
Abstract
Efficient performance tuning of parallel programs is

often hard. We present a performance prediction and visu-
alization tool called VPPB. Based on a monitored uni-pro-
cessor execution, VPPB shows the (predicted) behaviour
of a multithreaded program using any number of proces-
sors and the program behaviour is visualized as a graph.

The first version of VPPB was unable to handle I/O
operations. This version has, by an improved tracing tech-
nique, added the possibility to trace activities at the kernel
level as well. Thus, VPPB is now able to trace various I/O
activities, e.g., manipulation of OS internal buffers, physi-
cal disk I/O, socket I/O, and RPC. VPPB allows flexible
performance tuning of parallel programs developed for
shared memory multiprocessors using a standardized envi-
ronment; C/C++ programs that uses the thread package in
Solaris 2.X.

1. Introduction

The thread concept in the Solaris 2.X operating system
[10] makes it possible to write multithreaded C/C++ pro-
grams which can be executed in parallel. Having multiple
threads does, however, not guarantee that a program will
run faster on a shared memory multiprocessor. One major
performance problem is that thread synchronizations may
create serialization bottlenecks. Such bottlenecks are often
hard to detect [6]. Removing serialization bottlenecks is
referred to asperformance tuning. In this context, it is
important with tools that efficiently support the program-
mer in the performance tuning process, e.g., by visualizing
the behaviour of, and thus the bottlenecks in, the parallel
programs [2, 7, 8, 9, 11, 12, 14, 16].

In an earlier paper [2], we presented a performance pre-
diction and visualization tool called VPPB (Visualization
of Parallel ProgramBehaviour). The target programs are
written in C/C++ and run on the Solaris 2.X operating sys-
tem, an environment commonly used in industry as well as
in academia. Based on a monitored uni-processor execu-
tion, the VPPB system shows the (predicted) behaviour of
a multithreaded Solaris program using any number of pro-
cessors.

The first version of VPPB [2] could only monitor activ-
ities that took place in user space, i.e., only user level
threads could be handled. Whenever a user level thread is
blocked on an I/O operation, not only the user level thread
is blocked, but also the corresponding kernel level thread
(a.k.a. Light Weight Process, LWP) is blocked. The Solaris
operating system then tries to dynamically create a new
LWP to continue to execute some other user level thread.
The first version of the tool could not manage several
LWPs simultaneously and thus no blocking I/O.

The main contribution in this paper is an extension that
overcomes the limitations aboveby tracing the kernel level
threads as well. By recording all state transitions in the OS
kernel for the LWPs, it is now possible to have several
LWPs running at the same time. The tool can now handle
various I/O activities, including physical disk I/O, socket
communication, and RPC calls.

Validation has been done using ten benchmarks from
the SPLASH-2 suite [15] and a skeleton of an I/O inten-
sive commercial telecommunication application [6]. The
simulated performance predictions were compared to real
executions on a multiprocessor with eight processors. The
maximum error of the predictions for those application are
less than 10% for all applications and less than 4% for
more than half of the applications.

The paper is structured in the following way. Section 2
gives a short overview of VPPB. In Section 3 the tracing
part is described along with a discussion of how we sort
and manage the collected data. The simulation part is
described in Section 4. The validation part is found in Sec-
tion 5 and the related work is found in Section 6. The
paper concludes in Section 7.

2. Overview of VPPB

The VPPB consists of three major parts, theRecorder,
the Simulator, and theVisualizer. The workflow when
using the VPPB system is shown in Figure 1. The devel-
oper writes the multithreaded program (a) in Figure 1.

When starting the monitored execution (b) on a uni-
processor, theRecorderis automatically placedbetween
the program and the standard thread library. Every time
the program uses the routines in the thread library, the call

Visualization and Performance Prediction of Multithreaded
Solaris Programs by Tracing Kernel Threads

Magnus Broberg, Lars Lundberg, and Håkan Grahn
Department of Software Engineering and Computer Science

University of Karlskrona/Ronneby
Soft Center, S-372 25 Ronneby, Sweden

{Magnus.Broberg, Lars.Lundberg, Hakan.Grahn}@ipd.hk-r.se

passes through theRecorder(c) which records information
about the call. TheRecorderthen calls the original routine
in the thread library. Whenever an LWP does a state
change the operating system informs a program called
prex . Prex is a standard program on the Solaris plat-
form used to create logfiles about LWP state changes.
When the execution of the program finishes the two data
files (from Recorderas well asprex) are sorted in time
order and transformed into the file format (d) used in the
first version of this tool. The recording is done without
recompilation or relinking of the application.

