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Abstract Many software systems are developed in a number of consecutive releases. In each release not only new code
is added but also existing code is often modified. In this study we show that the modified code can be an important source
of faults. Faults are widely recognized as one of the major cost drivers in software projects. Therefore, we look for methods
that improve the fault detection in the modified code. We propose and evaluate a number of prediction models that increase
the efficiency of fault detection. To build and evaluate our models we use data collected from two large telecommunication
systems produced by Ericsson. We evaluate the performance of our models by applying them both to a different release of
the system than the one they are built on and to a different system. The performance of our models is compared to the
performance of the theoretical best model, a simple model based on size, as well as to analyzing the code in a random order
(not using any model). We find that the use of our models provides a significant improvement over not using any model at
all and over using a simple model based on the class size. The gain offered by our models corresponds to 38~57% of the

theoretical maximum gain.
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1 Introduction

Finding and fixing faults is a very expensive ac-
tivity in the software development processll. In large
telecommunication systems fault detection activities can
account for a significant part of the project budget, e.g.,
in [2] 45% of the project resources were devoted to test-
ing and simulation. Therefore, an increase of the fault
detection efficiency can potentially bring significant sav-
ings on project cost. A well-known fact concerning faults
is that a majority of the faults can be found in a mi-
nority of the code (the Pareto principlel®~®!). Different
sources report different numbers concerning the Pareto
principle, ranging from 20~60 (60% of the faults can
be found in 20% of the modules) to 10~80 (see [4] for
a brief overview of the research concerning the Pareto
principle). The Pareto principle shows that there is a
potential for significant savings if we manage to focus
our testing efforts on the most fault prone code units.

One way of helping testers to focus their efforts is
to provide them with a fault prediction model. If we
assume that the cost of finding faults in the class is pro-
portional to the size of the class (like in [6, 7]) then, by
selecting classes with the highest fault density, such a
prediction model increases the fault detection efficiency
(i.e., the number of faults found per the amount of code
analyzed). In the long run, increasing the fault detec-
tion efficiency leads to higher quality of the products
because testers focus on finding and removing faults in
the classes that have the highest concentration of faults
(fault density). As a result, they remove more faults
within a given budget. Therefore, in this study we de-
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velop fault prediction models that predict fault density.

Fault prediction models are usually based on either
different characteristics of the software that describe the
structure of the code (e.g., design or code metrics[SNlo])
or historical information about the code (e.g., [11, 12]).
Our models are based on design and code metrics. We
perform our analysis at the class level, i.e., our predic-
tions concern the fault-proneness of individual classes
and are based on the characteristics of those classes. We
predict the fault density in two ways — by predicting
the fault density itself and by predicting the number of
faults in a class and dividing it by the size of this class.

Our models are built and evaluated using data from
two different telecommunication systems developed by
Ericsson. From now on we denote them as System A
and System B. In this study we have used two releases
of System A (from now on called System Al and Sys-
tem A2) and one release of System B. These are the
most current releases of both systems (the current re-
lease of System B and the two latest releases of System
A). Both systems are large telecommunication systems.
Their sizes are about 800 classes (500 KLOC) and about
1000 classes (600 KLOC) for System A and System B,
respectively. Both systems operate in the service layer
of mobile phone network. As they are mission-critical
for the customers, they undergo an extensive testing be-
fore they are released.

Both systems are mature systems that have been
present in the market for several years. Over that pe-
riod a number of releases of each system have been pro-
duced. Each new release usually introduces a significant
amount of new functionality. Typically, new function-
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ality is introduced by modifying existing classes and/or
implementing new classes. In System Al the modifica-
tion of classes from the previous release accounted for
65% of the code written in the current release (35% of
the new code was introduced as new classes). In System
A2 37% of the code was introduced as a modification
of previous classes, and in System B 44% of the code
was introduced as a modification of the classes from the
previous release. A well-known fact is that a modifi-
cation of already existing code is an important source
of faults'V13] This is supported by our data. Faults
found in the modified code accounted for 86%, 62%,
and 78% of all faults found in System Al, System A2,
and System B, respectively. It can be noticed that in all
three systems the modified code was significantly more
fault-prone compared to the new code.

In this study we build and evaluate models that pre-
dict faults specifically in modified code, which is differ-
ent from most studies in the area that do not distinguish
between new and modified code (see Section 2). One
reason for focusing on the modified code is that, as we
have shown, the modified code is an important source
of faults. Focusing on the modified code also gives us
an opportunity to include not only usual metrics that
describe the structure of the final product (e.g., size,
complexity) but also metrics that describe the charac-
teristics of the modification (e.g., the number of new and
modified lines of code in the class). Also many studies
in the fault prediction domain predict faults at the com-
ponent or module levell®12:14~20] * A5 we have shown in
[21], the class level prediction, which we suggest in this
paper, is of higher precision and therefore is likely to
bring higher improvements.

We arbitrarily select System Al as the system on
which we build our models. The models are later eval-
uated by applying them to System A2 and System B.
In this way we check if our models are stable across
different releases of the same system as well as across
different systems. We show that the models increase
the efficiency of fault detection in a similar way in all
three systems.

The rest of the paper is structured as follows. In Sec-
tion 2 we present the work that has been done by others
in the area of fault prediction. Section 3 describes the
methods we have used for model building and evalua-
tion. Section 4 presents the results we have obtained.
In Section 5 we discuss our findings and different valid-
ity issues. In Section 6 we present the most important
conclusions from our study.

