
Optimizations in the Cibyl binary translator for J2ME devices

Simon Kågström, Håkan Grahn, and Lars Lundberg
Department of Systems and Software Engineering, School of Engineering,

Blekinge Institute of Technology
Ronneby, Sweden

{ska, hgr, llu}@bth.se

Abstract
The Java J2ME platform is one of the largest software plat-
forms available, and often the only available development
platform for mobile phones, which is a problem when port-
ing C or C++ applications. The Cibyl binary translator
targets this problem, translating MIPS binaries into Java
bytecode to run on J2ME devices. This paper presents
the optimization framework used by Cibyl to provide com-
pact and well-performing translated code. Cibyl optimizes
expensive multiplications/divisions, floating point support,
function co-location to Java methods and provides a peep-
hole optimizer. The paper also evaluates Cibyl perfor-
mance both in a real-world GPS navigation application
where the optimizations increase display update frequency
with around 15% and a comparison against native Java
and the NestedVM binary translator where we show that
Cibyl can provide significant advantages for common code
patterns.

1. Introduction

A large majority of the mobile phones sold today
come with support for the Java 2 Platform, Micro Edition
(J2ME) [17], and the installation base can be measured in
billions of units [14]. Mobile phones are also quickly be-
coming more and more powerful, having processing speed
and memory comparable to desktop computers of a few
years ago. J2ME is a royalty-free Java development envi-
ronment for mobile phones, and is often the only available
method of extending the software installed on the phone.
This poses a severe problem when porting C or C++ appli-
cations to J2ME devices, which can often require a com-
plete rewrite in Java of the software, possibly assisted by
automated tools [3, 6, 10, 11].

Cibyl is a binary translator which targets this problem.
Cibyl translates MIPS binaries compiled with GCC into
Java bytecode, and provides means to integrate with na-
tive J2ME classes. Cibyl therefore allows C and C++ pro-
grams to be ported to run on J2ME phones. When design-

ing Cibyl, our goals have been to produce compact trans-
lated code with performance close to native Java code for
common cases. Compared to implementing a Java byte-
code backend for a C/C++ compiler, the binary translation
approach can require less engineering, since Java bytecode
(which is type-safe and modeled for the characteristics of
high-level Java code) might not be a good match for the
compiler structure. The general design of Cibyl has been
described in an earlier paper [8], and this paper focuses on
optimizations made to reduce the size and improve the per-
formance of the translated binaries.

The optimizations we employ for Cibyl share some sim-
ilarities with regular compiler optimizations, e.g., use of
function inlining and constant propagation, but is also sig-
nificantly different. Since the GCC compiler has already
optimized the high-level C code, the goal of the Cibyl bi-
nary translator is to make the translation into Java bytecode
as efficient as possible. Because of this, the binary transla-
tion optimizations we apply are mostly local in scope, act-
ing on a small set of adjacent instructions or the opposite
act on large entities such as entire functions.

The main contributions of this paper are the following.
We first describe the set of optimizations we make and how
these improve size and performance. We then perform a
benchmark on an application ported with Cibyl to illustrate
the optimizations in a real-world setting. Finally, we com-
pare Cibyl against native Java and another binary translator,
NestedVM [1] in a micro benchmark (an implementation
of the A* algorithm) to study performance characteristics
in detail. The performance results show that Cibyl is sig-
nificantly faster than NestedVM and close to native Java
performance on the cases we target.

The rest of the paper is structured as follows. In Sec-
tion 2 we introduce the Cibyl binary translator. The main
part of the paper then follows in Section 3 where we de-
scribe the optimizations performed by Cibyl and Section 4
where we evaluate our optimizations. Section 5 describes
related work and finally we conclude and present future di-
rections in Section 6.

Java/J2ME

API

C compiler /
linker

C source

code

Compiled

program

MIPS to java
binary translator

Syscalls.java

Java Compiler

Midlet.jar

Generate syscall
wrappers

CRunTime.java

etc

Jasmin
assembler

Java preverifier,
archiver

Figure 1. Translation process in Cibyl. Gray boxes show unmodified third-party tools.