The Simulator simulates a multiprocessor execution.
The main input for the simulator is therecorded informa-
tion (d) in Figure 1. The simulator also takes the hardware
configuration (e) and scheduling policies (f) as input. The
output from the simulator is information describing the
predicted execution (g).

Using theVisualizerthe predicted parallel execution of
the program can be inspected (h). The Visualizer uses the
simulated execution (g) as input. The simulated execution
is shown as two graphs; one parallelism graph and one
execution flow graph, as shown in Figure 2. It is possible
for the developer to click on an event, get the source code
displayed, and the line making the call that generated the
event highlighted. With these facilities the developer may
detect problems in the program and can modify the source
code (a). Then the developer can re-run the execution to
inspect the performance change.

No of Processors
Communication delays

No of LWPs
Thread priorities
Binding of threads

C/C++
Compiler

Binary file

Execution

User level
Thread Library

Calls

Calls Returns

Returns
Recorder

(Instrumented

Thread Library)
 Encapsulating

Recorded
information

Simulator

Information describing

Visualizer

b

g

h

d

e

a

c

Start

Figure 1: A schematic flowchart of the VPPB system.

f
Scheduling policies

Hardware configuration
simulated execution

VPPB

Kernel level
LWP Scheduler

Changes in
LWP states

c

Prex

Solaris 2.X

source code

Figure 2: The execution flow and parallelism graphs.

3. Monitoring the Program Behaviour

The main contribution in this second version of VPPB
is the ability to trace kernel threads in addition to user
level threads. User level threads are non-preemtive and are
executed on kernel threads. The kernel threads are preem-
tive and scheduled in a time-slice manner. This gave some
implications in the first version of VPPB since only user
level threads were traced and thus only one kernel thread
was allowed. One example is the concept of spinning
locks. Whenever a user level thread enters a spinning lock,
the other threads can not pre-empt the thread. This makes
the program to hang on the spinning lock. Another exam-
ple is I/O. Whenever a user level thread blocks, the corre-
sponding kernel thread is also blocked. The Solaris
operating system will then, in order to continue execution
of the multithreaded program, create new kernel threads
for the other user level threads to execute on.

In Solaris, threads are used at two levels (see Figure 3)
[13]. The application programmers use user-level threads
for expressing parallel execution within a process. Kernel
threads (a.k.a. LWPs) are used within the operating system
kernel. The kernel knows nothing about user-level threads.

The LWPs are scheduled by the kernel in a preemtive
round-robin fashion with timeslices from 20 milliseconds
up to more than 200 milliseconds depending on the age of
the LWP etc. A user level thread can be bound to a specific
LWP or be floating around on the LWPs that are free.

3.1. Tracing user level threads
In order to trace the behaviour of the program when

executed on a uni-processor, the Recorder dynamically
inserts probes when the program starts. The probes are
inserted at specific events, i.e., before and after calls to the
thread library, and they do not affect the behaviour or
function of the program. For each event, the probes record
the following information: when an event has occurred;
the type of event, e.g., locking of a mutex; which object
the event concerns, e.g., the identity of the mutex being
used; the identity of the thread generating the event; and
the location of the event in the source code.

The user level tracing has been extended to capture
some primitives in thelibc library. In particular the
open , close , read , write , andfsync primitives. To
allow RPC calls [1] generated by, e.g.,rpcgen [1], we
also capture the primitivesputmsg , getmsg , andpipe .
One I/O operation will produce two different events in the
log file; one event corresponding the CPU time needed to

Figure 3: The Solaris thread structure.

User level
no-preemtion

Kernel level
time slicing

Recorder version 1

Recorder version 2
Floating threads Bound

Thread

LWPLWPLWP

Thread ThreadThread

Process

execute the operation, and another event, called IO_wait,
that corresponds to the time the thread was blocked.

One single I/O operation may consist of using the CPU
several times with waiting times between. In order to keep
the log file as small as possible all CPU time for one single
I/O operation are concatenated into one. This concatena-
tion is also done with the waiting time as well.