2 Related Work

Fault prediction models that predict the number of
faults or the fault density are very common in litera-
ture (e.g., [2, 10, 22~25]). The most typical methods
for building prediction models are different variants of
linear regression (e.g., [2, 10, 20, 22, 23, 25]). Other
methods include, e.g., negative binomial regression(24.
Usually the construction of prediction model starts
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with selecting independent variables (variables that are
used to predict the dependant variable — faults). The
most common candidates are different code metrics
(e.g., [10, 12, 16]) or variations of Chidamber and Ke-
merer (C&K)[?%! object-oriented metrics (e.g., [6, 8, 10]).
There are also studies that take historical information
about the code fault-proneness into account (e.g., [11,
12, 24]). The initial set of independent variables is of-
ten large (e.g., over 200 metrics in [27]). A common
assumption is that models based on a large number of
variables are less robust and have lower practical value
(more metrics have to be collected)28!, Therefore, the
first step of model building usually involves a reduction
of the number of metrics. A commonly used method
for the dataset reduction is a correlation analysis(2:5:10].
It is usually used to detect highly correlated metrics.
Highly correlated metrics can, to a large extent, mea-
sure the same thing (e.g., the number of code lines and
the number of statements are usually highly correlated
because both measure size). Including them into the
model causes a risk for multicolinearity?l. Multicol-
inearity is especially risky when regression models are
built. It leads to “unstable coefficients, misleading sta-
tistical tests, and unexpected coefficient signs’1?8!. Cor-
relation analysis is also used for selecting independent
variables to predict faults (e.g., [5, 10]). Only those
metrics that are correlated with faults are good fault
predictors.

Below, we present studies in which fault prediction
models were built. For each study we describe the set
of metrics used, the metric selection criteria, and the
results obtained. In the cases of prediction models built
using linear regression we also quote R? values. R? is
a “goodness-of-fit” measure that describes how well the
model fits the data it was built on. It describes the
proportion of variability of variable predicted by the
modell??!, Therefore, it has values between 0 and 1[39],
The closer R? is to 1 the better the prediction model is.
For details concerning the calculation of R? see Subsec-
tion 3.3.

In [10], Zhao et al. compare the applicability of de-
sign and code metrics to predict the number of faults.
The analyzed system is one release of a large telecommu-
nication system. The authors do not say if the code an-
alyzed is new or modified. The design metrics collected
are mostly different SDL related metrics (the number of
SDL diagrams, the number of task symbols in SDL de-
scriptions, etc.). The code metrics included the number
of lines of code, the number of variables, the number
of signals, and the number of if statements. The initial
selection of metrics is based on the correlation analysis.
To build the models the authors use the stepwise re-
gression, which additionally eliminates the metrics that
are not good as fault predictors. The authors conclude
that both code and design metrics are applicable and
give good results. However, in this study, the best fault
prediction is obtained when both types of metrics are
included in the same model. R? values obtained in this
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study are 0.63 for the design metrics model, 0.558 for
the code metrics model, and 0.68 for the model based
on design and code metrics.

The applicability of object-oriented metrics for pre-
dicting the number of faults is evaluated by Yu et al.2%]
The analyzed system consists of new classes only. The
set of metrics used is largely based on C&K metrics26].
The authors evaluate univariate and multivariate mod-
els. The best univariate model is based on the Number
of Methods per Class metric (R? = 0.423). The re-
sults of univariate regression are used to select metrics
for multivariate regression. For the metric to be se-
lected, the univariate regression model based on it has
to be significant (¢-test) as well as it has to account for
a large proportion of variability of the predicted value.
However, in practice, the authors only reject the vari-
ables from the insignificant models. Finally, six different
metrics are included in the proposed regression model,
i.e., Number of Methods per Class, Coupling, Response
for Class, Lack of Cohesion, Depth of Inheritance, and
Number of Children. The R? statistic of this model is
0.597. The authors also show the model based on all
ten metrics they collected. This model has the R? value
equal to 0.603.

Cartwright and Shepperd?! present a study in which
they predict faults in object oriented system. The met-
ric suite they use consists of some of the object-oriented
C&K metrics (Depth of Inheritance, and Number of
Children), some code metrics, and some metrics that
are characteristic for the development method employed
(Shlaer-Mellor). The authors obtain very high predic-
tion accuracy. Their best univariate linear model is
based on the number of events in the class and has
R? = 0.876. The authors show that the accuracy of the
model can be increased by adding a variable indicating
if the class inherits from some other class (R? = 0.897).

Unlike our study, the studies described above do not
focus specifically on modified code. However, they are
very good examples of how fault prediction models are
built as well as what kind of data fit can be expected
from them.

There are also studies that attempt to predict faults
in modified systems. Nagappan and Balll®!] evaluated
the applicability of relative code churn measures to pre-
dict the fault densities of software units. As relative
code churn measures they understand the amount of
code change normalized by the size of the code unit
the change was introduced to. Their study was based
on the code churn between Windows Server 2003 and
Windows Server 2003 Service Pack 1. The authors con-
cluded that the relative code churn measure could be
used as predictor of a system’s fault density. Their best
model achieved a data fit (R?) of 0.821. Munson and
Elbaum/? analyzed a large software system and they
also noticed that relative measures are very good predic-
tors of the fault-proneness of modified code. The metric
they evaluated was the relative complexity of modified
modules. They showed that this metric was highly cor-
related with the fault density. Selby[!3] reached a sim-

2]

ilar conclusion. He observed that the number of faults
in a modified class tends to increase with the size of the
modification of the class.

There are also other studies that attempt to assess
the applicability of different metrics to predict faults.
In most cases these are studies in which classification
models were built, i.e., models that predict if there are
faults in the module, not how many faults there are.
From our perspective such studies are interesting, since
they give an indication of metrics that are good predic-
tors of fault-proneness. For example, El Emam et al.l®!
observes an impact of inheritance and coupling on the
fault-proneness of the class. The relation between in-
heritance, coupling, and probability of finding faults in
the class was also identified by Briand et al.l® In [15],
Gunes Koru and Tian evaluate the applicability of com-
plexity measures to predict faults. They concluded that
there is a relation between complexity and faults, but it
is not linear and therefore complexity measures are not
likely to be good fault predictors when used in linear
prediction models, like ours.

When it comes to the evaluation, most classifica-
tion models are evaluated against the percentage of cor-
rectly classified classes. Briand et al.[®] noticed that such
an evaluation may have a low practical value.
though the model may point to a minority of classes,
these classes can potentially account for a majority of
the code. The prediction models used for estimating
the number of faults are usually evaluated against their
“goodness of fit” to the data they were built on, i.e.,
using R? statistic. Therefore, as we see, there is a lack
of studies evaluating prediction models from the per-
spective of gain, in terms of cost reduction, that can be
expected from applying them.

