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Abstract— Ray tracing is a well known method for photorealistic 
image synthesis, volume visualization and rendering. Over the 
last decade the method is being adopted throughout the research 
community around the world. With the advent of the high speed 
processing units, the method has been emerging from offline 
rendering towards real time rendering. The success behind ray 
tracing algorithms lies in the use of acceleration data structures 
and modern processing power of CPUs and GPUs. kd-tree is one 
of the most widely used data structures based on surface area 
heuristics (SAH). The major bottleneck in kd-tree construction is 
the time consumed to find optimum split locations. In this paper, 
we propose a prediction algorithm for animated ray tracing 
based on Kalman filtering. The algorithm successfully predicts 
the split locations for the next consecutive frame in the animation 
sequence. Thus, giving good initial starting points for one 
dimensional search algorithms to find optimum split locations – 
in our case parabolic interpolation combined with golden section 
search. With our technique implemented, we have reduced the 
“running kd-tree construction” time by between 78% and 87% 
for dynamic scenes with 16.8K and 252K polygons respectively.  
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I.  INTRODUCTION 
Ray tracing is one of the most widely used algorithms for 

interactive graphics applications and geometric processing. 
The performance of these algorithms is accelerated by using 
bounding volume hierarchies (BVH). BVHs are efficient data 
structures used for intersection tests or culling in computer 
graphics. Ray tracing algorithms compute and transverse 
BVHs in real time to perform intersection test.  

While ray tracing has evolved into a real time image 
synthesis technique in the last decade, more efficient 
hardware, effective acceleration structures and more advanced 
transversal algorithms have contributed to the increased 
performance. Among different acceleration structures [3][4], 
kd-trees have given better or at least comparable performance 
in terms of speed as compared to others [1]. These structures 
are more efficient if built using surface area heuristics (SAH) 
[2]. Interactive ray tracing demands fast construction of BVHs 
but an optimized fast construction of kd-tree is very expensive 
for large dynamic scenes. Although, efforts are being made to 
optimize kd-tree construction for large dynamic scenes 
[5][6][7][8][9], there still lies a gulf between kd-tree 
construction and interactive large dynamic scene applications.  

In this paper, we present an approach to improve and 
optimize the construction of kd-trees for ray tracing of 
dynamic scenes. We are concerned about the decision of the 
separation plane location. In most of the dynamic scenes used 
in research, consecutive frames do not depict considerable 
differences in terms of geometry information.  Our approach is 
to make use of this particular property for constructing kd-tree 
structures. We start with the approach used in [9] for static 
scenes, where parabolic interpolation is combined with golden 
section search to reduce the amount of work done when 
building the kd-trees. We further extend this approach for 
dynamic scenes and make use of the vector Kalman filter to 
predict the split locations for the next consecutive frame.  

The same golden section search and parabolic 
interpolation is then used to find the minimum but this time 
the predicted location is used as a starting point, hence 
reducing the number of steps used to find the minimum of the 
parabolic cost function. We have evaluated our technique 
against a standard SAH algorithm for dynamic scenes with 
varying complexities and behaviors. With our algorithm, we 
have achieved average kd-tree built times of 30msec for 16-
17k triangles scene and 210msec for 252k triangles scene.  
This corresponds to a reduction of the kd-tree construction 
time by between 78% and 87%.  

The rest of the paper is organized as follows. Section 2 
gives some related research work on kd-tree construction 
followed by the theory behind SAH based kd-trees in section 3. 
We describe the mathematics behind the Kalman filter in 
section 4 along with our proposed technique in section 5. 
Section 6 gives our implementation results and some 
discussion. We conclude the paper in section 7 with future 
work. 

II. RELATED WORK 
kd-tree construction has mainly focused on optimized data 

structure generation for fast ray tracing. The state-of-the-
art ( )logO n n algorithm has been analyzed in depth by [10] 
and [11]. Further in [12], the theoretical and practical aspects 
of ray tracing including kd-tree cost function modeling and 
experimental verifications have been described. Current work 
in [5] and [13] also aims at fast construction of kd-trees. By 
adaptive sub-sampling they approximate the SAH cost 
function by a piecewise quadratic function.  