Our current implementation of the Recorder is based on
TNF-probes [5]. The basic idea is to insert a new library
between the program and the dynamically linked thread
library. This is achieved by using the built-in facilities of
Solaris with run-time linking and shared objects. The
insertion is handled at program start-up by the run-time
linker via the programprex . We also trace the source
code location of the call to a probe.

3.2. Tracing kernel level threads
The first version of VPPB were restricted to have only

one single LWP running at any time during the execution
of the multithreaded program. The reason for this is that
we could not trace the context switches of the LWPs in the
kernel. This tracing can be done without any changes since
Solaris 2.5 already have probes inside the kernel that trace
this. The probes are implemented by using TNF-probes
[5]. The super-user can extract the information by the
prex command which gives as output a binary file which
has to be merged with the ordinary user level trace from
the Recorder. The approach that allows several LWPs to
execute also makes it possible to trace programs with spin-
ning locks. However, there is still a problem with poor per-
formance prediction for programs with spinning locks as
we will show in Section 5.1.

3.3. Basic merging and sorting of the two TNF-files
An example is used to illustrate the basic principles of

how the sorting is done. The code is found in Figure 4. The
main thread creates threadtid bound to an LWP. Then
the main thread does some CPU bound work and then
waits for threadtid and exits. The threadtid does some
CPU bound work and exits.

The optimal execution on two processors can be found
in Figure 5(a). Note that we have made some considerable
simplifications in this example discussed at the end of this
section, e.g., all thread primitives take no time to perform.
The main thread starts at time 0 and creates threadtid at
time 10. From time 10 to 25 the threads execute in parallel,
then the main thread wants to join with threadtid .
Threadtid will continue executing until time 30 and then
void *thr(void *in) {

work(20); /* CPU bound work for 20 time units */
}
void main() {

thread_t tid;
thr_create(0, 0, thr, 0, THR_BOUND, &tid);
work(15); /* CPU bound work for 15 time units */
thr_join(tid, 0, 0); }

Figure 4: The source code of the example.

exits. By this time the main thread can resume execution
for the last 10 time units. Since the Recorder works on a
uni-processor, the two threads can not execute in parallel,
thus the execution may look like in Figure 5(b). At time 10
the main thread creates the threadtid , which waits for
the CPU. At time 20 the time slot expires and the main
thread leaves the CPU and the threadtid starts executing.
When the threadtid has finished its execution, the main
thread has 5 time units left until it reaches the join with
threadtid . At time 45 the two threads has joined and the
main thread executes until the end at time 55.

The two log files generated during the execution are
found in Figure 5(c). The user level log file consists of a
start event at time 0 and at the same time in the kernel level
log file the corresponding LWP starts running. The next
event that occurs is the thread create event at time 10.
However, the newly created threadtid does not start to
execute until time 20, as seen in the kernel log file, when
the corresponding LWP starts running. At time 40 the
threadtid has finished, as indicated in the user level log
file as well as in the kernel level log file, since the main
thread continues to execute. At time 45, the threads joins
as indicated in the user level log file, and finally, the main
thread stops executing at time 55.

Now, we take a close look at the merging of the two log
files into one single log file. During the merging we want
to eliminate the concept of LWPs, thus only representing
the behaviour of the user level threads. The resulting log
file is shown in Figure 5(d). At time 0 we have the start
event for the main thread and we see that its LWP is exe-
cuting in the kernel log file in Figure 5(c). The LWP is
running until time 20, i.e, the main thread is running 10
time units until it creates threadtid at time 10. At time
40 the threadtid has finished its execution, and we have
to calculate how many time units it has executed as well as

Figure 5: Merging the user and kernel level log files.

