
Tracking Data Structures Coherency in Animated Ray
Tracing for Real-Time 3D-Rendering

Sajid Hussain
Department of Systems and Software Engineering

Blekinge Institute of Technology, Sweden
sajid.hussain@bth.se

Håkan Grahn
Department of Systems and Software Engineering

Blekinge Institute of Technology, Sweden
hakan.grahn@bth.se

Abstract— Ray tracing is a well known method for photorealistic
image synthesis, volume visualization and rendering. Over the
last decade the method is being adopted throughout the research
community around the world. With the advent of the high speed
processing units, the method has been emerging from offline
rendering towards real time rendering. The success behind ray
tracing algorithms lies in the use of acceleration data structures
and modern processing power of CPUs and GPUs. kd-tree is one
of the most widely used data structures based on surface area
heuristics (SAH). The major bottleneck in kd-tree construction is
the time consumed to find optimum split locations. In this paper,
we propose a prediction algorithm for animated ray tracing
based on Kalman filtering. The algorithm successfully predicts
the split locations for the next consecutive frame in the animation
sequence. Thus, giving good initial starting points for one
dimensional search algorithms to find optimum split locations –
in our case parabolic interpolation combined with golden section
search. With our technique implemented, we have reduced the
“running kd-tree construction” time by between 78% and 87%
for dynamic scenes with 16.8K and 252K polygons respectively.

Keywords-component; Ray Tracing; Tracking; Kalman Filter

I. INTRODUCTION
Ray tracing is one of the most widely used algorithms for

interactive graphics applications and geometric processing.
The performance of these algorithms is accelerated by using
bounding volume hierarchies (BVH). BVHs are efficient data
structures used for intersection tests or culling in computer
graphics. Ray tracing algorithms compute and transverse
BVHs in real time to perform intersection test.

While ray tracing has evolved into a real time image
synthesis technique in the last decade, more efficient
hardware, effective acceleration structures and more advanced
transversal algorithms have contributed to the increased
performance. Among different acceleration structures [3][4],
kd-trees have given better or at least comparable performance
in terms of speed as compared to others [1]. These structures
are more efficient if built using surface area heuristics (SAH)
[2]. Interactive ray tracing demands fast construction of BVHs
but an optimized fast construction of kd-tree is very expensive
for large dynamic scenes. Although, efforts are being made to
optimize kd-tree construction for large dynamic scenes
[5][6][7][8][9], there still lies a gulf between kd-tree
construction and interactive large dynamic scene applications.

In this paper, we present an approach to improve and
optimize the construction of kd-trees for ray tracing of
dynamic scenes. We are concerned about the decision of the
separation plane location. In most of the dynamic scenes used
in research, consecutive frames do not depict considerable
differences in terms of geometry information. Our approach is
to make use of this particular property for constructing kd-tree
structures. We start with the approach used in [9] for static
scenes, where parabolic interpolation is combined with golden
section search to reduce the amount of work done when
building the kd-trees. We further extend this approach for
dynamic scenes and make use of the vector Kalman filter to
predict the split locations for the next consecutive frame.

The same golden section search and parabolic
interpolation is then used to find the minimum but this time
the predicted location is used as a starting point, hence
reducing the number of steps used to find the minimum of the
parabolic cost function. We have evaluated our technique
against a standard SAH algorithm for dynamic scenes with
varying complexities and behaviors. With our algorithm, we
have achieved average kd-tree built times of 30msec for 16-
17k triangles scene and 210msec for 252k triangles scene.
This corresponds to a reduction of the kd-tree construction
time by between 78% and 87%.

The rest of the paper is organized as follows. Section 2
gives some related research work on kd-tree construction
followed by the theory behind SAH based kd-trees in section 3.
We describe the mathematics behind the Kalman filter in
section 4 along with our proposed technique in section 5.
Section 6 gives our implementation results and some
discussion. We conclude the paper in section 7 with future
work.