Even

3 Methods
3.1 Metrics Suite

In this study we base our prediction models on the
metrics that describe the structure of the system, i.e.,
on code and design metrics. All metrics that we collect
are summarized in Table 1. All our measurements are
done at the class level. The design metrics are mostly
metrics that belong to the classic set of object oriented
metrics suggested by Chidamber and Kemerer[2¢!, Lack
of Cohesion (LCOM) was calculated as suggested by
Graham[®334, The code metrics are different size met-
rics, metrics describing McCabe cyclomatic complexity
as well as metrics describing the size of modification
(Change Size — the number of new and modified lines
of code in the final system as compared to the previous
release of the system). For each class we collect infor-
mation about the number of faults that were found in
the class as well as calculate the fault density.

All product measurements mentioned in this study
can be obtained automatically from the code using soft-
ware tools. In this study we used the Understand
C++03%] application to obtain all the design and code
metrics (apart from the ChgSize quantification) from
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Table 1. Metrics Collected in the Study
Name Variable Description
Independent Metrics
Coup Coupling Number of classes the class is coupled to
NoC Number of Children Number of immediate subclasses
Base Number of Base Classes Number of immediate base classes
WMC Weighted Methods per Class Number of methods defined locally in the class
RFC Response for Class Number of methods in the class including inherited ones
DIT Depth of Inheritance Tree Maximal depth of the class in the inheritance tree
LCOM Lack of Cohesion Metric measuring how closely the methods are related to the variables in the class
Stmt Number of Statements Number of statements in the code
StmtExe Number of Executable Statements Number of executable statements in the code
StmtDecl Number of Declarative Statements Number of declarative statements in the code
Comment Number of Comments Lines Number of lines containing comments
MaxCyc Maximum Cyclomatic Complexity The highest McCabe complexity of a function from the class
ChgSize Change Size Number of new and modified LOC (from previous release)
CtC Ratio Comment to Code Ratio of comment lines to code lines
Dependent Variables
Faults Number of Faults Number of faults found in the class

FaultDensity Fault Density

Fault density of the class

the systems’ code. The ChgSize was quantified using
the LOCCI39] application. The information about faults
was extracted from an internal Ericsson fault report-
ing system. We understand that it would be highly
desirablel3”:38] to reveal some information about the raw
data we collected. However, since these data are highly
confidential, due to our agreement with Ericsson we are
not allowed to do that.

3.2 Model Building

We assume that the cost of performing fault detection
is directly proportional to the size of the class. There-
fore, our prediction models should identify the classes
with the highest fault densities. Fault detection in such
classes is the most efficient because it requires the least
amount of code to be analysed to find a fault. Class
analysis according to the model means that fault detec-
tion activities are performed on the classes in the order
of their decreasing fault density predicted by the model.
As we see, the fault density can be predicted in two
ways:

e by predicting the fault density (Faults/Stmt) the
fault density is predicted by the model;

e by predicting the number of faults (Faults) and di-
viding the predicted number of faults by the real class
size (Stmt) — faults are predicted by the model, while
size (Stmt) is measured.

In our study we evaluate both approaches.
though they seem to predict the same thing, the predic-
tion accuracy, given our set of metrics and our method of
building models (regression), may be different for both
of them. Linear regression, which we use for building
models, attempts to predict the dependent variable as
linear combination of independent variables. It may
turn out that, e.g., linear combination of our metrics
predicts fault density much more accurately than it pre-
dicts the number of faults.

We evaluate six prediction models, three predicting
the fault-density and three predicting the number of
faults. The models are built using:

Even

e single metric — a model based on the single best
fault (fault-density) predictor;

e selected metrics — a model based on a set of the
best fault (fault-density) predictors;

e all metrics — a model based on all metrics col-
lected.

To find the single and the selected metrics we use
the simplest method, which is the correlation analysis.
Since it turned out that our data were not normally dis-
tributed we use Spearman correlation co-efficient, which
is not dependent on normality assumption®. As se-
lected metrics, we choose those that are correlated to
the independent metrics, i.e., with correlation coefficient
values not close to 0. In the case of our dataset it turned
out that the lowest correlation among the metrics from
the selected metrics model was 0.29. Additionally, the
correlations of our selected metrics with the dependent
variables have to be significant at a 0.05 level (a stan-
dard significance level describing 5% risk of rejecting a
correct hypothesis). In this way we eliminate the met-
rics that, due to a low correlation with the number of
faults and the fault-density, cannot be considered useful
for building prediction models.

Our univariate models are built using linear regres-
sion. The multivariate models are built using stepwise
multivariate linear regression. The univariate linear re-
gression estimates the value of the dependant variable
(i.e., the number of faults or the fault-density) as a func-
tion of one of the independent variables (i.e., code and
design metrics)!0:

f(z) =a+byz. (1)

Multivariate linear regression estimates the value of the
dependant variable (i.e., the number of faults or the
fault-density) using linear combination of independent
variables (i.e., code and design metrics)!0l:

f(x) = a+biwy +bowy + bsws + - + bpwp.  (2)

Stepwise regression is one of the methods that attempt
to build a model on the minimal set of variables that
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explain the variance of the dependant variable. Other
methods of that kind are forward (backward) regres-
sion. In these methods variables are added (removed)
to the model until adding (removing) the next one does
not give any benefit (does not change model’s ability to
predict the dependent variable)[30]. We select stepwise
regression because, compared to the forward regression,
it additionally excludes variables that do not contribute
to the model anymorel®l. Therefore, by using stepwise
regression we hope to get models based on minimal sets
of variables. Stepwise regression is used on the previ-
ously defined sets of metrics (All, Selected) and the fi-
nal models are built on subsets of the previously defined
sets of metrics, i.e., building a model on all metrics does
not mean that all metrics are used in the final model
but that all metrics are used as an input to the stepwise
regression.

For each model we calculate a coefficient of determi-
nation, R?, which is the standard measure of model’s
“goodness-of-fit”. R? measures the strength of the cor-
relation between the actual and the predicted number
of faults. The R? equation is presented below

n

> (i - 9:)?

RP=1-2=L (3)
Z(yi -9)°
i=1
where y; — the actual number of faults (or the actual

fault density), g; — the predicted number of faults (or
the predicted fault density), ¥ — the average number of
faults (or the average fault density).