2. Cibyl

Cibyl uses the GCC [16] compiler to produce a
MIPS I [7] binary, which is thereafter translated into Java
bytecode by the Cibyl tools. Figure 1 shows the translation
process with Cibyl, where we use a set of tools to translate
the MIPS binary. Apart from the binary translator, which
outputs Java bytecode assembly to Jasmin [12], we also
have a stub code generator to produce stubs for calls into
native Java code. When translating, Cibyl uses Java local
variables to represent MIPS registers, which contributes to
producing efficient and compact code compared to using
class member variables or static class variables. The MIPS
instruction set is well suited for binary translation, and most
arithmetic instructions can be directly translated to a se-
quence of loading source registers (local variables) on the
Java operand stack, performing the operation and storing
into the destination register.

We use a Java integer array to represent memory as seen
by the MIPS binary. This means that 32-bit memory ac-
cesses are performed efficiently by simply indexing the
memory array with the address divided by four, but also
that 8- and 16-bit accesses need an extra step of masking
and shifting the value in memory to get the correct result.
Since a common pattern is to use the same base register
repeatedly with different offsets, we pre-calculate the ar-
ray index and use special memory access registers for these
cases. To reduce space, we also perform the more expen-
sive 8- and 16-bit accesses through functions in the runtime
support instead of generating bytecode directly. Similarly,
expensive arithmetic operations such as unsigned multipli-
cations are also implemented in the runtime layer. Since
32-bit access is easiest to support efficiently, Cibyl focuses
on performance for this case.

Cibyl uses a 1-1 mapping between C functions and
generated Java methods, which brings a number of ben-
efits. First, this mapping enables the J2ME profiler to
produce meaningful output for Cibyl programs. Second,

if the program causes an exception, the call chain emit-
ted by the JVM will be human readable. The 1-1 map-
ping also enables some optimizations, which will be dis-
cussed later. We handle register-indirect function calls spe-
cially since Java bytecode does not support function point-
ers. To support function pointers, we generate a special
“call table” method that switches on the function address
and calls the corresponding method indirectly. Indirect
jumps, generated by GCC for example in some switch
statements, are handled similarly through a “jump table”
in the method which switches on possible jump destina-
tions in the method (which can be found through the ELF
relocation information).

Compared to the integer instruction set, the MIPS float-
ing point instruction set is more difficult to translate [8].
Floating point is therefore supported by a hybrid approach
where we use the GCC soft-float support, but implement
the runtime support functions using native Java floats. GCC
generates calls to functions such as addsf3 for a float-
ing point add, passing an integer representation of the
source registers, and our hybrid approach implements this
through a Java method that converts the integer representa-
tion to real floats, performs the add and returns the integer-
representation of the result. This solution provides a trade-
off between implementation complexity and performance,
with a very simple implementation but less performance
than an implementation of the MIPS FPU instruction set.

3. Optimizations

We perform a number of optimizations in Cibyl apart
from the general code generation optimizations described
above to improve performance and reduce the size of the
generated Java class files.

3.1. 32-bit multiplications/divisions

The MIPS instruction for multiplication always produce
a 64-bit result, split in the hi/lo register pair. We trans-
late this to Java bytecode by casting the source registers to
64-bit longs, perform the multiplication, split the resulting
value and place it in hi/lo. As expected, this generates
many instructions in Java bytecode, and is also fairly in-
efficient and we perform it in the runtime support to save
space.

Often, however, only the low 32 bits of the value is ac-
tually used and in these cases we perform a 32-bit multipli-
cation which can be done natively in Java bytecode. This is
safe since the lo/hi registers are not communicated across
functions in the MIPS ABI, so if the hi register is unused
we simply skip producing it. This optimization saves both
space and improves performance of multiplications. Divi-
sions are handled similarly.