II. RELATED WORK
kd-tree construction has mainly focused on optimized data

structure generation for fast ray tracing. The state-of-the-
art ()logO n n algorithm has been analyzed in depth by [10]
and [11]. Further in [12], the theoretical and practical aspects
of ray tracing including kd-tree cost function modeling and
experimental verifications have been described. Current work
in [5] and [13] also aims at fast construction of kd-trees. By
adaptive sub-sampling they approximate the SAH cost
function by a piecewise quadratic function.

There are many different other implementations of the kd-
tree algorithm using SIMD instructions like in [14]. Another
approach is used by [15], where the author experiments with
stream kd-tree construction and explores the benefits of
parallelized streaming. Both [5] and [15] demonstrate
considerable improvements as compared to conventional SAH
based kd-tree construction.

The cost function to optimally determine the depth of the
subdivision in kd-tree construction has been demonstrated by
several authors. In [16], the authors derive an expression that
confirms that the time complexity is less dependent on the
number of objects and more on the size of the objects. They
calculate the probability that the ray intersects an object as a
function of the total area of the subdivision cells that (partly)
contain the object.

In [2], the authors use a similar strategy but refine the
method to avoid double intersection tests of the same ray with
the same object. They determine the probability that a ray
intersects at least one leaf cell from the set of leaves within
which a particular object resides. They use a cost function to
find the optimal cutting planes for a kd-tree construction. A
similar method was also implemented in [17].

Recently, kd-tree acceleration structures for modern
graphics hardware have been proposed in [8] and [18], where
they experimented with kd-tree acceleration structure for GPU
ray tracers and achieved considerable improvement.

III. SAH BASED KD-TREE CONSTRUCTION
In this section, we give some background about the kd-tree

algorithm, which will be the foundation for the rest of the
paper. Consider a set of points in a space Rd, the kd-tree is
normally built over these points. In general, kd-trees are used
as a starting point for optimized initialization of k-means
clustering [19] and nearest neighbour query problems [20]. In
computer graphics, and especially in ray tracing applications,
kd-trees are applied over a scene S with points as bounding
boxes of scene objects.

The kd-tree algorithm subdivides the scene space
recursively. For any given node Lnode of the kd-tree, a splitting
plane splits the bounding box of the node into two halves,
resulting in two bounding boxes, left and right. These are
called child nodes and the process is repeated until a certain
criterion is met. In [1], the author reports that the adaptability
of the kd-tree towards the scene complexity can be influenced
by choosing the best position of the splitting plane.

The choice of the splitting plane is normally the mid way
between the scene maximum and minimum along a particular
coordinate axis [21] and a particular cost function is
minimized. In [2], SAH is introduced for the kd-tree
construction algorithm which works on probabilities and
minimizes a certain cost function. The cost function is built by
firing an arbitrary ray through the kd-tree and applying some
assumptions. Figure 1 uses the conditional probability P(y|x)
that an arbitrary fired ray hits the region y inside region x
provided that it has already touched the region x. Bayes rule
can be used to calculate the conditional probability P(y|x) as

(|) ()(|)
()

P x y P yP y x
P x

= . (1)

Figure 1. Visualization of Conditional Probability P(y|x).

P(x|y) is the conditional probability that the ray hits the
region x provided that it has intersected y, and here P(x|y) = 1.
P(x) and P(y) can be expressed in terms of areas [1]. If we start
from the root node or the parent node and assume that it
contains N elements and the ray passing the root node has to be
tested for intersection with N elements. If we assume that the
computational time it takes to test the ray intersection with
element n N⊆ is Tn, then the overall computational cost C of
the root node would be

1

N

n
n

C T
=

= ∑ . (2)

After further division of root node, the ray intersection test
cost for each left and right child nodes changes to CLeft and
CRight. Thus the overall new cost becomes CTotal and

Total Trans Right LeftC C C C= + + . (3)

Where CTrans is the cost of traversing the parent or root node
and

1 1

. .
Left RightN N

Total Trans Left i Right j
i j

C C P T P T
= =

= + +∑ ∑ , (4)

where

Left
Left

A
P

A
= and Right

Right

A
P

A
= . (5)

Where A is the surface area of the root node and the area of
two child nodes are ALeft and ARight. PLeft and PRight are the
probabilities of a ray hitting the left and the right child nodes.
NLeft and NRight are the number of objects present in the two
nodes and Ti and Tj are the computational time for testing ray
intersection with the ith and jth objects of the two child nodes.
The kd-tree algorithm minimizes the cost function CTotal, and
then subdivides the child nodes recursively.