(a)

(b)

Time LWP Thread Event
0 0 0 Start collect
10 0 0 Thread create 1
40 1 1 Thread exit
45 0 0 Thread join 1
55 0 0 Thread exit

Time LWP Thread Event
0 0 0 LWP starts running
20 1 1 LWP starts running
40 0 0 LWP starts running

User level log file:

Kernel level log file:

(c)

Length Thread Event
0 0 Start collect
10 0 Running
0 0 Thread create 1
15 0 Running
20 1 Running
0 1 Thread exit
0 0 Thread join 1
10 0 Running
0 0 Thread exit

Merged log file:

Thread tid (1)
Main thread (0)

0

0

50

50 Time

Time

(d)

Time slot expires

Thread tid (1)
Main thread (0)

Thread executes

Thread executes work(15)

Thread executes work(20)

the time the main thread executed. The LWP switch
occurred at time 20, thus the main thread must have been
running for 10 time units (from time 10 to 20) and the
threadtid has been running for 20 time units (from time
20 to 40). The next event is at time 45. Since the main
thread’s LWP started executing at time 40, the main thread
must been running for five time units before the join, and
in order to make the merged log file compact, we add the
previous running time for the main thread with this one.
The resulting merged log file is found in Figure 5(d).

Other issues, must be considered, e.g., the kernel log
file does not indicate which thread it is executing, the map-
ping must be done via the LWP identity. Also, the kernel
threads are started before the corresponding user level
thread starts and representing that time in the user level
thread must be done in reverse order. The threads may
float around on several LWPs, other processes may inter-
act and put LWPs in both running and runnable states.
Each user level event must have a start and stop time in
order to measure how long the primitive took to execute.
This made the user level log file to include nine lines in
reality and the kernel level log file have 57 lines. Finally,
things do not occur at the exactly same time in the kernel
level log file as in the user level log file, and vice versa.

3.4. Merging and sorting the TNF-files with I/O events
We keep the example in Figure 4, but the main thread

does not callwork(15) , instead it writes to a file using
the C standard primitivewrite . We have intentionally
omitted the necessaryopen and close primitives in
order to simplify the example. The optimal execution on
two processors will look as in Figure 6(a). The main
thread starts at time 0 and creates the threadtid at time
10. Immediately after, the main thread initiates a write to
the disk. The writing of the file is finished at time 25 and
the join with threadtid is reached at time 30. The main
thread is finished at time 40. The threadtid is running
between time 10 and 30, i.e., 20 time units.

The execution on a uni-processor system looks like in
Figure 6(b), where we take a closer look at the write oper-
ation, time 10 to 45. The write operations include two
important issues. The first issue is the time required by the
processor to perform the write operation. The second is the
time required by the disk to perform the write, meanwhile
the processor may execute the other LWP and its thread.
This is indicated in Figure 6(b) at time 15 since the thread
tid starts executing when the main thread is waiting for
the disk. Threadtid leaves the processor at time 35, and
the write can be completed at time 40, the execution of the
main thread continues and join with the threadtid , and
finally ends at time 50.

The user level log file and the kernel level log file are
found in Figure 6(c). In the kernel level log file at time 15
the main thread leaves the processor and the threadtid

starts executing. At time 20, the waiting for the disk is
over and the main thread’s LWP can be put in the runnable
state. At time 35 in the kernel level log file, the main
thread’s LWP starts executing to completion.

Whenever an I/O operation is performed, we collect
two kinds of time information: The time that the I/O
required the processor; and the time the I/O was waiting
for the disk. These two times are represented as two events
in the log file. The first event is the processor bound part of
the I/O operation (write I/O) and the second event is the
time the I/O operation was blocked (wait I/O) as shown in
Figure 6(d). The I/O is the time from 10 to 40 in the user
level log file. At time 15 in the kernel level log file the
main thread becomes blocked. Thus, five time units execu-
tion on the CPU was needed before the actual writing to
the (physical) disk. In the kernel level log file the main
thread becomes runnable at time 20, i.e., the (physical)
disk is ready and the wait for (physical) I/O is over. At
time 35 the main thread start execute again as seen in the
kernel log file. The write operation ends at time 40, i.e.,
the main thread needed yet five time units execution on the
CPU in order to end the I/O operation. The two CPU
bound parts of the I/O operation is added together. Other-
wise the merging is performed as described in Section 3.3.

Note once again that the example is simplified, e.g.,
during one I/O operation the processor might have to wait
several times for the (physical) disk and have to execute in
between the waitings. Also, all state transitions between
user space and kernel space are traced since each funda-
mental I/O operation is a system call. This make, together
with the issues stressed earlier, that the user level log file
consists of 15 lines in reality and the kernel level log file
consists of 1340 lines in the case of writing a 10 million
bytes large file. The merged log file consists of 15 lines.

Figure 6: Merging the user and kernel level log files.

