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Abstract
The architecture of a large complex software system,

i.e., the division of the system into components and mod-

ules, is crucial since it often affects and limits the quality

attributes of the system, e.g., performance and maintain-

ability. In this paper we evaluate three software compo-

nents for intra- and inter-process communication in a

distributed real-time system, i.e., an automated guided

vehicle system. We evaluate three quality attributes: per-

formance, maintainability, and portability. The perfor-

mance and maintainability are evaluated quantitatively

using prototype-based evaluation, while the portability is

evaluated qualitatively. Our findings indicate that it might

be possible to use one third-party component for both

intra- and inter-process communication, thus replacing two

inhouse developed components.

1. Introduction

The size and complexity of software systems are con-

stantly increasing. It has been identified that the quality

properties of software systems, e.g., performance and

maintenance, often are constrained by their software archi-

tecture [3]. The software architecture is a way to manage

the complexity of a software system and describes the dif-

ferent parts of the software system, i.e., the components,

their responsibilities, and how they interact with each

other. The software architecture is created early in the

development of a software system and has to be kept alive

throughout the system life cycle. One part of the process of

creating a software architecture is the decision of possible

use of existing software components in the system. 

The system we study in this paper is an Automated

Guided Vehicle system (AGV system) [7], which is a com-

plex distributed real-time system. AGV systems are used in

industry mainly for supply and materials handling, e.g.,

moving raw materials, and finished products to and from

production machines. Important aspects to handle in such

systems are, e.g., the ability to automatically drive a vehi-

cle along a predefined path, keeping track of the vehicles’

positions, routing and guiding the vehicles, and collision

avoidance. The software in an AGV system has to be

adaptable to quite different operating environments, e.g.,

iron works, pharmacy factories, and amusement parks.

More importantly, the system may under no circumstances

inflict harm on a person or object. The safety and flexibility

requirements together with other quality- and functional

requirements of the system make it a complex software

system to create and maintain. In the system in our case

study, the software in the vehicle can be divided into three

main parts that continuously interact in order to control the

vehicle. These parts communicate both within processes as

well as between processes located on different computers. 

In this paper we evaluate two communication compo-

nents used in an existing AGV system and compare them

to an alternative COTS (commercial-off-the-shelf) compo-

nent for communication [19] that is considered for a new

version of the AGV system. We evaluate three quality

attributes for each of the components: performance, main-

tainability, and portability. We use three prototypes built

using a prototype framework to measure the performance

of each component. Both intra-process as well as inter-pro-

cesses communication are evaluated. The communicating

processes reside both on the same computer and on two

different computers connected by a network. We measure

the maintainability of the three components using the

Maintainability Index metric [17]. We also discuss qualita-

tive data for the portability aspects of the components. 

The evaluation is performed in an industrial context in

cooperation with Danaher Motion Särö [6]. The usage sce-

narios and architecture description that are used during the

evaluations have been developed in cooperation with them.

Our results indicate that the performance of the COTS

component is approximately half the performance of the

in-house developed communication components. On the

other hand, using a third party COTS component signifi-

cantly reduce the maintenance effort as well as increase the

functionality. Finally, all three components turned out to be

portable from Windows XP to Linux with very little effort. 
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The rest of the paper is organized as follows. Section 2

presents some background to software architecture, archi-

tecture evaluation, and automated guided vehicle systems.

In Section 3 we introduce the components and the quality

attributes that we evaluate. We present our evaluation

results in Section 4. In Section 5 we discuss related work

and, finally, in Section 6 we conclude our study.

2. Background

In this section, we give some background about soft-

ware architectures, how to evaluate them, different quality

attributes, and the application domain, i.e., automated

guided vehicle systems.

2.1. Software Architecture

Software systems are developed based on a requirement

specification. The requirements can be categorized into

functional requirements and non-functional requirements,

also called quality requirements. Functional requirements

are often easiest to test (the software either has the required

functionality or not) but the non-functional requirements

are harder to test (quality is hard to define and quantify). 

In the recent years, the domain of software architecture

[3, 5, 18, 20] has emerged as an important area of research

in software engineering. This is in response to the recogni-

tion that the architecture of a software system often con-

strains the quality attributes. Software architecture is

defined in [3] as follows:

“The software architecture of a program or computing

system is the structure or structures of the system, which

comprise software components, the externally visible prop-

erties of those components, and the relationships among

them.”

