TECHNIQUES

prefetching efficiency is low. For example, with 250 coverage, the execution time
for SW-P25 is only 90 worse than for SW, but with 900 coverage SW-P25 has
320 longer execution time than SW. As a result, with a high coverage, there is a
large performance gain with a high prefetch efficiency, but also a high risk for low
performance if the prefetch efficiency turns out to be low. In other words, if we use
a prefetching scheme with high coverage, we had better make sure it also has a high
prefetch efficiency.

In summary, even though a prefetching scheme is efficient when applied under a
hardware-only directory protocol, it might increase the execution time of a
software-only directory protocol if not carefully applied. Since software-only direc-
tory protocols are more sensitive to useless prefetches than hardware-only directory
protocols, a low prefetch efficiency can have a devastating effect on the performance
of software-only directory protocols, especially if the coverage is high. For example,
adaptive sequential prefetching does not provide any consistent performance
improvement for software-only directory protocols and the overall usefulness of it
is questionable in software-only directory protocols. Therefore, other prefetching
schemes with higher prefetch efficiencies seem to be more promising alternatives to
consider.

5. EXECUTION TIME EFFECTS OF MIGRATORY OPTIMIZATION

In the previous section we studied prefetching and found that the main obstacle
of prefetching in the context of software-only directory protocols was the increased
p-time. By contrast, we now discuss a technique that decreases p-time when it is
applied. We start by describing the technique and the expected impact on the ETR,
and then we present our experimental evaluation.

5.1. Qualitative Evaluation

Migratory sharing [18] is a program behavior not uncommon in parallel
applications, e.g., data accessed in critical sections and by short read�modify�write
sequences such as ``i=i+1'' exhibit migratory sharing. For example, consider the
following scenario: One processor first reads a data block and then it modifies the
block; i.e., it obtains exclusive ownership of the block. Another processor then reads
and modifies the block in the same way, and thus, the block migrates around
among the processors. Note that migratory data blocks are referenced by only one
processor at the same time but by many processors in the long run.

In a system with a write-invalidate protocol each migration of the block between
two processors incurs two global actions; first a read-miss request and then an
ownership request. In a sequential consistent system, both these actions stall the
processor, resulting in both read and write stall times. However, two studies [8, 36]
independently came up with the same solution to detect migratory blocks and
optimize the coherence protocol for them. This migratory optimization technique
dynamically detects migratory blocks at the home node, which sees all read-miss
and ownership requests, by recognizing two subsequent read�write sequences by
two different processors. The coherence protocol then handles migratory blocks

822 GRAHN AND STENSTRO� M

File: 740J 160617 . By:SD . Date:14:06:00 . Time:14:13 LOP8M. V8.B. Page 01:01
Codes: 2467 Signs: 1884 . Length: 52 pic 10 pts, 222 mm

with a single read-exclusive request instead of one read-miss and one ownership
request, thus avoiding the ownership request and the associated protocol actions
and their latencies.

The performance gain achieved by the migratory optimization technique is the
removal of global ownership requests for migratory blocks. As a result, the write
stall time is reduced; i.e., Whw and Wsw in Fig. 2 are reduced. More importantly,
since the number of ownership requests is reduced one should expect the additional
gain for software-only protocols of reducing protocol execution overhead (Psw). The
question is whether this reduction can actually make software-only directory
protocols perform as well as hardware-only directory protocols, i.e., making ETR
close to one. We study this performance tradeoff next.

5.2. Quantitative Evaluation

We will now present how the migratory optimization technique impacts the
execution time components. In Fig. 6, we show the resulting execution times when
migratory optimization is applied to hardware-only and software-only directory
protocols, referred to as HW-M and SW-M, respectively. We first conclude that the
migratory optimization reduces execution times for all applications under both
hardware-only and software-only directory protocols. In order to understand the
effects the migratory optimization has on the different execution time components,
we go through each of them starting with the write stall time component.

By looking at the write stall times in Fig. 6, we see that both Whw and Wsw are
slightly reduced for all applications. The only two applications where the write stall
time is significantly reduced when the migratory optimization technique is applied

FIG. 6. Normalized execution times for hardware-only and software-only directory protocols
without (HW and SW) and with (HW-M and SW-M) migratory optimization.