There are many different other implementations of the kd-
tree algorithm using SIMD instructions like in [14]. Another 
approach is used by [15], where the author experiments with 
stream kd-tree construction and explores the benefits of 
parallelized streaming. Both [5] and [15] demonstrate 
considerable improvements as compared to conventional SAH 
based kd-tree construction.  

The cost function to optimally determine the depth of the 
subdivision in kd-tree construction has been demonstrated by 
several authors. In [16], the authors derive an expression that 
confirms that the time complexity is less dependent on the 
number of objects and more on the size of the objects. They 
calculate the probability that the ray intersects an object as a 
function of the total area of the subdivision cells that (partly) 
contain the object.  

In [2], the authors use a similar strategy but refine the 
method to avoid double intersection tests of the same ray with 
the same object. They determine the probability that a ray 
intersects at least one leaf cell from the set of leaves within 
which a particular object resides. They use a cost function to 
find the optimal cutting planes for a kd-tree construction. A 
similar method was also implemented in [17].  

Recently, kd-tree acceleration structures for modern 
graphics hardware have been proposed in [8] and [18], where 
they experimented with kd-tree acceleration structure for GPU 
ray tracers and achieved considerable improvement. 

III. SAH BASED KD-TREE CONSTRUCTION 
In this section, we give some background about the kd-tree 

algorithm, which will be the foundation for the rest of the 
paper. Consider a set of points in a space Rd, the kd-tree is 
normally built over these points. In general, kd-trees are used 
as a starting point for optimized initialization of k-means 
clustering [19] and nearest neighbour query problems [20]. In 
computer graphics, and especially in ray tracing applications, 
kd-trees are applied over a scene S with points as bounding 
boxes of scene objects.  

The kd-tree algorithm subdivides the scene space 
recursively. For any given node Lnode of the kd-tree, a splitting 
plane splits the bounding box of the node into two halves, 
resulting in two bounding boxes, left and right. These are 
called child nodes and the process is repeated until a certain 
criterion is met. In [1], the author reports that the adaptability 
of the kd-tree towards the scene complexity can be influenced 
by choosing the best position of the splitting plane.  

The choice of the splitting plane is normally the mid way 
between the scene maximum and minimum along a particular 
coordinate axis [21] and a particular cost function is 
minimized. In [2], SAH is introduced for the kd-tree 
construction algorithm which works on probabilities and 
minimizes a certain cost function. The cost function is built by 
firing an arbitrary ray through the kd-tree and applying some 
assumptions. Figure 1 uses the conditional probability P(y|x) 
that an arbitrary fired ray hits the region y inside region x 
provided that it has already touched the region x. Bayes rule 
can be used to calculate the conditional probability P(y|x) as 

( | ) ( )( | )
( )
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= .           (1) 

 

 

 

Figure 1.  Visualization of Conditional Probability P(y|x). 

P(x|y) is the conditional probability that the ray hits the 
region x provided that it has intersected y, and here P(x|y) = 1. 
P(x) and P(y) can be expressed in terms of areas [1]. If we start 
from the root node or the parent node and assume that it 
contains N elements and the ray passing the root node has to be 
tested for intersection with N elements. If we assume that the 
computational time it takes to test the ray intersection with 
element n N⊆ is Tn, then the overall computational cost C of 
the root node would be 
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After further division of root node, the ray intersection test 
cost for each left and right child nodes changes to CLeft and 
CRight. Thus the overall new cost becomes CTotal and 

Total Trans Right LeftC C C C= + + .           (3) 

Where CTrans is the cost of traversing the parent or root node 
and 
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Where A is the surface area of the root node and the area of 
two child nodes are ALeft and ARight. PLeft and PRight are the 
probabilities of a ray hitting the left and the right child nodes. 
NLeft and NRight are the number of objects present in the two 
nodes and Ti and Tj are the computational time for testing ray 
intersection with the ith and jth objects of the two child nodes. 
The kd-tree algorithm minimizes the cost function CTotal, and 
then subdivides the child nodes recursively. 