The practical meaning of R2 is that it describes the
proportion (percentage) of variability of the predicted
variable accounted by the modell?!. The higher the R?
value is, the better the prediction model fits the data
it is built on. R? values range from 0 to 1% where 1
means the perfect model that accounts for all variability
of the predicted variable (perfect prediction). R? equal
to 0 indicates that the model is useless as a prediction
model. We include R? for two reasons. First, it enables
comparisons between our models. Second, it makes it
possible to compare our results with the results obtained
by other researchers, who usually quote R? values ob-
tained for their models (see Section 2 for examples).

Similarly to [10], we also evaluate the significance of
the entire prediction model using the F-test!3%/, We se-
lect a 0.05 significance level, i.e., if the significance of
the F-test has a value below 0.05 then the prediction
model is significant.

All statistical operations connected with model
building (i.e., correlation, stepwise regression and cal-
culation of statistics connected with it) were performed
using the statistical software package SPSS[41],

3.3 Model Evaluation

To evaluate our models we need some objective mea-
surement of the accuracy of our models. We want to

know what advantage can be expected from using our
models as compared to not using any model at all. We
also want to know how far our models are from the the-
oretical best model. A good prediction model must also
give good results when it is applied to the data other
than the one it was built on.

To measure the objective “goodness” of our models
we introduce three reference models:

e Random Model — this model describes a com-
pletely random search for faults. The results obtained
by this model are, on average, the results we could ex-
pect when no model is used and the order in which the
classes are analyzed is random.

e Best Model — this is a theoretical model that
makes the right choices about which classes to analyze.
In this model the classes are selected according to their
actual fault density. According to our criteria, it is im-
possible to do better than that.

e Size Model — a common (mis)conception(?® is that
bigger classes tend to have more faults and higher fault
densities. Therefore, we introduce a model in which the
classes were analyzed based on their size (bigger classes
are analyzed earlier).

A comparison of our models with the Random model
gives us an indication if following our model is better
than not following any model at all. The Best model
gives us an indication of how good a model can get, and
how far we are from being perfect. The Size model might
often be encountered in real life situations because of its
simplicity, as well as because many models suggested in
literature actually tend to correlate with sizel2®!. By
including this model we can evaluate it against our cri-
teria of efficiency improvement as well as compare our
models with it.

To check if our models are good prediction mod-
els, i.e., if they can be successfully applied to different
projects, we build our models based on data from one
of the projects only (System A1) and we apply them to:

e Project Al, on which the models are built;

e Project A2, which is a different (next) release of
Project Al;

e Project B, which is a completely different project.

By comparing how well our models work in Project
Al and Project A2 we get an indication if they are sta-
ble across different releases of the same system. By
comparing how well the models work in Project A and
Project B we get an indication if they are stable across
different systems. The stability is required because a
prediction model is normally used to predict faults in
projects/releases other than those it was built on.

In order to compare the models’ performance both
within and between systems we use three complemen-
tary comparison methods for assessing model “good-
ness”. Generally, the “goodness” of the model is mea-
sured by the amount of code necessary to analyze in
order to detect a certain number of faults, i.e., a model
is better if by following it we are able to detect more



402

J. Comput. Sci. & Technol., May 2007, Vol.22, No.3

IOR ourModel

Eq.1
IORBest

Gain ourModel =

n

=1

Eq.3

DTR(Model, 1 DTR(Model,i — 1 Code(Model, 1) — Code(Model,i — 1
Eq.2 IORMode,:Z<< (todel, ) + DTA(Modeh i~ 1) x (CodelModeh) = Code(podel, )))

DTR(Model,i) = Model(i) — Random(Code(Model, 7))

Fig.1. Calculation of the Gain metric. Model(z) is the percentage of faults found if analyzing the i-th class according to the Model,

Random(Code(Model, t)) is the expected percentage of faults detected if analyzing the same amount of code as in case of Model(i) but

not following any model at all, n is the number of classes. The details regarding calculation steps can be found in Subsection 3.3.

faults by analyzing the same amount of code compared
to another model.

Our first comparison method is a diagram plotting
the percentage of faults detected against the percentage
of code that has to be analyzed to detect them. On eve-
ry diagram we include our reference models (Random,
Size, and Best models). By comparing how well our
models do in relation to the Random model and to the
Best model we are able to assess how good the models
are and compare their performance in different systems.

The second method attempts to perform a quan-
tification of the model’s “goodness”. Our Gain metric
quantifies the ratio of an improvement offered by our
model over the Random model to the theoretical max-
imum improvement possible. The calculation steps for
the Gain metric are presented in Fig.1. Eq.l in Fig.1
presents the way in which the Gain metric is calculated.
In Eq.1 IOR stands for Improvement Over Random.
The IOR 041 measure quantifies the overall improve-
ment over the Random model that is offered by Model.
On our diagrams, on which we plot the percentage of
faults detected against the percentage of code that has
to be analyzed to detect them, such an improvement
over the Random model corresponds to the size of area
between the Random model and Model (see Fig.2).
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Fig.2. Improvement Over Random (IOR) for a Model is defined
as the size of area between the Model and the Random model

(checked area on the figure).

To calculate IOR we divide the area between the
Random model and Model into a number of parallel-
ograms equal to the number of classes in the system,
and we sum their areas (see Eq.2 in Fig.1). In Eq.2, n
is the number of classes in the system, Code(Model, 1)

is the percentage of code that must have been covered
when analyzing the i-th class according to the Model.
It must be remembered that in order to analyze the i-
th class according to Model we must have analyzed all
the classes with predicted fault densities larger than the
predicted fault density of the i-th class, which means
that Code(Model, i) consists of not only the size of the
i-th class but also the sum of all sizes of classes with
predicted fault densities larger than the predicted fault
density of the i-th class. DTR stands for Distance To
Random. Fig.1, Eq.3 presents the way DTR is calcu-
lated. In Eq.3, Model(3) is the percentage of faults de-
tected when analyzing the i-th class according to the
Model. Random(Code(Model,7)) is the expected per-
centage of faults that we would detect using the Ran-
dom model when analyzing the same amount of code as
when analyzing the ¢-th class according to the Model.