823LATENCY-TOLERATING TECHNIQUES

are Barnes and Water�Nsquared. This result is expected from the discussion in
Section 5.1 and in accordance with the results presented in [36]. By looking at the
write stall time reduction in more detail, we find that Whw is reduced by 11 and
310 for Barnes and Water�Nsquared, respectively, while the corresponding
numbers for Wsw are 12 and 250, respectively. Wsw and Whw are reduced as a
result of shorter queuing delays in home; for SW-M the lower number of coherence
requests reduces the average size of the interrupt buffer. For the other applications,
only small decreases in the write stall times are observed. In total, this corresponds
well to the application behavior; Water�Nsquared is the only application that has
a significant amount of migratory sharing. In a previous study [17] where we used
the older SPLASH suite, we observed significantly larger gains from the migratory
optimization technique for two applications (Water and MP3D), which have much
more migratory sharing.

Continuing with the synchronization stall times, we observe that they are also
reduced when the migratory optimization is applied. This effect, which is most
pronounced for Barnes (only for SW-M), Ocean, FFT, and Radix, arises mainly
because of more efficient barrier synchronizations. In our barrier implementation,
a counter variable is used to keep track of the current number of processors waiting
at the barrier. This counter variable exhibits migratory sharing and, of course,
benefits from the migratory optimization.

The next execution time component to examine is the protocol execution
overhead, Psw , which is reduced by 110 for Water�Nsquared. This reduction
stems from a significantly lower number of coherence interrupts in the home nodes
as we predicted in Section 5.1. For Water�Nsquared, the number of coherence
interrupts has decreased by 90. For the other applications Psw is virtually
unaffected as expected. Finally, both Rhw and Rsw are virtually unaffected (�20)
for all applications.

In Table 6, we show the resulting execution time ratios of SW to HW and of
SW-M to HW-M, respectively. Using the migratory optimization results in lower
ETR for applications with migratory sharing (Barnes and Water�Nsquared). The
lower ETR results from a relatively larger reduction of Wsw and Ssw than of Whw

and Shw and from a reduction of Psw . For Radix, the ETR is lower as a result of
a relatively larger reduction of Ssw than of Shw . For Cholesky and FFT, we find
that the ETR is virtually the same with and without the migratory optimization.
Finally, for Ocean the ETR increases, mainly as a result of a relatively smaller
reduction of Ssw than Shw when migratory optimization is applied.

TABLE 6

Execution Time Ratios between Software-Only and Hardware-Only Directory
Protocols without and with Migratory Optimization

Water�
Barnes Ocean Nsquared Cholesky FFT Radix

ETR=Esw (SW)�Ehw (HW) 1.20 1.59 1.12 1.22 1.33 1.41
ETR=Esw (SW-M)�Ehw (HW-M) 1.17 1.62 1.11 1.23 1.33 1.37

824 GRAHN AND STENSTRO� M

In summary, we have found the migratory optimization effective in reducing both
the write stall time and the protocol execution overhead for applications with
migratory sharing. Since the write and synchronization stall times are relatively
more reduced under SW-M than under HW-M, the execution time ratio decreases
for three of the applications. Since our software-only directory implementation is
fairly aggressive, the effects of migratory optimization are rather small. We expect
the relative benefits of the migratory optimization to increase in less aggressive
implementations. Further, the migratory optimization has a potential to reduce the
synchronization stall times also for other applications as a result of more efficient
barrier synchronizations.

6. EXECUTION TIME EFFECTS OF RELEASE CONSISTENCY

The third technique we will study in this paper is Release Consistency, which is
a technique that does not affect the protocol execution time. We have seen that it
is possible to achieve virtually the same read stall times for SW and HW, but the
software handler execution time will appear on the critical memory access path for
ownership acquisitions. The processor in the home node must examine the direc-
tory before sending invalidations, and as a result, the software handler execution
time cannot be removed from the write stall time seen by local. By contrast, under
relaxed memory consistency models, e.g., release consistency, the write latency can
be overlapped by application execution as long as synchronizations are not encoun-
tered, without changing the number of global write actions. In this section, we will
show how this impacts the execution time ratio, starting with a qualitative
discussion of the expected effects.

6.1. Qualitative Evaluation

Under sequential consistency, which is our default memory consistency model,
the processor stalls on each access to shared data in order to enforce a global order
of accesses. This is a severe restriction and can be relaxed. Under relaxed memory
consistency models, ordering is only enforced on special, hardware-recognizable
synchronization primitives. One of the most relaxed consistency models is Release
Consistency (RC) [13]. In RC, one distinguishes between acquires (acquiring a lock
or a flag) and releases (releasing a lock or a flag). RC specifies that the processor
is not allowed to proceed after an acquire before the acquire has completed and
that a release is not allowed to be issued until all preceding requests have
completed. The most important implication of RC in our framework is that the
processor does not stall on write and release requests; i.e., all write stall time can
be hidden and the synchronization stall time might decrease.