3.2. Size reduction

To reduce size, functions which are unused are pruned
during translation, and relocation information in the binary
is used to determine which functions are safe to remove.
Similarly, the table of indirect calls contains only the func-
tions which are called register-indirect, also determined
by relocations and reconstructing values from instructions
with relocations (where 32-bit addresses are commonly
split between two MIPS instructions).

The 1-1 mapping between C functions and Java meth-
ods also allows for size reductions together with the MIPS
ABI [13]. On function calls, we pass only the stack pointer
and the argument registers used by the called function,
which reduces the overhead for short functions. Another
optimization the ABI allows is to skip stores and loads
in the function prologue and epilogue to the MIPS callee-
saved registers s0...s8, which are handled automatically
as the register representation uses Java local variables.

A potential problem with the 1-1 mapping is the 64KB
JVM method size limit [9], which puts an effective size
limit on each C function. However, from our experience
we’ve rarely seen this problem in practice, with the ex-
ception of a the fetch and decode loop of a C64 emula-
tor, which exceeds the limit if the C source file is compiled
without optimization.

3.3. Inlining of builtin functionality

We perform selective inlining of certain functions in
the runtime support, mostly for the floating point support.
This optimization is implemented by matching function
call names to a set of Python classes that implements these
builtins. These then generate the corresponding functional-

ity through emitting bytecode instructions directly, replac-
ing the function call.

This allows us to reduce the overhead of floating point
operations significantly, at the cost of a slightly larger trans-
lated file. With this approach, we output Java bytecode for
floating point operations directly to inline the GCC helper
functions for soft floats. We use this functionality for other
purposes as well, e.g., to throw and catch Java exceptions
from C code.

3.4. Function co-location

One large source of overhead is method calls, i.e., trans-
lated C function calls. Since Cibyl uses local variables for
the register representation, it needs to pass up to 7 argu-
ments for the method to call, and method call overhead
grows with the number of arguments. This overhead is
especially noticeable with short functions which are fre-
quently called.

As a way around this problem, we allow multiple C
functions to be co-located into one Java method. This is
similar to standard function inlining with the difference that
unrelated functions can be co-located in the same method.
Calling between functions in a single Java method can then
be done using regular goto’s avoiding the method call
overhead. The implementation is illustrated in Figure 2,
which shows a call chain fn0, fn1, fn2:

1. Co-located methods are called with an index speci-
fying the function to call, then the method prologue
does a switch on this index and calls the function. The
MIPS ra register is set to a special value to signify
that the function was called from outside the method.

2. Calls to external methods are handled as elsewhere,
with argument registers (Java local variables) passed.

3. On calls to functions within the method, a direct goto
is used. Passing argument registers are not needed, but
we store a generated index for the return address in the
ra register (local variable).

4. On returning, we switch on the ra register and jump
back to where the local call was made or out of the
co-located method.

There are a few differences compared to normal meth-
ods. First of all we need to save the ra register since it’s
now used for the function returns. Second, we allocate the
used MIPS s-registers to different Java local variables for
each function in the co-located method, which allows us
to avoid storing store/restore these registers in the function
as with normal methods. The function co-location deliber-
atly relaxes the 1-1 function to method mapping to improve
performance.

ra = -1

switch (function index)

 0:

 1:

 2:

out: switch (register ra)

 0:

 1:

 2:

 -1:

fn0 fn1 fn2

Colocated method

 iload sp

 iload a0

 iload a1

 ...

 invokestatic external

 ...

 ldc 0

 istore ra

 goto fn2

l0:

 ldc 1

 istore ra

 goto fn3

l1:

 ; return

 goto out

 ...