(a)

(b)

Time LWP Thread Event
0 0 0 Start collect
10 0 0 Thread create 1
10 0 0 Write starts
35 1 1 Thread exit
40 0 0 Write ends
40 0 0 Thread join 1
50 0 0 Thread exit

Time LWP Thread Event
0 0 0 Starts running
15 0 0 Becomes blocked
15 1 1 Starts running
20 0 0 Becomes runnable
35 0 0 Starts running

User level log file:

Kernel level log file:

(c)

Length Thread Event
0 0 Start collect
10 0 Running
0 0 Thread create 1
0 0 Running
10 0 Write I/O
5 0 Wait I/O
20 1 Running
0 1 Thread exit
0 0 Thread join 1
10 0 Running
0 0 Thread exit

Merged log file:

Thread tid (1)

Main thread (0)

0

0

50

50 Time

Time

(d)

Thread tid (1)

Main thread (0)

Thread executes

Thread performs I/O

Thread waits for I/O

4. Predicting the Program Execution

The Simulator mimics the scheduling in Solaris 2.5
[10]. The modeling of I/O follows the discussion in Sec-
tion 3.1 with one part of the I/O to be considered as CPU
bound and one part as waiting time. The Simulator first
simulates the CPU bound time in a chunk just as any other
event that only takes time. Then, the Simulator simulates
the waiting for I/O to be completed, which is similar to a
sleep primitive. However we simulate that only one thread
can perform an I/O operation at the same time and only
one I/O request, i.e.,IO_wait , may be issued at the same
time. This seems to mimic the OS quite accurate.

There are advantages and disadvantages of merging the
parts of an I/O operation into one CPU bound part and one
part that is representing the waiting time. The obvious
advantage is that the log file will be shorter than if all the
individual parts in were stored in the file. The obvious dis-
advantage is that we loose some information. However,
this loss of information could actually be regenerated, to
some extent, in the simulator by assuming that the internal
I/O buffer within the kernel is of a particular size. Thus it
is simple to calculate how many times the write operation
must enforce a physical write, and thus a wait period, on
the disk. This facility is not implemented and left to future
development of the tool.

Much of the Simulator is kept from the first version of
the tool [2], e.g., threads may be bound or unbound as well
as the number of processor simulated is adjustable. Creat-
ing a bound thread is simulated to take 6.7 times longer
than an unbound thread [13]. A synchronization on a
semaphore takes 5.9 times longer with bound threads than
unbound. The value is found in [13] and is incorporated in
the simulator for semaphores as well as for mutexes, con-
dition variables, and read/write locks.

5. Validation of the Predictions

The validation of the predictions was made using a sub-
set of the SPLASH-2 benchmark suite [15] and a skeleton
of a telecommunication application that uses a lot of I/O in
different manners. All executions were made on a Sun
Ultra Enterprise 4000 with eight processors and 512
MByte memory. Our measurements showed that the exe-
cution time overhead for doing the recordings was very
small. The maximum overhead, was obtained for Raytrace
in the SPLASH-2 benchmark suite, was 31% of the total
execution time. More than half of the log files caused less
than 2% overhead. More than 75% of the log files were
less than 1.5 Mbyte in size. The largest log file, which was
obtained for Radiosity, was 19 MByte. This file could be
handled without any problems. Consequently, neither the
execution time overhead, nor the size of the log files
caused any problems for these programs.

5.1. The SPLASH-2 benchmark suite
The programs that we use from the SPLASH-2 suite

are: Ocean (with data set 514-by-514 grid), Water-Spatial
(512 molecules, 30 time step), FFT (4M points), Radix
(16M keys, radix 1024), LU (contiguous, 768x768 matrix,
16x16 blocks), Raytrace (teapot), Barnes (2048 bodies),
Cholesky (tk29.O), FMM (2048 bodies), and Radiosity
(Default, batch mode, en 0.1). Since the SPLASH-2 pro-
grams are designed to create one thread per physical pro-
cessor, one log file was generated for each processor setup.