Relating the expected performance effects of RC to the bars in Fig. 2, we note
that Whw<Wsw under sequential consistency. Since W $hw=W $sw=0 under RC, we
expect the software-only directory protocol to gain relatively more from RC than
the hardware-only directory protocol does. However, since relaxed memory con-
sistency models make the processors execute faster, we would expect that the rate
of interrupts increases. This can potentially make the read and synchronization stall

825LATENCY-TOLERATING TECHNIQUES

File: 740J 160620 . By:SD . Date:14:06:00 . Time:14:13 LOP8M. V8.B. Page 01:01
Codes: 2498 Signs: 1879 . Length: 52 pic 10 pts, 222 mm

time components longer, which can offset the gain of the write stall time reduction.
Therefore, we expect that a slight increase in Shw and Ssw as well as Rhw and Rsw

can occur as a result of higher contention within the processor nodes. Finally, since
RC is not expected to change the number of coherence requests in the system, we
expect the protocol execution overhead, i.e., Psw , to be unaffected. The question to
be addressed next is how these factors affect the ETR.

6.2. Quantitative Evaluation

In this section we experimentally evaluate the relative performance of hardware-
only and software-only directory protocols when release consistency is applied. In
Fig. 7, we show the relative execution times of hardware-only and software-only
directory protocols under sequential consistency (HW and SW, respectively) and
release consistency (HW-RC and SW-RC, respectively). The execution times are
normalized to the execution time of a hardware-only directory protocol under
sequential consistency.

We start with a comparison between the execution times of HW and HW-RC
and between the execution times of SW and SW-RC. The results presented in
Fig. 7 show that release consistency gives a large and consistent performance
improvement for both hardware-only and software-only directory protocols, which
is consistent with results presented in an earlier study [14].

By comparing the protocol execution overhead for SW and SW-RC, we see that
the intuition from Section 6.1 seems to be correct; since the numbers of coherence
requests are the same under sequential and release consistency, Psw should not be
affected. As the results in Fig. 7 show, Psw is virtually unaffected for most applications,

FIG. 7. Normalized execution times for hardware-only and software-only directory protocols under
sequential consistency (HW and SW) and under release consistency (HW-RC and SW-RC).

826 GRAHN AND STENSTRO� M

TABLE 7

Execution Time Ratios between Software-Only and Hardware-Only Directory
Protocols under Sequential Consistency and Release Consistency

Water�
Barnes Ocean Nsquared Cholesky FFT Radix

ETR=Esw (SW)�Ehw (HW) 1.20 1.59 1.12 1.22 1.33 1.41
ETR=Esw (SW-RC)�Ehw (HW-RC) 1.15 1.49 1.09 1.21 1.40 1.15

which confirms our intuition. For Water�Nsquared and Cholesky, Psw has
increased by 18 and 240, respectively. The reason is that a smaller portion of the
total protocol execution time is covered by other stall times under SW-RC than
under SW.

As seen in Fig. 7, release consistency removes the write stall time for all applica-
tions. Under the hardware-only directory protocol, this is achieved with virtually
no increase in read and synchronization stall times for two of the applications. For
Ocean, Cholesky, FFT, and Radix Rhw increases by 33, 28, 17, and 1790, respec-
tively. Under the software-only directory protocol the read stall time is increased
for the same four applications with 39, 25, 15, and 850, respectively. This stems
mainly from the following reasons: higher contention in the nodes and longer
delays in the write buffers. As an example we consider Ocean. Under sequential
consistency, an FLC read miss gets served by the SLC almost at once, while under
release consistency it has to wait in average 20 pclocks in HW-RC and 30 pclocks
in SW-RC. The longer queuing delays under RC occur since the second-level write
buffer with its 16 entries is filled up, and thus blocks the SLC. Further, in a
software-only directory protocol, each global write request takes a longer time than
in a hardware-only directory protocol. As a result, the second-level write buffer is
filled up more often in a software-only directory protocol.

The resulting execution time ratios between SW and HW, and between SW-RC
and HW-RC are presented in Table 7. For all applications except FFT, the ETR
decreases when release consistency is applied. However, since Psw is either unaf-
fected or higher, Psw constitutes a larger portion of the total execution time under
release consistency than under sequential consistency.

The results presented in this section show that release consistency hides all write
penalty for both hardware-only and software-only directory protocols. The execu-
tion time ratio between software-only and hardware-only directory protocols was
found to decrease for five of the applications when release consistency is applied.