2

3

4

1

Figure 2. Handling of co-located functions in Cibyl

3.5. Constant propagation

We perform constant propagation of the MIPS register
values during the compile phase, which improves perfor-
mance of memory accesses to known addresses. The MIPS
instruction set performs all memory accesses with register
addresses, and all memory accesses - even those for with
known addresses - generate the same code. The MIPS code
will therefore look like

lui v0, 0x1000
addiu v0, v0, 0x100
lw a0, 0(v0)

The implementation keeps a map of current register val-
ues, initially set to being unknown. We thereafter execute
each instruction and update the register values, generating
a constant value if all operands are known (either as known
registers or constants). At the start of a basic block, all
registers are set to unknown again.

Although constant propagation in general improves
code in many places, the executables for Cibyl are already
optimized by GCC. The main improvement of this opti-
mization is therefore to direct indexing of loads and stores
where the address is known, which is possible in Java byte-
code but not with the MIPS instruction set where memory
operations always use a register address.

3.6. Peephole optimizer

Cibyl also includes a peephole optimizer to improve
common translation patterns. For example, since the size

of MIPS instructions is fixed at 4 bytes, constant assign-
ments to registers is split in a lui/addiu pair to assign
the upper and lower half of the register. These assignments
are fairly common and are coalesced into a single assign-
ment by the peephole optimizer.

Similarly, storing of intermediate results for computa-
tions in registers can often be avoided and kept on the Java
operand stack when GCC has generated a temporary com-
putation (discarding the temporary register values). Most
patterns which are handled by the peephole optimizer tar-
gets cases where MIPS assembly is difficult to translate to
Java bytecode.

3.7. Optimization example

Figure 3 shows a sequence of instructions optimized by
Cibyl. The instruction sequence comes from a function
which shifts and divides one of the input parameters and
then prints out the result (the listing ends before the call to
printf). The columns in sequence from left to right shows
the MIPS instructions, unoptimized Java bytecode instruc-
tions, bytecode instructions after constant propagation and
32-bit division optimization and finally the rightmost col-
umn shows peephole optimized bytecode instructions.

As can be seen in the non-optimized column, the two
difficult cases here are the division and the memory load.
The column also shows that the stack store of the return ad-
dress is nullified which is possible since we use local Java
variables. The first optimization step removes the calcula-
tion of the division remainder (which is part of the MIPS
div instruction) as it is never used. This step also shows

MIPS instructions Non-optimized Divisions, Peephole optimized
constant propagation

sll a1, a0, 2 iload 1 iload 1 iload 1
iconst 2 iconst 2 iconst 2
ishl ishl ishl
istore 2 istore 2 dup

div a1, a0 iload 2 iload 2 iload 2
iload 1 iload 1 iload 1
dup2
idiv idiv idiv
istore 7 istore 7 istore 7
irem
istore 10

addiu sp, sp, -24 iinc 0 -24 iinc 0 -24 iinc 0 -24
sw ra, 16(sp)
lui v0, 0 iconst 0 iconst 0 aload 6

istore 9 istore 9 iconst 0
lw v1, 16(v0) aload 6 aload 6 istore 9

iload 9
iconst 2
iushr
iconst 4 iconst 4 iconst 4
iadd
iaload iaload iaload
istore 8 istore 8 istore 8

lui a0, 0 iconst 0 iconst 0 sipush 256
istore 1 istore 1 istore 1

addiu a0, a0, 256 iinc 1 256 iinc 1 256
mflo a1 iload 7 iload 7 iload 7

istore 2 istore 2

Figure 3. Example of Cibyl code optimizations, where the columns show MIPS instructions and different
optimization options applied.

the constant propagation which notices that the v0 register
is constant and simply pushes the address directly. Data
starts at address 0 in Cibyl applications, and this particular
word is at address 16 or index 4 into the memory integer
array.

The final step is the peephole optimizer, which operates
on the Java bytecode generated from the previous steps.
There are three transformations performed on this code se-
quence. First, the store to the local variable 2 (MIPS regis-
ter a1) is pushed forward as it is written again in the mflo
instruction further down. Assignment to local variable 2 is
again is delayed at the mflo as in this case it will be over-
written later. Second, we swap the push of the memory vec-
tor (aload 6) and a constant assignment to simplify other
optimizations in later peephole iterations, although in this
case there are none. Finally, we coalesce the lui/addiu
pair at the end of the sequence into one assignment.