As shown in [15], the cost function is a bounded variation
function as it is the difference of two monotonically varying
functions CLeft and CRight. In [15], this important property of the
cost function has been exploited to increase the approximation
accuracy of the cost function and only those regions that can
contain the minimum have been adaptively sampled. We have
used the technique in [9], called golden section search, to find
out the region that could contain the minimum and combined it
with parabolic interpolation to search for the minimum.
Further, we predict the minimums of the cost function (split
locations) for next consecutive frame using the Kalman filter.
We use predicted split locations as starting points for kd-tree
construction over consecutive frames. In the next section, we
present some mathematics behind the Kalman filter.

Ray

x
y

IV. THE KALMAN FILTER
The Kalman filter is named after its inventor Kalman in

1960 [22]. The Kalman filter presents a recursive approach to
discrete data linear filtering and prediction problems. The filter
estimates the state of an underlying discrete time controlled
process nx∈ℜ which is presented by the following difference
equation

1 1 1k k k kx Ax Bu w− − −= + + , (6)

with the measurement or observation mz∈ℜ and presented by
 k k kz Hx v= + . (7)

The random variables kw and kv are process and
measurement noises respectively and assumed to be
independent, white and normally distributed with zero mean
and covariance matrices Q and R .

() ()
() ()

0,

0,

p w N Q

p v N R

≈

≈
. (8)

Matrix A in equation 6 is an n n× matrix and it represents
the state relationship from previous time step 1k − to current
time step k . The 1n× matrix B relates the optional control
input u to the state x . The m n× matrix H in equation 8
relates the state kx to the measurement kz . A more detailed
introduction about the Kalman filter could be found in any
good book on the Kalman filter, we will just describe some
basic steps of the filter. The Kalman filter has two main steps
called time update (prediction) and measurement update
(correction). The prediction state projects the current state
estimate ahead in time and the correction state adjusts the
projected estimate by an actual measurement at that time. The
filter prediction and update steps are described as follows (the
details could be found in [23] along with the derivation).

1 1

1

k k k

T
k k

Prediction

x A x Bu
Error Covariance Projection
P AP A Q

−∧ ∧

− −

−
−

= +

= +

. (9)

()

()

1T T
k k k

k k k

k k k

Kalman Gain

K P H HP H R

State Ahead Correction

x x K z H x

Error Covariance Correction
P I K H P

−

− −∧ ∧ ∧

−

= +

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠

= −

. (10)

V. FAST CONSTRUCTION OF KD-TREES
We combine golden section search and parabolic

interpolation [9] with the Kalman filter to construct kd-trees
for animated ray tracing. We take advantage of the fact that
adjacent frames in animated ray tracing do not depict a
dramatic change in most of the animated scenes (we are

talking about scenes normally used by the research community
in computer graphics). The algorithm we present here is
simple to describe. In our algorithm, we start with the
technique described in [9] and construct the kd-tree for the
first frame of an animated scene. We then use a Kalman filter
to predict split locations for the next consecutive frame. The
algorithm also keeps track of kd-tree depth and split
orientations. We then apply golden section combined with
parabolic interpolation for a one dimensional search of split
plane but this time the starting point for the one dimensional
search is the predicted split location. This gives us a very fast
convergence towards the cost function optimum.

The beauty of the Kalman filter is that we do not need any
previous history to predict the future. This gives us memory
free prediction. What we do need is the memory to store the
predicted values in the prediction step of the Kalman filter.
The same memory locations are updated during the update
step. Algorithm 1 shows the pseudo code for the Kalman
filter, where we initialize the parameters to their default initial
values and predict the future states. Note that in the Kalman
filter step, we use initial split positions information from the
first frame and add measurement noise to construct virtual
next observations. We then predict the actual split positions
for the next frame based on these virtual next observations. In
the last step, we update the information for the Kalman filter
parameters based on actual split locations information returned
by the one dimensional search Algorithm 2.