7. DISCUSSION AND GENERALIZATIONS

In this study, we have simulated two models of a shared-memory multiprocessor,
one with a hardware-only directory protocol and one with a software-only direc-
tory protocol. Even though our quantitative results only apply to these models, it
is possible to get an intuition about the relative performance between other classes
of systems as we show in the following.

827LATENCY-TOLERATING TECHNIQUES

We have only considered read-shared prefetching in this study; i.e., the block is
prefetched in a shared mode. An alternative is to allow read-exclusive prefetching
[30]; i.e., when a block is prefetched, it is obtained in an exclusive mode. A success-
ful read-exclusive prefetch not only reduces the read stall time, possibly to zero, but
can also remove coherence actions associated with a separate ownership acquisi-
tion. Thus, the total number of coherence requests is expected to decrease when
read-exclusive prefetching is used, and as a result, the protocol execution overhead
is also expected to decrease. Our observations from Sections 4 to 6 suggest that
techniques that reduce the number of protocol invocations are expected to make
software-only directory protocols relatively more competitive with hardware-only
directory protocols.

In Section 4.2, we found that a high prefetch efficiency is important under
software-only directory protocols, but how do proposed schemes behave? Dahlgren
et al. have evaluated hardware-based sequential prefetching [10] and stride
prefetching [9]. For sequential prefetching, the coverage is between 4 and 880,
and the prefetch efficiency ranges from about 30 up to 920 in the best case. Con-
tinuing with stride prefetching, coverage values range from 2 up to 740 and
prefetch efficiencies from 13 to 900. In software-controlled prefetching schemes [3,
26, 30, 31], the compiler inserts special prefetch instructions into the code based on
static program information. For example, the software prefetching schemes presen-
ted in [31] have high coverage numbers (between 75 and 980). Unfortunately, the
prefetch efficiency varies from as low as 11 up to 850. In software-only directory
protocols, all these schemes may result in low performance gains, if any at all. The
high number of useless prefetches as a result of low prefetch efficiency for some
applications may result in such serious performance drawbacks that these schemes
are questionable in the general case. However, we speculate that software-controlled
prefetching schemes can have a larger potential to increase the performance of
software-only directory protocols since they can exploit knowledge about the
application behavior, and thus they can more selectively insert prefetches in the code.

An alternative to adaptive sequential prefetching is stride prefetching [6, 9].
Since stride prefetching is more selective than adaptive sequential prefetching when
issuing prefetches, it can potentially be better than adaptive sequential prefetching
for a software-only directory protocol. Unfortunately, the results in [9] show that
the most common stride is one, and then stride and adaptive sequential prefetching
behave similarly in terms of read stall time reduction.

In [22], Holt et al. evaluate how the occupancy of the directory controller, the
network latency, and the bandwidth impact the performance of distributed shared
memory systems. They evaluate a range of controller implementations, from a
general purpose coprocessor on the I�O-bus to hardwired controllers, and show
that the controller occupancy can be a major source of contention, especially
when network latencies are small. They do not include the case where the controller
functionality is implemented as software handlers executed on the compute
processor as we do in this study. Instead, they evaluate how prefetching impacts on
the controller occupancy and performance. They found, as we do, that the
occupancy in the home node can be a performance bottleneck when prefetching is
used.

828 GRAHN AND STENSTRO� M

Migratory sharing is quite common in many applications beyond numerically
intensive ones such as in SPLASH. Recently, Ranganathan et al. [33] showed that
migratory sharing is a dominant performance bottleneck in OLTP workloads on
multiprocessors. For such workloads, we would expect that software-only protocol
implementations augmented with migratory optimization techniques perform quite
well in comparison with hardware-centric implementations.

Multithreading is a latency-tolerating technique used in, e.g., the MIT Alewife
[1]. It has been shown to be effective in hiding processor stall times for accesses
that require global actions by switching to another thread of computation [19].
However, since multiple threads run on the same processor, the number of global
actions originating from each processor is likely to increase. As a result, the
protocol execution overhead in a software-only directory protocol is expected to
increase. Therefore, building on our derived framework from Section 4, we expect
the execution time ratio between software-only and hardware-only directory
protocol to increase when multithreading is used.