4. Performance evaluation

We have evaluated Cibyl performance in two bench-
marks, FreeMap and A*. FreeMap [15] is a GPS street nav-
igation application originally written for X-windows but
later ported to other platforms such as WindowsCE. It has

been ported to the J2ME platform using Cibyl by an exter-
nal developer, and consists of over 40000 lines of C code
and 1600 lines of Java code. FreeMap uses a mixture of in-
teger and floating point operations, and displaying the map
is the most computationally intensive operation.

We run FreeMap in the Sun J2ME emulator and set it up
to perform a map rotation operation during one minute and
count the number of iterations of the main loop during this
time. Startup and shutdown time is ignored. We compare a
non-optimized Cibyl version with an optimized one, where
the optimizations enabled are inlining of builtins, optimiza-
tion of 32-bit multiplications and divisions and co-location
of functions dealing with redrawing.

The A* benchmark consists of two implementations of
the A* algorithm, one in C and one in Java, which are based
on the same source. The Java implementation is not a port,
but implemented Java-style using multiple classes. Both
implementations stress memory management, dereferenc-
ing pointers/references and short function calls. The graph
search visits 35004 nodes during the execution.

We setup the A* implementation to use different data
types for the main data structure (the nodes in the graph).
The types are 32-bit int, 16-bit short, 32-bit float
and the 64-bit double. We run the benchmark in Cibyl
both without and with optimizations, in NestedVM and in

Java on the Sun JDK 1.5.0 [18] JVM, the Kaffe JVM [21],
the SableVM [5] interpreter and the GNU Java bytecode in-
terpreter (gij) [20]. The Cibyl optimizations we use is inlin-
ing of builtins, memory registers, multiplication and divi-
sion optimization, and function co-location. We co-locate
the functions in the hottest call chain, which is the actual
A* algorithm, looking up nodes, iterating over nodes and
computing distance heuristics.

All benchmarks are executed on a Pentium M processor
at 600 MHz with Debian GNU/Linux. The A* benchmarks
are compiled with GCC 3.3.6 (using the NestedVM com-
piler), using the default options for NestedVM and Cibyl,
optimizing at level -O3 in the NestedVM case and -Os, size,
for Cibyl. The FreeMap benchmark is compiled with GCC
4.1.2, optimizing for size. The Sun J2ME emulator runs
the KVM virtual machine [19] which is also used on many
mobile phones.

4.1. Results

For FreeMap, shown in Figure 4, we see that enabling
the optimizations improves the performance with almost
15% over the non-optimized version. This improvement
is evident in the emulator update frequency, which is vis-
ibly smoother with optimizations turned on. The size of
the FreeMap classes is 592KB of which 457KB are Cibyl-
generated classes and the rest is the runtime support.

B
as

e

O
pt

im
iz

ed

Lo
op

 it
er

at
io

ns

0

1000

2000

3000

4000

5000

3631.71
4134.86

Figure 4. FreeMap benchmark results. The base-
line shows results without optimizations enabled.

The largest part of the improvement comes from func-
tion co-location and the use of builtins. Both these indi-
vidually improves the performance with around 13%, and
together the improvement reaches 15%. Without these op-
timizations, the improvement against the unoptimized case
is only 4%. The reason builtins and function co-location
works well in the FreeMap case is a large amount of float-

ing point operations and short function calls, where the co-
location reduces the overhead.