The Gain metric gives a normalized value between
—1 and 1, where 1 describes the Best model and —1 de-
scribes the worst possible model. It is so, because it is
impossible to do better than the Best model and it is also
impossible to do worse than the worst possible model,
in which all the classes are selected according to their
increasing actual fault density. Therefore, IORworst =
—IORBest, which explains the —1 value. The Random
model in this scale gets value 0, which means that all
models with Gain lower than 0 are worse than the Ran-
dom model and all those with gain over 0 are an im-
provement over the Random model. The Gain metric
quantifies only the average gain from using the model.
As every average, it might be missing some important
details. Therefore, we use it together with previously
described diagrams presenting the gain from using the
model for different percentages of the code. They give
more insight in how the models actually perform.

Our final, third method of assessing model “good-
ness” is by checking the statistical significance of the
difference between the performance of a model and the
performance of Random model. The analysis of the
graphs described before can give some conclusions re-
garding the model “goodness” but based on them it is
hard to say to what extent the improvement over the
Random model is statistically significant. Therefore, for
each model, we perform the statistical analysis in which
we test the following null hypothesis:

Hj: the expected mean distance between tested

model and Random model equals zero
where as distance we understand Distance To Random
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(DTR), defined before. Statistical tests appropriate for
testing this hypothesis according to [39] are paired ¢-
test and its non-parametric alternative Wilcoxon test
(Wilcoxon Signed-Rank Test). Since our data were
not normally distributed we applied the non-parametric
test, i.e., Wilcoxon test.

The Wilcoxon test is performed in the following
wayl39: first for every data point the distance between
the Random model and the examined model is calcu-
lated. The distances are basically DTRs, as we defined
them before. Absolute values of DTRs are ranked, and
the sums of positive ranks (7") and negative ranks
(T'~) are calculated. As the test statistic T of the
Wilcoxon test the smaller of these two values is used,
ie.,, T = min(T*,T~). This value can be compared
against tabularized values for desired significance level.
For large samples it can be approximated by a normal
random variable as described in [42]. SPSS, the statis-
tical package used by us, reports the significance level
for each test. Therefore, we do not need to pre-select
the desired significance level for our test — we base our
analysis on the highest confidence with which we can re-
ject null hypothesis, i.e., if SPSS reports the significance
of 0.05 it means that with 95% confidence we can reject
the null hypothesis that our model’s performance does
not differ from the performance of the Random model.

4 Results

4.1 Model Building

As described in Subsection 3.2 our models are built
using the data from System Al. We begin the model
building with a correlation analysis. The results of the
correlation analysis are presented in Table 2. The main
purpose of the correlation analysis is to identify met-
rics that are the best single predictors of the number of
faults and the fault-density (we look for single metrics
with the highest correlations with the number of faults
and the fault density). From Table 2 it can be noticed
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that ChgSize is the best predictor for both values (cor-
relation values in bold in Table 2). Therefore, we select
this metric to build the prediction models for the num-
ber of faults and the fault-density based on one metric.

The second reason for performing the correlation
analysis is to eliminate the metrics that cannot be con-
sidered useful for building our prediction models (see
Subsection 3.2 for details). The remaining metrics are
used to build the model based on “selected metrics”. It
turned out that we removed the same metrics for the
model that predicts the number of faults and the model
that predicts the fault-density. We have decided not to
use the following metrics in “selected metrics” models:

e Base, NOC, CtC, DIT — due to their low correla-
tion with the faults and with the fault density and due
to low significance of the correlation;

e LCOM — due to the low correlation with the faults
and with the fault-density;

e Comment — due to an unsure meaning of this
metric and its correlation to size.

We find the high positive correlation between Com-
ment and Faults quite surprising. There are some pos-
sible explanations of that phenomenon, like considering
the number of comments as a measure of human per-
ceived complexity. We exclude this metric from selected
metrics, because it is difficult to assure that the “com-
menting style” is maintained between the projects (there
are no explicit guidelines concerning this in either of the
analyzed projects). Therefore, it is difficult to say if
prediction models based on Comments would be stable
also in other products/releases of the same product.

In the study we build six different prediction mod-
els based on the data from System Al. Their names,
independent variables and outputs are summarized in
Table 3. The models are built using stepwise regression.
The significance of each model’s coefficient is checked
using the t-test. The hypothesis tested is that the coef-
ficient could have value 0, which would imply a lack of
relationship between the independent and dependent

Table 2. Corrclation Analysis (Spearman Correlation Co-Efficient) of the Metrics Collected from System Al

Base | Coup | NOC | WMC | RFC | Comment | Stmt | Stmt Decl [ Stmt Exe | Max Cyc| DIT | LCOM | CtC |Chg Size
Base 1
Coup 0.35] 1
NOC —0.13] 0.06] 1
WMC 0.23] 0.76] 0.18] 1
RIFC 0.63| 0.68] 0.07| 0.82]1
Comment 0.21] 0.73; 0.05] 0.80]0.68 1
Stmt 0.15| 0.67] 0.09] 0.74]0.62 0.84 1
Stmt Decl 0.01] 0.57] 0.08] 0.61]0.41 0.73 0.86 1
Stmt [ixe 0.25| 0.72] 0.10] 0.79]0.70 0.83 0.92 0.61 1
Max Cyc 0.21| 0.65] 0.09] 0.65|0.56 0.73 0.83 0.51 0.93 1
DIT 0.97] 0.35]=0.13 0.22]0.61 0.20 0.11 —0.01 0.22 0.12 1
L.COM -0.081 0.3 0.18| 0.37]0.15 0.32 0.20 0.38 0.11 0.07 |-0.08] 1
CtC 0.18;—-0.01|-0.06 | —0.02 | 0.07 0.12 —0.36| —0.34 —0.24 —0.26 0.21| 0.06 1
Chg Size 0.07| 0.48| 0.02| 0.47|0.40 0.59 0.68 0.7 0.50 0.42 0.04] 0.28 |—-0.25| 1
TFaults 0.00| 0.43| 0.02{ 017|041 0.51 0.52 0.18 0.18 0.38 |[—-0.01| 0.15 [-=0.1 0.6
Fault Density | —-0.03| 0.35| 0.01| 0.390.32 0.46 0.42 0.4 0.36 0.29 |[-0.04| 0.15 |-0.05| 0.53