A limitation of our study is that we consider systems built from single-processor
nodes. A more cost-effective approach would be to use symmetric multiprocessors
(SMPs) as building blocks to design large-scale systems. The trade-off between a
P-processor system of single-processor nodes and K SMPs with P�K processors
each is essentially that the number of remote misses is reduced in the clustered
system. Assume that each processor generates M misses evenly distributed over the
clusters. Thus the total number of misses in the system is M*P. For each cluster
M*P�K misses can be served locally, thus totally M*P*(K&1)�K misses require
service in another cluster. Assuming that each processor services equally many
requests, it turns out that each processor responds to (M*P*(K&1)�K)�P=
M*(K-1)�K misses. Consider, for example, a system with 16 processors. If each
cluster only has one processor, each processor has to respond to M*15�16 misses.
On the other hand, if the processors are organized into four clusters each processor
only has to respond to M*3�4 misses, i.e., about 190 fewer misses for each pro-
cessor. Thus, the compute processor occupancy problem is smaller in a clustered
system but may still pose a problem. Indeed, Karlsson and Stenstro� m showed in
[24] that the probability of finding an idle processor that can handle the coherence
interrupt increases in a cluster-based multiprocessor. Another way to reduce the
compute processor occupancy problem is to use simultaneous multithreading [37].
Then the software handler execution could be integrated in the processor's instruc-
tion stream and would be expected to result in a smaller protocol handler overhead.

Two recent approaches using a software protocol to maintain coherence between
multiprocessor nodes are SoftFLASH [12] and MGS [39]. In both these systems
they assume powerful multiprocessor clusters connected by a network. Coherence
among the clusters is maintained by a software-based protocol forming a
distributed virtual shared-memory system. While they use a relaxed memory
consistency model in both SoftFLASH and MGS, they do not evaluate how much
performance gain is achieved by using a relaxed model compared to a more restric-
tive model. In addition, as shown in this study, the controller occupancy can have
a devastating impact on performance in such systems and reduce the positive effects
of relaxed models. Further, none of the studies evaluate the effects of prefetching or

829LATENCY-TOLERATING TECHNIQUES

migratory optimization. Karlsson and Stenstro� m proposed to include prefetching
techniques in an SVM system on top of a network of SMP clusters [25]. The
prefetching schemes managed to cut the overall execution times to some extent but
it is not clear how much the protocol overhead limited further gains. More recently,
Mowry et al. [32] studied compiler-controlled prefetching in SVM systems. While
prefetching helped cut the memory stall times, the protocol overhead was quite
substantial. Our study clearly demonstrates that SVM systems could be substan-
tially improved by avoiding expensive protocol operations in latency-tolerating
techniques such as prefetching.

8. CONCLUSIONS

In both software-only directory protocols and hardware-only directory protocols
performance is often limited by processor stall times due to memory accesses. In
addition to these stall times, the total execution time for a software-only directory
protocol might be prolonged because of protocol execution overhead resulting from
the handler invocations. To cope with these latencies, many latency-tolerating and
-reducing techniques have been proposed and evaluated in the context of hardware-
only directory protocols. However, the effectiveness of such techniques in the
context of software-only directory protocols has been unexplored.

In this study we have evaluated how the relative performance between software-
only and hardware-only directory protocols is affected when different latency-tolerating
and -reducing techniques are applied. We developed a framework for reasoning
about their expected relative efficiencies. Such techniques can be divided into three
classes depending on how they impact the protocol execution overhead in software-
only directory protocols; a technique increases, decreases, or does not affect the
protocol execution overhead. As representative examples of the three classes we
have chosen prefetching, a migratory optimization technique, and finally, release
consistency as techniques that increase, decrease, and do not affect the protocol
execution overhead, respectively.

Based on architectural simulations we have found that software-only directory
protocols are more sensitive to useless prefetches than hardware-only directory
protocols are. Each useless prefetch, i.e., a prefetch that fetches a block that is
evicted from cache before the processor accesses it, incurs protocol execution
overhead in the node where the memory block is allocated which potentially
prolongs the total execution time. Our results show that even though prefetching
reduces the read stall time in a software-only directory protocol, the execution time
may be prolonged due to useless prefetches. The results for adaptive sequential
prefetching show that even though the read stall time is reduced by between 1 and
620 in a software-only directory protocol, the execution time can be prolonged by
up to 50 mainly due to too many useless prefetches. Therefore, greater attention
must be turned to the prefetch efficiency when choosing a prefetch scheme for a
software-only than when choosing one for a hardware-only directory protocol.
Using an ideal prefetching scheme with fixed coverage and prefetch efficiency, we
found that a prefetch efficiency of at least 500 is essential for a prefetching scheme
to be effective together with software-only directory protocols.