The OptSplit function in Algorithm 2 takes
KalmanStruct which includes all the information about
Kalman Orientation (KalmanOrient), Kalman Depth
(KalmanDepth) and Kalman predicted optimum split
location (KalmanStartPt). The KalmanOrient and the
KalmanDepth are the two variables used to track the axis
orientation for particular depth for Kalman filter. The
algorithm itself finds the optimal split orientation for a given
depth information and compares it with that of the Kalman
Orientation. If the two orientations match, the algorithm uses
the start point as predicted by the Kalman filter. Otherwise, it
starts looking for an optimum from extreme positions. The
Kalman Orientation (KalmanOrient) and the Kalman
Depth (KalmanDepth) are the two vectors which store the
orientation and corresponding depth information from the
previous consecutive frame. The objective behind the
orientation match is to track the requirements for orientation
change because of the dynamic scene. If there is no match, we
update the Klaman filter parameters with the new orientation
and apply the one dimensional search algorithm starting from
extreme boundaries of the particular bounding box.

Algorithm 1 – The Kalman Filter

// Kalman filter initialization parameters
// State vector x and covariance P apriori estimate
S.x = 0 and S.P = 0;
// Input control vector u and Input matrix B
S.u = 0 and S.B = 0;
S.A = 1; // State transition matrix
// Covariance of process noise Q
S.Q = Std[InitSplitPos InitSplitPos*p(w)]^2;

S.H = 1; // Observation matrix H
// Measurement noise covariance
S.R = Std_Dev[InitSplitPos - InitSplitPos*p(v)]^2;

// Kalman Filter
function KalmanFilter(S(k))
True(k) = InitSplitPos(k)
// Construct measurement
S.z(k) = True(k)+p(v)*True(k);
Time update as in equation 10
Measurement update as in equation 11
return S(k+1)
end function

Algorithm 2 – Optimum Split Search

function OptSplit(Polygons,AABB,KalmanStruct)
Orient = OptSplitOrient(Polygons);
// Predict the next split location
KalmanStartPt = KalmanFilter(S(k));
if (Orient = KalmanOrient and Depth = KalmanDepth)
Optimum = OptSearch(Polygons, AABB, KalmanOrient,
KalmanStartPt);
else
 Optimum = OptSearch(Polygons, AABB, Orient);
return Optimum;
end function

VI. RESULTS AND DISCUSSION
We have tested our algorithm on a variety of animation

sequences as shown in Figure 2. The scenes differ with
triangular count and animation behaviour. The scenes consist
of regularly sized and uniformly distributed triangles. We ran
our kd-tree construction algorithm and recorded the Kalman
prediction accuracy and the time our algorithm took to build
kd-tree for each frame in the sequence. We have chosen
MATLAB® and C++ for implementation of our algorithm.
We have implemented the Kalman filter prediction routine in
MATLAB® and the kd-tree construction routine in C++. The
kd-tree construction is linked in MATLAB® through Dynamic
Link Library (DLL). Routines for PLY file reading are also
implemented in MATLAB®. The timing results shown in this
paper are only for kd-tree construction in DLL. We have
performed all the simulations on a workstation with an Intel
Core2 CPU, 2.16 GHz processor and 2GB of RAM.

The scenes we have used in our simulations vary in terms
of their complexities and behaviours. Figure 2 shows four
different animation sequences. In Figure 3 and Figure 4, we
analyze how the cost functions change in the horse (16.8K -
48 Frames) and bunny-dragon (252.5K - 16 Frames)
animations for the two axis (y and z) as shown in Figure 2 and
for only root node split positions. We also plot the actual and
predicted split positions of the Kalman filter. Note that the
actual split positions have been calculated on basis of Surface
Area Heuristics (SAH).

Let’s analyse Figure 3 closely, the upper two sub-figures in
Figure 3 (left to right) show the cost function shift for each
frame in the horse animation sequence for y and z axis
respectively. The minimums of these parabolic cost functions
are the optimum split plan locations. The bottom two sub-
figures in Figure 3 (left to right) show how the actual optimum
split plan locations change over time, the predicted split plan

locations by the Kalman filter (time is no. of frames in this
case) for y and z axis respectively. The red dots are the virtual
measurement observations constructed through measurement
noise ()p v added (equation 8) and the term responsible for
constructing these observations in Algorithm 1
is () () () ().S z k True k p v True k= + × . Also note the periodic
behaviour of split plan locations change as the horse animation
sequence is periodic in nature.