The first version of VPPB could only use five of the
benchmarks [2]. This was because of spinning locks, as
described in Section 3. Another issue is task stealing, i.e.,
a thread steals a waiting job from another whenever the
stealing thread is idle. In the first version of the tool we
could not handle several LWPs. This led to the result that
the first thread that begun execute would steal all jobs
from the other threads (which never got a chance to exe-
cute on the CPU). Thus, the recording showed that all
work were done by one single thread and the others did
nothing. When simulating this on a multiprocessor the
load imbalance would be at its maximum. In this second
version of VPPB we can handle several LWPs and thus the
jobs may distribute better.

The 5 benchmarks we could use in the first version of
the tool are discussed first. Then, we will look at the other
benchmarks as well. Table 1 shows the measured and pre-
dicted speed-up for 5 programs from the SPLASH-2
benchmark suite we could use in the first version of VPPB.
The real speed-up is the middle value of 5 executions of
the program. The error is defined as |((Real speed-up) -
(Predicted speed-up))/(Real speed-up)|, where |-x| = |x| = x,
for all x > 0. As we can see in Table 1 the maximum error
is 5.2%, which we consider to be a very low error. It is also
an improvement with more than 16% as compared to the
first version of the tool [2].

The benchmarks Barnes, Cholesky, FMM, and Radios-
ity could not be used in the first version of the tool since
they use spinning locks. When a thread runs into a spin-
ning lock, it will stay there for (in average) half a time slot
until another thread can execute and possibly change the
value of the lock. Raytrace uses a task stealing scheme,
that might cause load imbalance if the tasks were executed

Table 1: Speed-ups for the first 5 benchmarks.

Application
2 processors 4 processors 8 processors

Pred Real Error Pred Real Error Pred Real Error

Ocean 1.95 1.97 1.0% 3.75 3.87 3.1% 6.47 6.65 2.7%

Water-spatial 1.97 1.99 1.0% 3.86 3.95 2.3% 7.27 7.67 5.2%

FFT 1.52 1.55 1.9% 2.06 2.14 3.7% 2.57 2.62 1.9%

Radix 1.99 2.00 0.5% 3.98 3.99 0.3% 7.91 7.79 1.5%

LU 1.82 1.79 1.7% 3.08 3.15 2.2% 4.72 4.82 2.1%

in the same order on a multiprocessor as on a uni-proces-
sor. These problems are clearly shown in Table 2 since the
error may be as high as 62% (FMM).

The error was caused by the time a thread was bound to
stay spinning on a lock until the time slice was over. By
increasing the number of threads executing on a uni-pro-
cessor, and thus causing more threads spin on the spinning
locks, we exaggerated that behaviour. Another way of test-
ing this is to, for each iteration in the spinning loop, volun-
tarily give up the processor and thus decrease the overhead
with spinning locks. Tests conducted on Cholesky and
FMM confirmed our thoughts.

The spinning locks in Radiosity, Barnes, and Cholesky
could easily be replaced by semaphores and mutexes. The
spinning locks in FMM could not be replaced easily and
we did not change that program, since we do not want to
perform too large changes to the programs. The results
after replacing the spinning locks with blocking locks are
found asitalic rows in Table 2. Further, Raytrace has been
slightly modified to avoid task stealing. As can be seen,
the error drop dramatically, in most cases with at least
83%. The maximum error is now 9.6%.

5.2. The Billing Gateway
None of the SPLASH-2 programs contained any (sig-

nificant) I/O, and in order to validate the I/O we used a
telecommunication application developed by Ericsson
Software Technology called Billing Gateway (BGw) [6].
We used a skeleton version of the BGw for our validation
because the real BGw has an advanced graphical user
interface, and that the application uses customer adjusted
data input formats which made it hard for us to find proper
loads. The skeleton was created together with Ericsson to
mimic the characteristics of the original BGw and ended
up consisting of around 1000 lines of C++ code. The orig-
inal BGw consists of about 100,000 lines of code.

A principal sketch over the BGw (skeleton) is found in
Figure 7. The BGw (skeleton) works as a kind of filter.

Table 2: Speed-ups for the 5 benchmarks with
(without in italic) spinning locks / load imbalance.