As shown in [15], the cost function is a bounded variation 
function as it is the difference of two monotonically varying 
functions CLeft and CRight. In [15], this important property of the 
cost function has been exploited to increase the approximation 
accuracy of the cost function and only those regions that can 
contain the minimum have been adaptively sampled. We have 
used the technique in [9], called golden section search, to find 
out the region that could contain the minimum and combined it 
with parabolic interpolation to search for the minimum. 
Further, we predict the minimums of the cost function (split 
locations) for next consecutive frame using the Kalman filter. 
We use predicted split locations as starting points for kd-tree 
construction over consecutive frames. In the next section, we 
present some mathematics behind the Kalman filter. 
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x 
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IV. THE KALMAN FILTER 
The Kalman filter is named after its inventor Kalman in 

1960 [22].  The Kalman filter presents a recursive approach to 
discrete data linear filtering and prediction problems. The filter 
estimates the state of an underlying discrete time controlled 
process nx∈ℜ  which is presented by the following difference 
equation 

1 1 1k k k kx Ax Bu w− − −= + + ,            (6) 

with the measurement or observation mz∈ℜ and presented by 
       k k kz Hx v= + .            (7) 

The random variables kw  and kv  are process and 
measurement noises respectively and assumed to be 
independent, white and normally distributed with zero mean 
and covariance matrices Q and R . 
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Matrix A  in equation 6 is an n n×  matrix and it represents 
the state relationship from previous time step 1k −  to current 
time step k . The 1n× matrix B relates the optional control 
input u  to the state x . The m n× matrix H in equation 8 
relates the state kx  to the measurement kz . A more detailed 
introduction about the Kalman filter could be found in any 
good book on the Kalman filter, we will just describe some 
basic steps of the filter. The Kalman filter has two main steps 
called time update (prediction) and measurement update 
(correction). The prediction state projects the current state 
estimate ahead in time and the correction state adjusts the 
projected estimate by an actual measurement at that time. The 
filter prediction and update steps are described as follows (the 
details could be found in [23] along with the derivation). 
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V. FAST CONSTRUCTION OF KD-TREES 
We combine golden section search and parabolic 

interpolation [9] with the Kalman filter to construct kd-trees 
for animated ray tracing. We take advantage of the fact that 
adjacent frames in animated ray tracing do not depict a 
dramatic change in most of the animated scenes (we are 

talking about scenes normally used by the research community 
in computer graphics). The algorithm we present here is 
simple to describe. In our algorithm, we start with the 
technique described in [9] and construct the kd-tree for the 
first frame of an animated scene. We then use a Kalman filter 
to predict split locations for the next consecutive frame. The 
algorithm also keeps track of kd-tree depth and split 
orientations. We then apply golden section combined with 
parabolic interpolation for a one dimensional search of split 
plane but this time the starting point for the one dimensional 
search is the predicted split location. This gives us a very fast 
convergence towards the cost function optimum. 

The beauty of the Kalman filter is that we do not need any 
previous history to predict the future. This gives us memory 
free prediction. What we do need is the memory to store the 
predicted values in the prediction step of the Kalman filter. 
The same memory locations are updated during the update 
step. Algorithm 1 shows the pseudo code for the Kalman 
filter, where we initialize the parameters to their default initial 
values and predict the future states. Note that in the Kalman 
filter step, we use initial split positions information from the 
first frame and add measurement noise to construct virtual 
next observations. We then predict the actual split positions 
for the next frame based on these virtual next observations. In 
the last step, we update the information for the Kalman filter 
parameters based on actual split locations information returned 
by the one dimensional search Algorithm 2. 