Software architectures have theoretical and practical

limits for quality attributes that may cause the quality

requirements not to be fulfilled. If no analysis is done dur-

ing architectural design, the design may be implemented

with the intention to measure the quality attributes and

optimize the system. However, the architecture of a soft-

ware system is fundamental to its structure and cannot eas-

ily be changed without affecting virtually all components

and, consequently, considerable effort. It has also been

shown that several quality attributes can be in conflict with

each other, e.g., maintainability and performance [9].

Therefore, it is important to evaluate all (or at least the

most) relevant quality attributes at the software architecture

level. 

2.2. Evaluation Methodology

In order to make sure that a software architecture fulfills

its quality requirements, it has to be evaluated. Four main

approaches to architecture evaluation can be identified, i.e.,

scenarios, simulation, mathematical modelling, and experi-

ence-based reasoning [5]. In this paper we use a prototype-

based architecture evaluation method which is part of the

simulation-based approach and relies on the construction of

an executable prototype of the architecture [5, 15, 21]. Pro-

totype-based evaluation enables us to evaluate software

components in an execution environment. It also lets the

developer compare all components in a fair way, since all

components get the same input from a simplified architec-

ture model. An overview of the parts that go into a proto-

type is shown in Figure 1. A strength of this evaluation

approach is that it is possible to make accurate measure-

ments on the intended target platform for the system early

on in the development cycle. 

WorkerB

WorkerC

AbstractWorker

«interface»

Communication

NDCDispatcherComm

LogManager

WorkerA

-End15

-End16

-End1

-End2

ActiveObjectBase
«interface»

BaseConsumer

WorkerE

WorkerF

Figure 1. The prototype consists of three main parts: the architecture model, the evalu-

ation support framework, and the architecture components.

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05) 

0-7695-2284-X/05 $20.00 © 2005 IEEE



The prototype-based evaluation is performed in seven

steps plus reiteration. We will describe the steps shortly in

the following paragraphs.

Define the evaluation goal. In this first step two things

are done. First, the environment that the simulated archi-

tecture is going to interact with is defined. Second, the

abstraction level that the simulation environment is to be

implemented at is defined (high abstraction gives less

detailed data, low abstraction gives accurate data but

increases model complexity).

Implement an evaluation support framework. The

evaluation support framework’s main task is to gather data

that is relevant to fulfilling the evaluation goal. Depending

on the goal of the evaluation, the support framework has to

be designed accordingly, but the main task of the support

framework is to simplify the gathering of data. The support

framework can also be used to provide common functions

such as base and utility classes for the architecture models.

Integrate architectural components. The component

of the architecture that we want to evaluate has to be

adapted so that the evaluation support framework can inter-

act with it. The easiest way of achieving this is to create a

proxy object that translates calls between the framework

and the component.

Implement architecture model. Implement a model of

the architecture with the help of the evaluation support

framework. The model should approximate the behavior of

the completed system as far as necessary. The model

together with the evaluation framework and the component

that is evaluated is compiled to an executable prototype.

Execute prototype. Execute the prototype and gather

the data for analysis in the next step. Try to make sure that

the execution environment matches the target environment

as close as possible.

Analyse logs. Analyse the gathered logs and extract

information regarding the quality attributes that are under

evaluation. Automated analysis support is preferable since

the amount of data easily becomes overwhelming.

Predict quality attribute. Predict the quality attributes

that are to be evaluated based on the information from the

analysed logs.

Reiteration. This goes for all the steps in the evaluation

approach. As the different steps are completed it is easy to

see things that were overlooked during the previous step or

steps. Once all the steps has been completed and results

from the analysis are available, you should review them

and use the feedback for deciding if adjustments have to be

done to the prototype. These adjustments can be necessary

in both the architecture model and the evaluation support

framework. It is also possible to make a test run to validate

that the analysis tools are working correctly and that the

data that is gathered really is useful for addressing the

goals of the evaluation. 

2.3. Automated Guided Vehicle Systems

As an industrial case we use an Automated Guided

Vehicle system (AGV system) [7]. AGV systems are used

in industry mainly for supply and materials handling, e.g.,

moving raw materials, and finished products to and from

production machines. 