Appli-
cation

2 processors 4 processors 8 processors

Pred Real Error Pred Real Error Pred Real Error

Raytrace 1.67 1.73 3.5% 2.19 2.69 18.6% 3.38 3.73 9.4%

Raytrace 1.71 1.72 0.6% 2.42 2.50 3.2% 3.24 3.28 1.2%

Radiosity 1.74 1.91 8.9% 3.09 3.72 16.9% 5.25 6.20 15.3%

Radiosity 1.91 1.86 2.7% 3.63 3.75 3.2% 5.97 6.31 5.4%

Barnes 1.72 1.95 11.8% 2.85 3.34 14.7% 4.28 5.77 25.8%

Barnes 1.97 1.97 0.0% 3.57 3.38 5.6% 5.84 5.33 9.6%

Cholesky 1.37 1.62 15.4% 1.98 2.31 14.3% 2.42 2.89 16.3%

Cholesky 1.59 1.62 1.9% 2.21 2.31 4.3% 2.80 2.85 1.8%

FMM 1.58 1.90 16.8% 1.99 3.50 43.1% 1.98 5.19 61.8%

The Socket receivers get the information to be filtered
through a socket. The information chunk is 1 Mbyte large
and consists of integers. As soon as all data are received
the information is stored on disk, the disk is synchronized,
i.e., all data is physically written to disk, and the receiver
is ready for the next chunk of data. The Sorter reads the
file created by the Socket receiver and puts all the integers
in a binary tree. As workload all integers are converted to
floating points and back to integers again during a traver-
sion of the tree, this is repeated 1024 times. Finally, the
Sorter stores the odd integers into one file and the even
integers into another file. As previously the information on
the disk are synchronized. The Consumers then read the
data and discards it. The skeleton we use has eight Socket
receivers, eight Sorters, and 16 Consumers as shown in
Figure 7. Each Socket receiver were fed with two 1Mbytes
chunks.

The skeleton is also able to consider hot billing which,
as in the original BGw, is managed by RPC. Once an RPC
call is made to the BGw, a new thread is created to process
the data. The processing of the hot billing data is the same
as described above. However no data are stored on disk.
The skeleton received 5 RPC calls of 5 kbytes each of hot
billing data. The skeleton performs, on average, approxi-
mately 800 Kbytes per second of I/O traffic on a Sun
Enterprise 4000 with eight processors.

The result of the BGw skeleton can be found in Table 3.
As can be seen, the predictions for this I/O application is
very accurate, at most with 6.1% error.

6. Related Work

Some performance visualization tools show the
behaviour of one particular monitored multiprocessor exe-
cution of the parallel program [3, 7, 16]. The problem with
this approach is that there is no support for detecting bot-
tlenecks which appear on another number of processors.
TNF probes are used for a similar purpose in [3]. Another

Table 3: Speed-ups for the BGw skeleton.

2 processors 4 processors 8 processors

Pred. Real Error Pred. Real Error Pred. Real Error

1.99 1.98 0.5% 3.98 3.75 6.1% 6.44 6.17 4.4%

Socket receiver Sorter
Consumer

Consumer

Main ThreadHotbilling
Hotbilling
Hotbilling
HotbillingHot billing

RPC

Thread created by
Data flow

Dynamically created thread

Statically created thread

Figure 7: The organization of the BGw skeleton.

Eight “pipelines”

file file file

tool [4] focus on the contention in multithreaded pro-
grams.

There are a number of tools, [8, 9, 14, 12, 11], which
make it possible to visualize the (predicted) behaviour of a
parallel program using any number of processors. How-
ever, these tools are either developed for message passing
systems or for non-standard programming environments.

7. Conclusion

In this paper we have presented an improved version of
the VPPB tool. This tool makes it possible to predict the
speed-up and visualize the behaviour of a multithreaded C/
C++ application using the Solaris 2.X thread package. It is
a common environment in both industry and academia.

Our approach is based on a monitored uni-processor
execution of the multithreaded program. Based on record-
ings from this execution and some parameters describing
the target multiprocessor, the behaviour and execution
time of the multithreaded program is predicted. The first
version of the tool was not able to handle I/O. The main
improvement in this version is that I/O can be handled
because we monitor kernel threads as well. The monitor-
ing is performed using the TNF probes in Solaris.

We have validated the predicted speed-up using the
SPLASH-2 suite [15], an I/O intensive skeleton of a tele-
communication application, and a multiprocessor with
eight processors.