Note: The correlations with a grey background are NO'L' significant at 0.05 significance level.
The correlation of the best individual predictor of fault number and fault density is in bold.
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variables (and therefore would make the original model
the best, but not a meaningful mathematical relation
between both Variables)[40]. It turned out that all co-
efficients were significant at the 0.05 level. The signif-
icance of the entire model is tested using the F-test.
The goodness-of-fit of each model is assessed using the
R? statistic. The actual models are presented in Table
4.
Table 3. Summary of Our Models

Name Based on Predicts
AllNumber All Metrics Number of Faults
SelectedNumber  Selected Metrics  Number of Faults
SingleNumber Single Metric Number of Faults
AllDensity All Metrics Fault Density
SelectedDensity Selected Metrics  Fault Density
SingleDensity Single Metric Fault Density

Note: Single metric: ChgSize.
Selected metrics: Coup, WMC, RFC, Stmt, StmtDecl,
StmtExe, MaxCyc, ChgSize.

4.2 Model Evaluation

As it can be noticed in Table 4 all our models are sig-
nificant according to the F-test. By looking at the R2
values we can see that the goodness-of-fit is better for
the models predicting the number of faults compared
to those predicting fault-densities. Apparently, given
our set of metrics, it is easier to predict the number
of faults than the fault-density. As we expected (see
Subsection 3.2) the models based on all metrics (All-
Number and AllDensity) have a better fit compared to
their counterparts based on a limited number of met-
rics (see the R? values in Table 4). They may, however,
suffer from the multicolinearity problem, e.g., according
to the AllNumber model the number of faults increases
with Comments and decreases with StmtExe, which is
difficult to explain since both StmtExe and Comments
are positively correlated with the number of faults (see
Table 2).

Our main model evaluation is performed from the
perspective of the fault detection efficiency improvement
that they offer. We use each model as an indicator of
the order in which the classes should be analyzed. For
the models that predict the fault-density (AllDensity,
SelectedDensity, SingleDensity) we order the classes ac-
cording to the output of the model, so that we ana-
lyze classes with the highest predicted fault-density first.
In the models that predict the number of faults (All-
Number, SelectedNumber, SingleNumber) the predicted

J. Comput. Sci. & Technol., May 2007, Vol.22, No.3

number of faults is divided by the class size (Stmt). This
partially predicted density measure is used to select the
classes for analysis.

Our evaluation consists of three steps. First, for each
model we plot a graph in which the percentage of faults
detected is mapped to the percentage of code that has
to be analyzed to detect them. The model is consid-
ered better than the other one if, by following it, we
are able to detect more faults by analyzing the same
amount of code. Later we calculate the Gain for each
of our models. For details concerning the Gain metric
see Subsection 3.3. Finally, we check if the differences
between our models and the Random model are statis-
tically significant.

To benchmark our models we include three refer-
ence models in the evaluation. The reference models
are presented in Fig.3. By comparing the Best and the
Random models in Fig.3 we can see that there is a large
room for improvement that can be filled using a fault
prediction model. For example, if we inspect 20% of
code randomly, on average we would find 20% of faults.
However, by inspecting the most fault prone 20% of code
we can find 60%, 80%, or even almost 100% of faults for
System A1, System A2, and System B, respectively (see
Fig.3). That is three, four, and five times as much as by
inspecting the code randomly. Therefore, a model that
tells us which part of the code to analyze first can po-
tentially result in cost savings and increased quality of
software. In all future figures we include the Best, Ran-
dom, and Size models (always in dashed line) in order
to provide reference points for evaluating our models.

The second conclusion from analyzing Fig.3 is that
the Size model does not help very much when it comes to
increasing the efficiency of fault detection. In fact, it is
either about as good as the Random model (System Al
and System B) or even worse than the Random model
in the case of System A2. Neither of our cases supports
the theory that the size affects fault density and that
the Size model can be used to predict fault density.

When evaluating our models we start with evaluat-
ing the fault detection efficiency improvement gained by
using the models that predict the number of faults (All-
Number, SelectedNumber, SingleNumber). The results
are presented in Fig.4. As it can be noticed all three
models present an improvement over both the Random
model and the simple Size model. This holds true not

Table 4. Prediction Models Obtained Using Stepwise Regression Based on Data from System Al

Model Equation R? F Sig.

AllNumber FaultDensity = (0.004 x Comment + 0.003 X ChgSize — 0.677 X Base + 0.276 X Ctc 0.752 75.944 0.0
—0.003 x StmtDecl — 0.005 x LCOM + 0.010 x RFC — 0.001 x StmtEze + 0.089)/Stmt

SelectedNumber  FaultDensity = (0.004 X ChgSize + 0.001 X StmtEze — 0.002 X StmtDecl + 0.008)/Stmt 0.585 96.412 0.0

SingleNumber FaultDensity = 0.005 x ChgSize/Stmt 0.550 252.84 0.0

AllDensity FaultDensity = 54.040 X CtC + 0.115 X ChgSize — 42.431 X DIT — 0.096 x Stmt 0.479 30.997 0.0
+3.036 x Coup + 0.670 x RFC — 19.685

SelectedDensity  FaultDensity = 0.184 X ChgSize — 0.138 X Stmt + 2.429 X Coup + 1.057 x WMC + 2.748 0.280 19.815 0.0

SingleDensity FaultDensity = 0.081 X ChgSize + 12.739 0.058 12.742 0.0

Note: R? describes goodness-of-fit (values closer to 1 indicate better fit), Sig. is singificance level of F-test.
F, R?, and Sig. quoted for AllNumber, SelectedNumber, and SingleNumber concern the models that predict the number

of faults.

These models are divided by Stmt in Equation section in order to provide the fault density prediction.
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Fig.4. Efficiency comparison of the models that predict the number of faults. The models were built on the data from System Al.