The OptSplit function in Algorithm 2 takes 
KalmanStruct which includes all the information about 
Kalman Orientation (KalmanOrient), Kalman Depth 
(KalmanDepth) and Kalman predicted optimum split 
location (KalmanStartPt). The KalmanOrient and the 
KalmanDepth are the two variables used to track the axis 
orientation for particular depth for Kalman filter. The 
algorithm itself finds the optimal split orientation for a given 
depth information and compares it with that of the Kalman 
Orientation. If the two orientations match, the algorithm uses 
the start point as predicted by the Kalman filter. Otherwise, it 
starts looking for an optimum from extreme positions. The 
Kalman Orientation (KalmanOrient) and the Kalman 
Depth (KalmanDepth) are the two vectors which store the 
orientation and corresponding depth information from the 
previous consecutive frame. The objective behind the 
orientation match is to track the requirements for orientation 
change because of the dynamic scene. If there is no match, we 
update the Klaman filter parameters with the new orientation 
and apply the one dimensional search algorithm starting from 
extreme boundaries of the particular bounding box. 

 
Algorithm 1 – The Kalman Filter 

 
// Kalman filter initialization parameters 
// State vector x and covariance P apriori estimate 
S.x = 0 and S.P = 0;  
// Input control vector u and Input matrix B 
S.u = 0 and S.B = 0;   
S.A = 1; // State transition matrix 
// Covariance of process noise Q 
S.Q = Std[InitSplitPos InitSplitPos*p(w)]^2;  



S.H = 1; // Observation matrix H 
// Measurement noise covariance 
S.R = Std_Dev[InitSplitPos - InitSplitPos*p(v)]^2; 
 
// Kalman Filter  
function KalmanFilter(S(k)) 
True(k) = InitSplitPos(k) 
// Construct measurement 
S.z(k) = True(k)+p(v)*True(k); 
Time update as in equation 10 
Measurement update as in equation 11 
return S(k+1) 
end function 
 

Algorithm 2 – Optimum Split Search 
 

function OptSplit(Polygons,AABB,KalmanStruct) 
Orient = OptSplitOrient(Polygons); 
// Predict the next split location 
KalmanStartPt = KalmanFilter(S(k)); 
if (Orient = KalmanOrient and Depth = KalmanDepth) 
Optimum = OptSearch(Polygons, AABB, KalmanOrient, 
KalmanStartPt); 
else 
 Optimum = OptSearch(Polygons, AABB, Orient); 
return Optimum; 
end function 

VI. RESULTS AND DISCUSSION 
We have tested our algorithm on a variety of animation 

sequences as shown in Figure 2. The scenes differ with 
triangular count and animation behaviour. The scenes consist 
of regularly sized and uniformly distributed triangles. We ran 
our kd-tree construction algorithm and recorded the Kalman 
prediction accuracy and the time our algorithm took to build 
kd-tree for each frame in the sequence. We have chosen 
MATLAB® and C++ for implementation of our algorithm. 
We have implemented the Kalman filter prediction routine in 
MATLAB® and the kd-tree construction routine in C++. The 
kd-tree construction is linked in MATLAB® through Dynamic 
Link Library (DLL). Routines for PLY file reading are also 
implemented in MATLAB®. The timing results shown in this 
paper are only for kd-tree construction in DLL. We have 
performed all the simulations on a workstation with an Intel 
Core2 CPU, 2.16 GHz processor and 2GB of RAM.    

The scenes we have used in our simulations vary in terms 
of their complexities and behaviours. Figure 2 shows four 
different animation sequences. In Figure 3 and Figure 4, we 
analyze how the cost functions change in the horse  (16.8K - 
48 Frames) and bunny-dragon (252.5K - 16 Frames) 
animations for the two axis (y and z) as shown in Figure 2 and 
for only root node split positions. We also plot the actual and 
predicted split positions of the Kalman filter. Note that the 
actual split positions have been calculated on basis of Surface 
Area Heuristics (SAH). 

Let’s analyse Figure 3 closely, the upper two sub-figures in 
Figure 3 (left to right) show the cost function shift for each 
frame in the horse animation sequence for y and z axis 
respectively. The minimums of these parabolic cost functions 
are the optimum split plan locations. The bottom two sub-
figures in Figure 3 (left to right) show how the actual optimum 
split plan locations change over time, the predicted split plan 

locations by the Kalman filter (time is no. of frames in this 
case) for y and z axis respectively. The red dots are the virtual 
measurement observations constructed through measurement 
noise ( )p v added (equation 8) and the term responsible for 
constructing these observations in Algorithm 1 
is ( ) ( ) ( ) ( ).S z k True k p v True k= + × . Also note the periodic 
behaviour of split plan locations change as the horse animation 
sequence is periodic in nature.  