830 GRAHN AND STENSTRO� M

In contrast, software-only directory protocols generally gain relatively more than
hardware-only directory protocols when techniques that reduce the number of
coherence actions are applied. This fact was confirmed with the migratory optimiza-
tion technique. For three of six applications, the execution time ratio between
software-only and hardware-only directory protocols decreases when migratory
optimization is used. The effects of migratory optimization are rather small
since our software-only directory implementation is fairly aggressive and the
SPLASH-2 applications have very little migratory sharing. We expect to see larger
benefits of the migratory optimization in less aggressive software-only directory
implementations and for applications with more migratory sharing, e.g., OLTP
applications [33].

Release consistency, a technique which does not affect the protocol execution
overhead, manages to hide all write stall time for both software-only and hardware-
only directory protocols. Since the write stall time is longer for software-only than
for hardware-only directory protocols, the performance difference between them
usually decreases when release consistency is applied. In total, for five of six
applications this fact results in a lower execution time ratio between software-only
and hardware-only directory protocols when release consistency is applied.
However, since release consistency does not reduce the protocol execution
overhead, it becomes a relatively larger portion of the total execution time.

Overall, this study shows that the efficiency of a latency-tolerating technique
depends not only on how well it tolerates the latency as seen by the local node, but
also on how it interacts with the node where a memory block is allocated. There-
fore, more care has to be taken when choosing an appropriate latency-tolerating
and -reducing technique for software-only directory protocols than when choosing
for hardware-only directory protocols. Finally, the presented framework is expected
to be useful to reason about the expected efficiencies of other latency-tolerating and
-reducing techniques than the ones we have studied in detail in this paper.

ACKNOWLEDGMENTS

This research was supported in part by the Swedish National Board for Industrial and Technical
Development (NUTEK) under Contract P855. A part of this work was carried out while the authors
were at the Department of Computer Engineering at Lund University.

REFERENCES

1. A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz, B.-H. Lim,
K. Mackenzie, and D. Yeung, The MIT Alewife machine: Architecture and performance, in ``Proc.
22nd Int'l Symp. Computer Architecture,'' pp. 2�13, June 1995.

2. M. Brorsson, F. Dahlgren, H. Nilsson, and P. Stenstro� m, The CacheMire test bench��A flexible and
effective approach for simulation of multiprocessors, in ``Proc. 26th Ann. Simulation Symp.,''
pp. 41�49, March 1993.

3. D. Callahan, K. Kennedy, and A. Porterfield, Software prefetching, in ``Proc. Fourth Int'l Conf.
Architectural Support for Programming Languages and Operating Systems (ASPLOS-IV),''
pp. 40�52, April 1991.

831LATENCY-TOLERATING TECHNIQUES

4. L. M. Censier and P. Feautrier, A new solution to coherence problems in multicache systems, IEEE
Trans. Comput. C-27, 12 (December 1978), 1112�1118.

5. D. Chaiken and A. Agarwal, Software-extended coherent shared memory: Performance and Cost,
in ``Proc. 21st Int'l Symp. Computer Architecture,'' pp. 314�324, April 1994.

6. T-F. Chen and J.-L. Baer, Effective hardware-based data prefetching for high-performance
processors, IEEE Trans. Comput. C-44, 5 (May 1995), 609�623.

7. D. Chiou, B. S. Ang, R. Greiner, Arvind, J. C. Hoe, M. J. Beckerle, J. C. Hoe, M. J. Beckerle,
J. E. Hicks, and A. Boughton, StarT-ng: Delivering seamless parallel computing, in ``Proc. EURO-
PAR'95,'' Lecture Notes in Computer Science, No. 966, pp. 101�116, Springer-Verlag, Berlin,
August 1995.

8. A. L. Cox and R. J. Fowler, Adaptive cache coherency for detecting migratory shared data, in ``Proc.
20th Int'l Symp. Computer Architecture,'' pp. 98�108, May 1993.

9. F. Dahlgren and P. Stenstro� m, Effectiveness of hardware-based stride and sequential prefetching
in shared-memory multiprocessors, in ``Proc. First IEEE Symp. High Performance Computer
Architecture,'' pp. 68�77, January 1994.

10. F. Dahlgren, M. Dubois, and P. Stenstro� m, Sequential hardware prefetching in shared-memory
multiprocessors, IEEE Trans. Parallel Distrib. Systems 4, 7 (July 1995), 733�746.

11. M. Dubois, J. Skeppstedt, and P. Stenstro� m, Essential misses and memory traffic in coherence
protocols, J. Parallel Distrib. Computing 29, 2 (September 1995), 108�125.