In the A* benchmark, presented in Figure 5, we can see
that Cibyl performs very well in the integer-case, being on
par with Java on the Sun JVM and significantly faster than
NestedVM on all tested JVMs. This is expected since our
optimizations target the of 32-bit data case, and the opti-
mizations improve results with between 10-40% depending
on JVM. Cibyl is faster than NestedVM also in the unopti-
mized case, which is most likely caused by the higher use
of Java local variables in Cibyl (which are more efficient
to access than class members). NestedVM also references
memory in a two-level scheme to support sparse address
spaces [1], which contributes a bit to the overhead.

For the other cases, there is a more mixed picture. As
expected, both Cibyl and NestedVM are far behind Java in
these cases since the translated code cannot work directly
with 16-bit or 64-bit values and less efficiently with float-
ing point values. With shorts, Cibyl performs better than
NestedVM on the Sun JVM and SableVM and marginally
worse on Kaffe and Gij. The slowdown compared to the
integer benchmark is caused by additional memory latency,
and the relative slowdown compared to NestedVM can be
explained by the calls into the runtime for 16-bit memory
accesses.

The floating point part, both Cibyl and NestedVM fre-
quently need to store floats in integer variables or mem-
ory (through the method Float.floatBitsToInt),
which decrease the performance a lot compared to native
Java. For the Sun JVM, Cibyl has performance compara-
ble to NestedVM, but is behind on the other JVMs, which
is caused by soft-float overhead. However, we can see
that the builtin optimization substantially improves perfor-
mance with 30-40%. The double case is not optimized by
the builtin approach, and show only small improvements
from the optimization.

An outlier is native Java on the Kaffe JVM, which shows
much worse results than on the other JVMs throughout all
the tests. On the other hand, Kaffe gives good results with
Cibyl and NestedVM, which both use a simpler program
structure based on large static methods.

The size of the classes including runtime support in
A* benchmark is 37KB for the optimized Cibyl version,
240KB for NestedVM and 61KB for native Java. Cibyl
loads static data (the .data and .rodata ELF sections)
from a file, and with that included in the class size as done
in NestedVM and native Java, the Cibyl size is 75KB. The
size advantage compared to NestedVM is caused by the
larger NestedVM runtime, and the more aggressive use of
Java local variables in Cibyl which decreases the size com-
pared to class members.

Integer

Sun JVM

0

200

400

600

800

1000

1200

1400

Base Optimized NestedVM Java

T
im

e
(m

s)

713.3
599.2

1255.6

545.1

Kaffe

0

2000

4000

6000

8000

10000

12000

14000

Base Optimized NestedVM Java

1177.7 645.4
1753.9

10741.6

SableVM

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Base Optimized NestedVM Java

9683.9
8637.4

15274.9

4916.2

Gij

0

5000

10000

15000

20000

Base Optimized NestedVM Java

12183.9

8828.2

19439.6

5523.5

Short

Sun JVM

0

200

400

600

800

1000

1200

1400

Base Optimized NestedVM Java

T
im

e
(m

s)

869.6
740.1

1280.5

541.8

Kaffe

0

2000

4000

6000

8000

10000

12000

Base Optimized NestedVM Java

2330.2 1931.4 1841.5

10868.8 SableVM

0

5000

10000

15000

20000

Base Optimized NestedVM Java

15166.2
13618.4

16339.7

4878

Gij

0

5000

10000

15000

20000

25000

Base Optimized NestedVM Java

24615.8

21268.4 20659.9

5564.8

Float

Sun JVM

0

500

1000

1500

2000

Base Optimized NestedVM Java

T
im

e
(m

s)

2161.9

1408.7 1388.3

587.1

Kaffe

0

20000

40000

60000

80000

100000

Base Optimized NestedVM Java

92021.9

67352.9

45694.5

11162.7

SableVM

0

20000

40000

60000

80000

100000

120000

140000

160000

Base Optimized NestedVM Java

128847

92588.3

65248.6

5256.7

Gij

0

10000

20000

30000

40000

50000

60000

70000

80000

Base Optimized NestedVM Java

67032.7

39683.8

25852.6

5648

Double

Sun JVM

0

1000

2000

3000

4000

5000

Base Optimized NestedVM Java

T
im

e
(m

s)