The first version of the tool could only handle five of
the applications in the SPLASH-2 suite. The current ver-
sion of the tool can handle all applications in the test suite.
The maximum error in the speed-up predictions for the
first five applications is 5%; in most cases the error is
much smaller. The other applications in SPLASH-2 could
not be handled by the first version of the tool because they
contain spinning locks. These applications can now be
handled. The maximum speed-up prediction error for
these applications is relatively large, up to 62%. However,
if we replace spinning locks with semaphores and mutexes
the predictions become better. The maximum error was
less than 10%, and more than half of the predictions had
an error of less than 4%.

To validate the speed-up predictions for applications
heavily depending on I/O we used a skeleton version of a
large commercial telecommunication application. This
validation shows that the simulation of I/O is very accu-
rate; the maximum error is only 6%.

In the current version of the tool, we can handle any
multithreaded Solaris program. Our technique requires no
modification of the source code of the multithreaded pro-
gram. The recording overhead is small for most applica-
tions, e.g., less than 2% of the total execution time for
more than half of the SPLASH-2 applications.

References
[1] J. Bloomer, “Power Programming with RPC,” O’Reilly &

Associates, Inc., ISBN 0-937175-77-3, 1992.
[2] M. Broberg, L. Lundberg, and H. Grahn, “VPPB - A Visual-

ization and Performance Prediction Tool for Multithreaded
Solaris Programs”,Proc. 12th Int’l Parallel Processing
Symp., pp. 770-776, 1998.

[3] B. Cantrill and T. Doeppner, “ThreadMon: A Tool for Mon-
itoring Multithreaded Program Performance,”Proc. 30th
Hawaii Int’l Conf. on System Science, pp. 253-265 Vol. 1,
1997.

[4] M. Ji, E. Felten, and K. Li, “Performance Measurements for
Multithreaded Programs,”Performance Evaluation Review,
vol. 26, no. 1, pp. 161-170, Jun. 1998.

[5] S. Kleiman, D. Shah, and B. Smaalders, “Programming
with threads,” Prentice Hall, 1996, ISBN 0-13-172389-8.

[6] L. Lundberg and D. Häggander, “Optimizing Dynamic
Memory Management in a Multithreaded Application Exe-
cuting on a Multiprocessor,”1998 Int’l Conf. on Parallel
Processing, pp. 262-269, 1998.

[7] G. J. Nutt, A. J. Griff, J. E. Mankovich, and J. D.
McWhirter, “Extensible Parallel Program Performance
Visualization,”Proc. Mascots ‘95, pp. 205-211, 1995.

[8] E. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, and T. J.
Atherton, “An Overview of the CHIP3S Performance Pre-
diction Toolset for Parallel Systems,”Proc. 8th ISCA Inte’l
Conf. on Parallel and Distributed Computing Systems, pp.
527-533, 1995.

[9] V. Pillet, J. Laboarta, T. Cortes, and S. Girona, “PARAVER:
A Tool to visualize and Analyse Parallel Code,” University
of Politencia, Catalonia, CEPBA/UPC Report No. RR-95/
03, Feb. 1995.

[10] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D. Stein,
and M. Weeks, “SunOS 5.0 Multithreaded Architecture,”
Sun Soft, Sun Microsystems Inc., Sep. 1991.

[11] S. R. Sarukkai and D. Gannon, “SIEVE: A Performance
Debugging Environment for Parallel Programs,”J. of Paral-
lel and Distributed Computing, Vol. 18, pp. 147-168, 1993

[12] Z. Segall and L. Rudolph, “PIE: A Programming and Instru-
mentation Environment for Parallel Processing,”IEEE Soft-
ware, 2(6):22-37, Nov. 1985.

[13] SunSoft, “Solaris Multithreaded Programming Guide,”
Prentice Hall, 1995.

[14] S. Toledo, “PERFSIM: A Tool for Automatic Performance
Analysis of Data-Parallel Fortran Programs,”Proc. 5th
Symp. on the Frontiers of Massively Parallel Computation,
IEEE Computer Society Press, pp. 396-405, Feb. 1995.

[15] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological
Considerations,”Proc. 22nd Annual Int’l Symp. on Com-
puter Architecture, pp. 24-36, Jun. 22-24, 1995.

[16] J. Yan, S. Surukkai, and P. Mehra, “Performance measure-
ments, Visualization and Modelling of Parallel and Distrib-
uted Programs using the AIMS Toolkit,”Software-Practice
and Experience, 25(4):429-461, Apr. 1995.