12. A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy, SoftFLASH: Analyzing the performance of
clustered distributed virtual shared memory, in ``Proc. Seventh Int'l Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS-VII),'' pp. 210�220, October 1996.

13. K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy, Memory
consistency and event ordering in scalable shared-memory multiprocessors, in ``Proc. 17th Int'l
Symp. Computer Architecture,'' pp. 15�26, May 1990.

14. H. Grahn and P. Stenstro� m, Efficient strategies for software-only directory protocols in shared-
memory multiprocessors, in ``Proc. 22nd Int'l Symp. Computer Architecture,'' pp. 38�47, June 1995.

15. H. Grahn and P. Stenstro� m, ``Architectural Support for an Efficient Implementation of a Software-
Only Directory Cache Coherence Protocol,'' Technical Report 213, Department of Computer
Engineering, Lund University, June 1995.

16. H. Grahn and P. Stenstro� m, An adaptive update-based cache coherence protocol for reduction of
miss rate and traffic, J. Parallel Distrib. Comput. 39, 2 (December 1996), 168�180.

17. H. Grahn and P. Stenstro� m, Relative performance of hardware- and software-only directory
protocols under latency-tolerating and -reducing techniques, in ``Proc. 11th Int'l Parallel Processing
Symp.,'' pp. 500�506, April 1997.

18. A. Gupta and W.-D. Weber, Cache invalidation patterns in shared-memory multiprocessors, IEEE
Trans. Comput. 41, 7 (July 1992), 794�810.

19. A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W.-D. Weber, Comparative evaluation of
latency reducing and tolerating techniques, in ``Proc. 18th Int'l Symp. Computer Architecture,''
pp. 254�263, May 1991.

20. M. Heinrich, J. Kuskin, D. Ofelt, J. Heinlein, J. Baxter, J. P. Singh, R. Simoni, K. Gharachorloo,
D. Nakahira, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy, The performance impact of
flexibility in the Stanford FLASH multiprocessor, in ``Proc. Sixth Int'l Conf. Architectural Support
for Programming Languages and Operating Systems (ASPLOS-VI),'' pp. 274�285, October,
1994.

21. M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A. Wood, Cooperative shared memory: Software
and hardware for scalable multiprocessors, ACM Trans. Comput. Systems 11, 4 (November 1993),
300�318.

22. C. Holt, M. Heinrich, J. P. Singh, E. Rothberg, and J. Hennessy, ``The Effects of Latency,
Occupancy, and Bandwidth in Distributed Shared Memory Multiprocessors,'' Technical Report
CSL-TR-95-660, Computer Systems Laboratory, Stanford University, January 1995.

832 GRAHN AND STENSTRO� M

23. L. Iftode and J. P. Singh, Shared virtual memory: Progress and challenges, Proc. of the IEEE 87,
3 (March 1999), 498�507.

24. M. Karlsson and P. Stenstro� m, Performance evaluation of a cluster-based multiprocessor built from
ATM switches and bus-based multiprocessor servers, in ``Proc. Second Int'l Symp. High
Performance Computer Architecture (HPCA-2),'' pp. 4�13, February 1996.

25. M. Karlsson and P. Stenstro� m, Effectiveness of dynamic prefetching in multiple-writer distributed
virtual shared memory systems, J. Parallel Distrib. Comput. 43, 2 (June 1997), 79�93.

26. A. C. Klaiber and H. M. Levy, An architecture for software-controlled data prefetching, in ``Proc.
18th Int'l Symp. Computer Architecture,'' pp. 43�53, May 1991.

27. J. Laudon and D. Lenoski, The SGI origin: A CC-NUMA highly scalable server, in ``Proc. 24th Int'l
Symp. on Computer Architecture,'' pp. 241�251, June 1997.

28. D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy, The DASH
prototype: Logic overhead and performance, IEEE Trans. Parallel Distrib. Systems 4, 1 (January
1993), 41�61.

29. T. Lovett and R. Clapp, STiNG: A CC-NUMA computer system for the commercial marketplace,
in ``Proc. 23rd Int'l Symp. on Computer Architecture,'' pp. 308�317, June 1996.

30. T. Mowry and A. Gupta, Tolerating latency through software-controlled prefetching in shared-
memory multiprocessors, J. Parallel Distrib. Comput. 12, 2 (June 1991), 87�106.

31. T. Mowry, ``Tolerating Latency through Software-Controlled Data Prefetching,'' Ph.D. thesis,
Stanford University, March 1994.