Our algorithm has successfully predicted the split plan
locations for consecutive frames. Hence, it provides a good
initial guess for one dimensional search (parabolic
interpolation combined with golden section search). If we
closely analyse the prediction curves, we see that in almost all
the cases, the prediction error is very small. Since, the entire
scene dataset exhibits a strong coherency between consecutive
frames; we have successfully exploited this property here.
Although, in all these scenes, there remain a constant number
of polygons (triangles) throughout a particular animation
sequence, we see a random behaviour in the kd-tree build
time. The phenomenon occurs due to random noise added by
the Kalman filter prediction steps as in Algorithm 1, where we
have constructed the virtual observations by adding the
measurement noise from equation 8. The added noise
maximum error difference is not greater than 1msec.

Table 1 shows the time difference between an initial build
and a running build of kd-tree data structures for each
animation sequence used in this paper. See the considerable
improvement in the build time in running mode. We have not
yet added the overhead of the Kalman filter in Table 1. In
MATLAB®, the Kalman filter’s average aggregated overhead
is approx. 400-450msec for the whole sequence of 50 frames
with average of 84K polygons (triangles) in each frame. We
expect this time down to 100-150msec if efficiently
implemented in C++. So, in worst case we could add 3-5msec
per frame.

TABLE I. CONVENTIONAL VS MODIFIED KD-TREE BUILD TIME

Modified
kd-Tree

 Build (msec)

Scene

Polygons

Normal

kd-Tree Build
(msec) Initial

 Build
Running
 Build

Time
Reduc

ed

Horse 16.8K 135 135 30 78%
Elephant 84.6K 710 710 105 85%
ClothBall 92.2K 802 802 120 85%

Bunny
Dragon

252.5K 1610 1610 210 87%

VII. CONCLUSION AND FUTURE WORK
We have presented an algorithmic speedup technique for

fast kd-tree construction for animated ray tracing. The optimum
split location search for kd-tree construction is the main time
consuming job. As many of the animation sequences used by
the research community for animated ray tracing exhibit strong
data structures coherency properties, we have made use of a
Kalman filter for predicting the next possible data structure
(kd-tree in our case) state of the animated sequence. We use
here the vector Kalman filter and load it with initial split plan

locations (we build kd-tree for starting frame in the sequence
based on the technique described in [9]). The vector Kalman
filter then predicts the next possible split locations for the next
frame in the sequence. The prediction error is very small as we
can see in the above sample simulation pictures. We use these
predicted locations as starting points for the one dimensional
optimum search algorithm. With best initial guess, the
algorithm exhibits very fast convergence and we see the results
quite promising for the running kd-tree build time as compared
to static or initial kd-tree build. We achieve 78% to 87%
increase in kd-tree construction time for the scenes with as low
as 17K and as high as 252K polygons. We have implemented
our proposed model in MATLAB® and C++. Main prediction
engine of the Kalman filter is implemented in MATLAB®.
C++ handles the kd-tree construction routines. We have used
five different animation sequences with a varying number of
complexities and behaviours i.e., between 17K to 252K
primitives and 16 to 73 frames. We have demonstrated a
considerable decrease in build time as compared to standard
SAH based kd-tree. Further use of the technique could be
demonstrated on scenes with varying number of complexities
in connective frames and scenes with non-uniform polygons
distribution.

REFERENCES
[1] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Faculty of

Electrical Engineering, Czech Technical University in Prague, 2001.
[2] J. D. MacDonald and K. S. Booth. Heuristics for Ray Tracing Using

Space Subdivision. In Graphics Interface Proceedings 1989, pages 152–
163, Wellesley, MA, USA, June 1989. A.K. Peters, Ltd.

[3] G. Stoll.: Part I: Introduction to Realtime Ray Tracing. SIGGRAPH
2005 Course on Interactive Ray Tracing, 2005.