4960.8
4693.8

1816.9

588.3

Kaffe

0

20000

40000

60000

80000

100000

120000

Base Optimized NestedVM Java

102846 103173

47225.5

11813.7

SableVM

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Base Optimized NestedVM Java

159000 157394

69071

5405.6

Gij

0

20000

40000

60000

80000

100000

120000

140000

160000

Base Optimized NestedVM Java

128504 123166

30650.1

5947.3

Figure 5. Results of the A* benchmark for the integer, short, float and double data types

5. Related work

NestedVM [1] has many similarities with Cibyl. Nest-
edVM is also a binary translator that translates MIPS bi-
naries into Java bytecode, but NestedVM targets security
- being able to run insecure binaries in a secure VM -
while Cibyl targets portability to J2ME devices. This is re-
flected in some of the design decisions, where NestedVM
uses a two-level scheme for memory accesses (but which
can be disabled) to detect accesses of uninitialized memory
and support large address spaces, and an optional UNIX
compatibility layer to support translation of existing UNIX
tools.

Cibyl on the other hand focuses on generation of com-
pact code and good performance for the common and easily
supported case of 32-bit memory accesses. The one-level
memory access scheme in Cibyl well suits the embedded
J2ME applications we target, where a single application

runs at a time and memory availability is limited to a few
megabytes. Cibyl also uses Java local variables for the reg-
ister representation throughout, whereas NestedVM uses
local variables only for caching the normal class variable
register representation.

There is also a set of compilers which can generate
Java bytecode directly. The University of Queensland Bi-
nary Translator project has a Java bytecode backend for
GCC [4]. This backend is not part of mainline GCC, and
tracking mainline development can require a significant ef-
fort.

Axiomatic solutions [2] has a compiler for a subset of
C which generates Java bytecode. To handle the case of
memory references from multiple C files to global memory,
the Axiomatic solutions compiler does not support multiple
compilation units and requires that all C files are passed to
the compiler in one step. The Axiomatic solutions compiler
is also based on an old version of GCC. In contrast, Cibyl is

independent of GCC version and can therefore leverage im-
provements to GCC with newer versions. Cibyl also sup-
ports the C language fully, and with runtime support any
language which GCC can compile (runtime support cur-
rently exists for C and C++).

Unfortunately, the non-commercial version of the Ax-
iomatic solutions compiler does not support multiplications
or divisions, so the performance tests were not possible to
compile with it. A visual inspection of the generated Java
bytecode assembly shows that memory references can be
generated slightly more efficiently than Cibyl, but also a
reliance on placing register values in static Java class vari-
ables (also where the values easily could be kept on the
operand stack), which is less efficient and more space con-
suming than using local variables.

6. Conclusions and future work

In this paper, we have presented the optimization frame-
work for the Cibyl binary translator and benchmarked it
against NestedVM and native Java. We show how function
co-location, constant propagation for register values, inlin-
ing of the soft-float implementation and use of the MIPS
ABI contributes to improve the performance of code trans-
lated with Cibyl. Our benchmarks illustrates how these op-
timizations can improve performance of real-world Cibyl
applications and how binary translation is affected by data
types. We also compare Cibyl to the NestedVM binary
translator and native Java and show that performance in the
case we target is significantly better than NestedVM and
close to performance of native Java.

Future directions to improve performance includes im-
plementing the MIPS FPU instruction set, which is an area
where NestedVM has an advantage. We are also investigat-
ing improved debugging support by using the GDB debug-
ger through Qemu emulator (executing MIPS instructions)
and invoking Java functionality through a generated J2ME
proxy.

Acknowledgements and Availability

We would like to thank the anonymous reviewers for
their valuable input. This work was partly funded by The
Knowledge Foundation in Sweden under a research grant
for the project “Blekinge - Engineering Software Quali-
ties (BESQ)” (http://www.bth.se/∼besq). Cibyl
is free software under the GNU GPL and can be down-
loaded from http://cibyl.googlecode.com.