32. T. Mowry, C. Chan, and A. Lo, Comparative evaluation of latency tolerance techniques for software
distributed shared-memory, in ``Proc. Fourth Int. Conf. on High-Performance Computer Architecture,''
pp. 300�311, 1998.

33. P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso, Performance of database
workloads on shared-memory systems with out-of-order processors, in ``Proc. 8th Int.Conf. on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-VIII),''
pp. 307�318, October 1998.

34. S. K. Reinhardt, J. R. Larus, and D. A. Wood, Tempest and typhoon: User-level shared-memory,
in ``Proc. 21st Int'l Symp. Computer Architecture,'' pp. 325�336, April 1994.

35. D. Scales, K. Gharachorloo, and C. Thekkath, Shasta: A low overhead, software-only approach for
supporting fine-grain shared-memory, in ``Proc. Seventh Int'l Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS-VII),'' pp. 174�185, October 1996.

36. P. Stenstro� m, M. Brorsson, and L. Sandberg, An adaptive cache coherence protocol optimized for
migratory sharing, in ``Proc. 20th Int'l Symp. Computer Architecture,'' pp. 109�118, May 1993.

37. D. M. Tullsen, S. J. Eggers, and H. M. Levy, Simultaneous multithreading: Maximizing on-chip
parallelism, in ``Proc. 22nd Int'l Symp. Computer Architecture,'' pp. 392�403, June 1995.

38. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, The SPLASH-2 programs: Characteriza-
tion and methodological considerations, in ``Proc. 22nd Int'l Symp. Computer Architecture,''
pp. 24�36, June 1995.

39. D. Yeung, J. Kubiatowicz, and A. Agarwal, MGS: A multigrain shared memory system, in ``Proc.
23rd Int'l Symp. Computer Architecture,'' May 1996.

HA1 KAN GRAHN is an assistant professor of computer engineering at the University of
Karlskrona�Ronneby. He received a M.Sc. in computer science and engineering in 1990 and a Ph.D. in
computer engineering in 1995, both from Lund University. His main interests are computer architecture,
shared-memory multiprocessors, cache coherence, and performance evaluation. He has authored and co-
authored more than 20 papers on these subjects. He received the Best Paper Award at the PARLE'94
(Parallel Architectures and Languages, Europe) conference. Currently he is head of department for the
Department of Software Engineering and Computer Science. Dr. Grahn is a member of the ACM and
the IEEE Computer Society. For more information, please refer to http:��www.ipd.hk-r.se�tnesse�.

833LATENCY-TOLERATING TECHNIQUES

PER STENSTRO� M has been a professor of computer engineering with a chair in computer architec-
ture at Chalmers University of Technology since 1995. He was previously on the faculty of Lund Univer-
sity where he also received his M.S. in electrical engineering and a Ph.D. in computer engineering in
1981 and 1990, respectively. Dr. Stenstro� m's research interests are in computer architecture and real-time
systems in general with an emphasis on design principles and design methods for multiprocessor systems
including software as well as hardware design issues. He has contributed to more than 50 scientific
papers on multiprocessor design principles and authored two textbooks on computer architecture.
As a visiting scientist, he has participated in major multiprocessor architecture research projects at
Carnegie�Mellon, Stanford University, and University of Southern California. He is on the editorial
board of the Journal of Parallel and Distributed Computing (JPDC) and guest edited a special issue of
IEEE Computer in 1996 on shared-memory multiprocessing and a special issue of Proceedings of the
IEEE on distributed shared memory systems in 1999. He has also been a member of numerous program
committees for computer architecture and parallel processing conferences. Dr. Stenstro� m is a senior
member of the IEEE and a member of the IEEE Computer Society. For more information please refer
to http:��www.ce.chalmers.se�tpers.

834 GRAHN AND STENSTRO� M

	1. INTRODUCTION
	2. SIMULATED ARCHITECTURES AND THEIR PERFORMANCE DIFFERENCES
	FIG. 1
	FIG. 2

	3. EXPERIMENTAL METHODOLOGY
	TABLE 1
	TABLE 2
	TABLE 3

	4. EXECUTION TIME EFFECTS OF PREFETCHING
	FIG. 3
	TABLE 4
	FIG. 4
	TABLE 5
	FIG. 5

	5. EXECUTION TIME EFFECTS OF MIGRATORY OPTIMIZATION
	FIG. 6
	TABLE 6

	6. EXECUTION TIME EFFECTS OF RELEASE CONSISTENCY
	FIG. 7
	TABLE 7

	7. DISCUSSION AND GENERALIZATIONS
	8. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