[4] J. Zara.: Speeding Up Ray Tracing - SW and HW Approaches. In
Proceedings of 11th Spring Conference on Computer Graphics
(SSCG’95), pages 1-16, Bratislava, Slovakia, May 1995.

[5] W. Hunt, G. Stoll, and W. Mark. Fast kd-tree Construction With An
Adaptive Error-Bounded Heuristic. In Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing, Sept. 2006.

[6] I.Wald and V. Havran. On Building Fast kd-trees For Ray Tracing, and
on Doing That In O(N log N). In Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing, Sept. 2006.

[7] S. Woop, G. Marmitt, and P. Slusallek. B-kd trees for Hardware
Accelerated Ray Tracing of Dynamic Scenes. In Proceedings of
Graphics Hardware, 2006.

[8] T Foley and J Sugerman. kd-tree Acceleration Structures For A GPU
Raytracer, Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pp. 15-22. (2005).

[9] Sajid Hussain and Håkan Grahn. Fast kd-Tree Construction for 3D-
Rendering Algorithms like Ray Tracing. Lecture Notes in Computer
Science No. 4842, pages 681-690, November, 2007.

[10] I. Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD
thesis, Computer Graphics Group, Saarland University, Saarbrucken,
Germany, 2004.

[11] V. Havran. Heuristic Ray Shooting Algorithm. PhD thesis, Czech
Technical University, Prague, 2001.

[12] Allen Y. Chang. Theoretical and Experimental Aspects of Ray Shooting.
PhD Thesis, Polytechnic University, New York, May 2004.

[13] V. Havran, R. Herzog and H.-P. Seidel. On Fast Construction of Spatial
Hierarchies for Ray Tracing. In Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing, pages 71-80, Sep. 2006.

[14] C. Benthin. Realtime Raytracing on Current CPU Architectures. PhD
thesis, Saarland University, 2006.

[15] S. Popov, J. Gunther, H.-P. Seidel and P. Slusallek. Experiences with
Streaming Construction of SAH KD-Trees. In Proceedings of IEEE
Symposium on Interactive Ray Tracing, pages 89-94, Sep. 2006.

[16] Cleary, J. G., Wyvill, G. Analysis Of An Algorithm For Fast Ray
Tracing Using Uniform Space Subdivision. The Visual Computer (4),
65-83. (1988).

[17] Whang, K.-Y., Song, J.-W., Chang, J.-W., Kim, J.-Y., Cho, W.-S.,Park,
C.-M., Song, I.-Y. An Adaptive Octree for Efficient Ray Tracing. IEEE
Transactions on Visualization and Computer Graphics 1(4), 343-349.
(1995).

[18] D R Horn, J Sugerman, M Houston, P Hanrahan, Interactive kd-tree
GPU Raytracing. Symposium on Interactive 3D Graphics. I3D, pp. 167-
174. (2007).

[19] S.J. Redmonds and C. Heneghan. A Method for Initializing the K-Means
Clustering Algorithm Using kd-trees. Pattern Recognition Letters,
28(8)965-973, Jun. 2007.

[20] H. Stern. Nearest Neighbor Matching Using kd-Trees. PhD thesis,
Dalhousie University, Halifax, Nova Scotia, Aug. 2002.

[21] M. Kaplan. The Use of Spatial Coherence in Ray Tracing. ACM
SIGGRAPH’85 Course Notes 11, pp. 22–26, Jul. 1985.

[22] Kalman, R. E. A New Approach to Linear Filtering and Prediction
Problems, Transaction of the ASME—Journal of Basic Engineering pp.
35-45, March 1960.

[23] Greg Welch and Gary Bishop. An Introduction to Kalman Filter.
Department of Computer Science, University of North Carolina, July
2006.

Figure 2. Animation sequences (top to bottom): Horse (16.8K - 48 Frames), Elephant (84.6K - 48 Frames), BunnyDragon
(252.5K - 16 Frames) and ClothBall (92.2K - 73 Frames).

Figure 3. Horse animation statistics, average build time (30msec).

Figure 4. BunnyDragon animation statistics, average build time (210msec).