Three reference models (Best, Random, and Size) are introduced to provide a baseline for comparison.
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Fig.5. Efficiency comparison of the models that predict the fault density. The models were built on the data from System Al. Three

reference models (Best, Random, and Size) are introduced to prov

only for System Al, on which the models are built, but
this is also very clear for System A2 and System B. Our
models seem to be stable and to work similarly well in
all systems.

The evaluation of the models’ performance when ap-
plied to System A2 and System B indicates which mod-
els are the most promising ones as prediction models,
i.e., which models are the best for predicting faults in
projects other than the project they are built on. It
seems that the least complex model (SingleNumber)
works best. For example, in both System Al and Sys-
tem B the model makes it possible to detect over 80%
of faults by examining only 40% of the code. It is, on

ide a baseline for comparison.

average, twice as many faults as we would detect when
inspecting the code randomly and only about 10%~15%
less than the possible maximum described by the Best
model.

After evaluating the models that predict the num-
ber of faults we perform an evaluation of the models
that predict fault density. The performance of the Sin-
gleDensity, SelectedDensity, and AllDensity models is
presented in Fig.5. As in the case of models that pre-
dict the number of faults, the models that predict the
fault density in most cases have a clear advantage over
the Random model. Although the gain from using them
is slightly but noticeably lower compared to the models
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Table 5. Quantification of the Gain from Using the Model

SingleNumber  SelectedNumber  AllNumber SingleDensity  SelectedDensity  AllDensity Size
System Al 0.42 0.43 0.52 0.32 0.22 0.38 —0.09
System A2 0.75 0.55 0.57 0.41 0.61 0.60 —0.54
System B 0.55 0.49 0.35 0.47 0.51 0.16 —0.06
Average Gain 0.57 0.49 0.48 0.40 0.45 0.38 —0.23

Note: Gain measures the improvement of the efficiency over the random model as a percentage of the improvement offered by
the Best model. The closer the values are to 1 the better the models is. Values larger than 0 indicate that the model
offers an improvement over Random model. For details concerning the Gain metric see Subsection 3.3.

that predict the number of faults (compare with Fig.4)
the density prediction models are still an improvement
over not using any model at all (i.e.,

model).

When it comes to evaluating the stability, the Single-
Density and SelectedDensity models are stable in pro-
viding improvement over the Random model in all three
systems. The AllDensity model works well in System
Al and System A2, but it does not in System B. It is
probably an example of overfitting — the model is very
much based on the unique characteristics of System A,
which are present in two subsequent releases of the same
system A (Al and A2) but are not present in System B.

using Random

As a next step, we calculate the Gain for our mod-
els (see Subsection 3.3 for details concerning the Gain
metric). The results are presented in Table 5. In Table
5 we quantify the gain for each model when applied to
each system as well as provide an average gain for each
model.

The numbers from Table 5 support our findings from
the analysis of the diagrams. From the models predict-
ing the number of faults, SingleNumber dominates over
the other two models. The SelectedDensity model is the
best model from the models that predict fault density.
The SingleNumber model seems to be the best model of
all, since it provides, on average, 57% of the maximum
gain possible. SelectedNumber comes second, providing
on average 49% of the maximum efficiency gain. Once
again the poor performance of the Size model is con-
firmed — in all cases it is actually worse than the Ran-
dom model.

Finally, we check if the differences between our mod-
els and the Random model are statistically significant.
The hypothesis about equality of models was tested us-
ing Wilcoxon test (see Subsection 3.3 for details regard-
ing the test and the interpretation of results). For all
models (SingleNumber, SelectedNumber, AllNumber,
SingleDensity, SelectedDensity, AllDensity, Size model,
Best model) applied to all systems (System Al, Sys-
tem A2, System B) SPSS reported that the hypothesis
about the equality of models can be rejected at 0.000
level, which practically means that the differences are
significant for any conventional significance level. Addi-
tionally, the hypothesis for the Size model was rejected
based on positive ranks, while for all other models it
was rejected based on the negative ranks. It might be
considered an indication, that the Size model is worse
than the Random model (the sum of negative ranks was
greater than the sum of positive ranks — see Subsection
3.3 for details), while all other models are better, which

supports our conclusions from the analysis of Figs. 3~5.

5 Discussion
5.1 Findings

The results obtained in our study are promising. All
our models (AllNumber, SelectedNumber, SingleNum-
ber, AllDensity, SelectedDensity, SingleDensity) repre-
sent a significant improvement compared to the Random
model. It means that, when focusing fault detection ef-
forts on a portion of the code only, more faults would be
detected when using our model compared to analysing
the classes in a random order. The exact value of the
gain depends on the model selected, and the percentage
of code analysed.

By analyzing Table 5 we can see that the best re-
sults are obtained when using the SingleNumber model.
When applied to our three systems on average it pro-
duces 57% of the improvement of the Best model. The
application to System A2 brings 75% of the maximum
possible improvement. Application to System B brings
55% of the maximum possible improvement. The sec-
ond best model, SelectedNumber, in the same situation
brings 55% and 49% of the maximum possible improve-
ment.

It is worth noticing that both our best models work
well when relatively small percentages of code are anal-
ysed (see Fig.4 for SingleNumber and Fig.5 for Selected-
Density). For example, when we analyze about 40%
of the code, then by following our two best models we
should detect about 80% of faults. This is twice as many
as if we were not following any model. A good perfor-
mance when analyzing small percentages of code is prob-
ably of the largest practical value. This is the practical
situation in which prediction models are most useful. If
we decide to inspect 80% of the code even without using
any model we already have a large statistical chance of
finding many faults (80% on average). Therefore, using
models in such a case must lead to a smaller benefit,
basically because there is a much smaller room for im-
provement.

Another interesting finding from Table 5 is that in
case of almost all models their performance is better
when they are applied to System A2 compared to their
performance when they are applied to System B. This
seems to be reasonable, as System A2 is the next re-
lease of System Al on which the models were built. It
might mean that models produced within one product
line have the best potential accuracy. However, this does



Piotr Tomaszewski et al.: Improving Fault Detection in Modified Code 407

not need to be a rule — in our case too we can see that
in some cases our models work better in System B than
in System A2, e.g., SingleDensity. The models that do
exceptionally bad when applied to System B are the
models based on all metrics (AllNumber, and AllDen-
sity). An explanation might be that such models tend
to overfit the dataset they were built on and therefore
lack generality. AllNumber, and AllDensity work rea-
sonably well in the case of System A2 but significantly
worse in System B. This is the most apparent in case of
the AllDensity model, which provides 60% of the max-
imum improvement in System A2 and only 16% in the
case of System B. That would suggest that the models
based on large number of metrics (i.e., AllDensity, All-
Number) be tightly fit to the unique characteristics of
System A, which are present in Systems A1 and A2 but
are not present in System B. Therefore, it seems that
models based on a smaller number of metrics have bet-
ter potential for stability and transferability to systems
other than the system they were built on.