Our algorithm has successfully predicted the split plan 
locations for consecutive frames. Hence, it provides a good 
initial guess for one dimensional search (parabolic 
interpolation combined with golden section search). If we 
closely analyse the prediction curves, we see that in almost all 
the cases, the prediction error is very small. Since, the entire 
scene dataset exhibits a strong coherency between consecutive 
frames; we have successfully exploited this property here. 
Although, in all these scenes, there remain a constant number 
of polygons (triangles) throughout a particular animation 
sequence, we see a random behaviour in the kd-tree build 
time. The phenomenon occurs due to random noise added by 
the Kalman filter prediction steps as in Algorithm 1, where we 
have constructed the virtual observations by adding the 
measurement noise from equation 8. The added noise 
maximum error difference is not greater than 1msec.  

Table 1 shows the time difference between an initial build 
and a running build of kd-tree data structures for each 
animation sequence used in this paper. See the considerable 
improvement in the build time in running mode. We have not 
yet added the overhead of the Kalman filter in Table 1. In 
MATLAB®, the Kalman filter’s average aggregated overhead 
is approx. 400-450msec for the whole sequence of 50 frames 
with average of 84K polygons (triangles) in each frame. We 
expect this time down to 100-150msec if efficiently 
implemented in C++. So, in worst case we could add 3-5msec 
per frame. 

TABLE I.  CONVENTIONAL VS MODIFIED KD-TREE BUILD TIME 

Modified  
kd-Tree 

 Build (msec) 

 
 

Scene 

 
 

Polygons 

 
Normal 

kd-Tree Build 
(msec) Initial 

 Build 
Running 
 Build 

 
Time 
Reduc

ed 

Horse 16.8K 135 135 30 78% 
Elephant 84.6K 710 710 105 85% 
ClothBall 92.2K 802 802 120 85% 

Bunny 
Dragon 

252.5K 1610 1610 210 87% 

VII. CONCLUSION AND FUTURE WORK 
We have presented an algorithmic speedup technique for 

fast kd-tree construction for animated ray tracing. The optimum 
split location search for kd-tree construction is the main time 
consuming job. As many of the animation sequences used by 
the research community for animated ray tracing exhibit strong 
data structures coherency properties, we have made use of a 
Kalman filter for predicting the next possible data structure 
(kd-tree in our case) state of the animated sequence. We use 
here the vector Kalman filter and load it with initial split plan 



locations (we build kd-tree for starting frame in the sequence 
based on the technique described in [9]). The vector Kalman 
filter then predicts the next possible split locations for the next 
frame in the sequence. The prediction error is very small as we 
can see in the above sample simulation pictures. We use these 
predicted locations as starting points for the one dimensional 
optimum search algorithm. With best initial guess, the 
algorithm exhibits very fast convergence and we see the results 
quite promising for the running kd-tree build time as compared 
to static or initial kd-tree build. We achieve 78% to 87% 
increase in kd-tree construction time for the scenes with as low 
as 17K and as high as 252K polygons. We have implemented 
our proposed model in MATLAB® and C++. Main prediction 
engine of the Kalman filter is implemented in MATLAB®. 
C++ handles the kd-tree construction routines. We have used 
five different animation sequences with a varying number of 
complexities and behaviours i.e., between 17K to 252K 
primitives and 16 to 73 frames. We have demonstrated a 
considerable decrease in build time as compared to standard 
SAH based kd-tree. Further use of the technique could be 
demonstrated on scenes with varying number of complexities 
in connective frames and scenes with non-uniform polygons 
distribution. 
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Figure 2.  Animation sequences (top to bottom): Horse (16.8K - 48 Frames), Elephant (84.6K - 48 Frames), BunnyDragon 
(252.5K - 16 Frames) and ClothBall (92.2K - 73 Frames). 



 

Figure 3. Horse animation statistics, average build time (30msec). 

Figure 4. BunnyDragon animation statistics, average build time (210msec). 