References

[1] B. Alliet and A. Megacz. Complete translation of unsafe
native code to safe bytecode. In Proceedings of the 2004
Workshop on Interpreters, Virtual Machines and Emulators,
pages 32–41, Washington DC, USA, 2004.

[2] Axiomatic solutions. Axiomatic multi-platform C (AMPC).
http://www.axiomsol.com/, Accessed 8/9-2006.

[3] F. Buddrus and J. Schödel. Cappuccino - a C++ to java
translator. In SAC ’98: Proceedings of the 1998 ACM sym-
posium on Applied Computing, pages 660–665, New York,
NY, USA, 1998. ACM Press.

[4] C. Cifuentes and M. V. Emmerik. UQBT: Adaptable binary
translation at low cost. IEEE Computer, 33(3):60–66, Mar.
2000.

[5] E. Gagnon. A portable research framework for the execution
of java bytecode. PhD thesis, McGill University, Montreal,
December 2003.

[6] Jazillian, Inc. legacy to ”natural” java translator. see
http://www.jazillian.com/index.html, Accessed 8/9-2006.

[7] G. Kane. MIPS RISC architecture. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1988.

[8] S. Kågström, H. Grahn, and L. Lundberg. Cibyl - an en-
vironment for language diversity on mobile devices. In
Proceedings of the Virtual Execution Environments (VEE),
pages 75–81, San Diego, USA, June 2007.

[9] T. Lindholm and F. Yellin. The Java(TM) Virtual Machine
Specification (2nd Edition). Addison-Wesley, Boston, 2nd
edition, April 1999.

[10] S. Malabarba, P. Devanbu, and A. Stearns. MoHCA-Java:
a tool for C++ to java conversion support. In ICSE ’99:
Proceedings of the 21st international conference on Soft-
ware engineering, pages 650–653, Los Alamitos, CA, USA,
1999. IEEE Computer Society Press.

[11] J. Martin. Ephedra - A C to Java Migration Environment.
PhD thesis, University of Victoria, 2002.

[12] J. Meyer and T. Downing. The jasmin assembler. See
http://jasmin.sourceforge.net/, Accessed 8/9-2006.

[13] Santa Cruz Operation. SYSTEM V APPLICATION BINARY
INTERFACE - MIPS RISC Processor Supplement. Santa
Cruz Operation, Santa Cruz, USA, 3rd edition, february
1996.

[14] J. Schwartz. Welcome letter, 2006 JavaOne conference.
http://java.sun.com/javaone/sf/Jonathans welcome.jsp, Ac-
cessed 8/9-2006.

[15] E. Shabtai. Freemap for J2ME phones. See
http://www.freemap.co.il/roadmap j2me.html/, accessed
2007-09-08.

[16] R. M. Stallman. Using GCC: The GNU Compiler Collec-
tion Reference Manual. Free Software Foundation, Boston,
October 2003.

[17] Sun Microsystems. J2ME.
http://java.sun.com/javame/index.jsp, Accessed 8/9-2006.

[18] Sun Microsystems. J2se 5.0. http://java.sun.com/j2se/1.5.0/,
Acessed 8/9-2006.

[19] Sun Microsystems. J2ME Building Blocks for Mobile De-
vices - Whitepaper on KVM and the Connected, Limited

Device Configuration CLDC. Sun Microsystems, May
2000. http://java.sun.com/products/cldc/wp/KVMwp.pdf,
Accessed 8/9-2006.

[20] The GNU project. The GNU compiler for the java pro-
gramming language. http://gcc.gnu.org/java/, Accessed 8/9-
2006.

[21] T. Wilkinson, Edouard G. Parmelan, Jim Pick, and et al. The
kaffe jvm. http://www.kaffe.org/, Accessed 8/9-2006.