One more general finding from our study is that for
modified code the class size is not a good predictor of
fault density. This can be observed in Table 5, where
the application of the Size model brings bad results in all
our systems. In all cases the Size model is, on average,
even worse than the Random model. Table 5, however,
only presents average values. It might be that the Size
model works well when a small percentage of code is
analyzed and becomes really bad afterwards. Such a
situation would indicate some applicability of the Size
model. However, by analyzing Fig.3 we clearly see that
it is not the case. In neither of our systems the Size
model is significantly better than the Random model
for small percentage of the code (only in System A1l it
is slightly better for the first 30% of the code, but the
improvement is not large).

Our results also support findings of other resear-
chers!'331] that considered relative modification mea-
sures (i.e., the size of modification divided by the size
of a code unit) as the best for predicting fault densi-
ties of modified classes. Our most successful model,
SingleNumber, is based on such a relative modification
measure.

Another general finding is that our dataset supports
the Pareto principle (majority of faults are accumulated
in a minority of code) for modified code. It is, how-
ever, difficult to pin-point which Pareto principle it ex-
actly supports. It seems that System A1l follows the
60/20 rule stating that 60% of the faults can be found
in 20% of the code. System A2 is closer to the clas-
sical 80/20 rule, while System B actually supports the
extreme 80/10 rule.

5.2 Validity

As suggested in [39] we distinguish between four types
of validity: internal, external, construct and conclusion
validity.

The internal validity “concerns the causal effect, if
the measured effect is due to changes caused by the re-
searcher or due to some other unknown cause”[*3]. Since
our study is mostly based on correlations, by definition
we cannot claim the causal relationship between our de-
pendent and independent variables. However, it is also
not our ambition to claim that. There can be (and prob-
ably is) an underlying third factor that demonstrates
itself in both dependent and independent variables and
therefore it is possible to predict one of them using an-
other. Because of that, by finding correlations we are
able to build a useful prediction model.

The external validity concerns the possibility of gen-
eralising the findings. The study was performed on two
systems, which are representative for systems of their
class (i.e., telecommunication systems). The systems
are rather large (up to 600 KLOC). In order to increase
the external validity we have evaluated the models us-
ing the data different from the data used to build the
models. One threat to external validity can be that all
systems used in this study are telecommunication sys-
tems and that they were produced in the same company,
which may make them somewhat similar. In the future
we plan to evaluate our models in other kinds of systems
developed by other companies.

The construct validity “reflects our ability to mea-
sure what we are interested in measuring”[*3/. One thing
that may be worth discussing is the assumption that
an effort connected with the fault detection activities is
proportional to the size of the class. Many other studies
consider the cost of detecting faults in the class to be a
fixed value and therefore evaluate models only by how
well they detect faults. We believe that the size of a
class is a better cost indicator. At first we also consid-
ered the size of a change as a possible effort estimation
metric. It is, however, not enough to analyse only the
modified code, since the modification can violate some
more general class assumption and result in fault in a
part of the class that was not modified. Therefore, we
selected size of the class for estimating analysis effort.

The conclusion wvalidity concerns the correctness of
conclusions we have made. When discussing conclusion
validity we want to assess to what extent our conclusions
are believable. The conclusion validity is mostly inter-
ested in checking if there is a correct relationship (i.e.,
statistically significant) between the variables. There-
fore, where possible, we have presented the statistical
significance of our findings.

6 Conclusions

The goal of this study was to build prediction models
that would increase the efficiency of fault detection in
modified code. We have built a number of models based
on data collected from one release of a large telecommu-
nication system. The objective of the model was to pre-
dict fault density in the classes. The models were eval-
uated using the next release of the system on which the



408

models were built, as well as another large telecommu-
nication system. The evaluation was performed against
three reference models: a model based on random se-
lection of the classes for analysis, the theoretical best
model, and a simple model based on the size of the class.

We have found that our models provide a stable im-
provement compared to both the random-and the size-
based models. Our models are able to provide, on aver-
age, 38% to 57% of the maximal theoretical improve-
ment in fault detection efficiency. The difference in
performance of our models as compared to the random
model was shown to be statistically significant.

As the most promising, we have found a model that
predicts the number of faults based on the number of
new and modified lines of code. The output of this
model is divided by the class size to obtain the fault
density. This model made it possible to achieve 75% of
the maximum possible improvement when applied to the
next release of the system on which it was built. When
applied to a completely different system it achieved 55%
of the maximum improvement. In both cases, these were
the best results obtained for respective systems by any
of our models.

The second most promising model was the one that
predicted the number of faults based on the number of
new and modified lines of code, the number of declar-
ative and the number of executable statements in the
class. This model made it possible to achieve 55% of
the maximum possible improvement when applied to
the next release of the system on which it was built,
and 49% when applied to a different system.

We have also found yet another indication that mod-
els consisting of a small number of metrics are highly
correlated to faults tend to behave better when applied
to a new dataset, as compared to models which use a
large number of metrics. Models that use many metrics
tend to overfit the dataset on which they were built,
which makes them less stable when applied to other
datasets.

In this study we have also managed to find empirical
evidence for a number of popular hypotheses concerning
faults. Our findings support the findings of those re-
searchers that consider the relative size of modification
as the best fault density predictor in modified code. Our
datasets also comply with the Pareto principle. We have
found an evidence of the 60/20 rule (60% of the faults
can be found in 20% of the code), but also the 80/20
and even the 80/10 rule. Another finding concerns the
applicability of the size metric to predict the fault den-
sity. We have shown that for modified classes the class
size is a poor predictor of class fault-density.
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