Central to an AGV system is the ability to automatically

drive a vehicle along a predefined path, the path is typically

stored in a path database in a central server and distributed

to the vehicles in the system when they are started. The

central server is responsible for many things in the system,

it keeps track of the vehicles positions and uses the infor-

mation for routing and guiding the vehicles from one point

in the map to another. It also manages collision avoidance

so that vehicles do not run into each other by accident and

it detects and resolves deadlocks when several vehicles

want to pass the same part of the path at the same time. The

central server is also responsible for the handling of orders

from operators. When an order is submitted to the system,

e.g., “go to location A and load cargo”, the server selects

the closest free vehicle and begins to guide it towards the

pickup point.

In order for the central server to be able to perform its

functions, it has to know the exact location of all vehicles

under its control on the premise. Therefore every vehicle

sends its location to the server several times every second.

The vehicles can use one or several methods to keep track

of its location. The three most common methods are induc-

tion wires, magnetic spots, and laser range finders.

The first method, and also the simplest, is to use induc-

tion wires that are placed in the floor of the premises. The

vehicles are then able to follow the electric field that the

wire emits and from the modulation of the field determine

where it is. A second navigation method is to place small

magnetic spots at known locations along the track that the

truck is to follow. The truck can then predict where it is

based on a combination of dead reckoning and anticipation

of coming magnetic spots. A third method is to use a laser

located on the vehicle, that measures distances and angles

from the vehicle to a set of reflectors that has been placed

at known locations throughout the premises. The control

system in the vehicle is then able to calculate its position in

a room based on the data returned from the laser.

Regardless of the way that a vehicle acquires the infor-

mation of where it is, it must be able to communicate its

location to the central control computer. Depending on the

available infrastructure and environment in the premises of

the system, it can for example use radio modems or a wire-

less LAN. 

The software in the vehicle can be roughly divided into

three main components that continuously interact in order

to control the vehicle. These components require commu-

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05) 

0-7695-2284-X/05 $20.00 © 2005 IEEE



nication both within processes and between processes

located on different computers. We will perform an evalua-

tion of the communication components used in an existing

AGV system and compare them to an alternative COTS

component for communication that is considered for a new

version of the AGV system.

3. Component Quality Attribute Evaluation

In this section we describe the components that we eval-

uate, as well as the evaluation methods used. The goal is to

assess three quality attributes, i.e., performance, portability

and maintainability for each component. The prototypes

simulate the software that is controlling the vehicles in the

AGV system. The central server is not part of the simula-

tion.

3.1. Evaluated Communication Components

The components we evaluate are all communication

components. They all distribute events or messages

between threads within a process and/or between different

processes over a network connection. Two of the compo-

nents are developed by the company we are working with.

The third component is an open source implementation of

the CORBA standard [16].

NDC Dispatcher. The first component is an implementa-

tion of the dispatcher pattern which provides publisher-

subscriber functionality and adds a layer of indirection

between the senders and receivers of messages. It is used

for communication between threads within one process and

can not pass messages between processes. The NDC Dis-

patcher is implemented with active objects using one

thread for dispatching messages and managing subscrip-

tions. It is able to handle distribution of messages from one

sender to many receivers. The implementation uses the

ACE framework for portability between operating systems.

This component is developed by the company and is imple-

mented in C++. 

Network Communication Channel. Network Communi-

cation Channel (NCC) is a component is developed by the

company as well. It is designed to provide point to point

communication between processes over a network. It only

provides one to one communication and has no facilities

for managing subscriptions to events or message types.

NCC can provide communication with legacy protocols

from previous versions of the control system and can also

provide communication over serial ports. This component

is developed by the company and is implemented in C.

TAO Real-time Event Channel. The third component,

The ACE Orb Real-time Event Channel (TAO RTEC) [19],

can be used for communication between both threads

within a process, and between processes both on the same

computer and over a network. It provides communication

from one to many through the publisher-subscriber pattern.

The event channel is part of the TAO CORBA implementa-

tion and is open source. This component can be seen as a

commercial of-the-shelf (COTS) component to the system.

We use TAO Real-time Event Channel to distribute mes-

sages in the same way that the NDC Dispatcher does. 

3.2. Software Quality Attributes to Evaluate

In our study we are interested in several quality

attributes. The first is performance because we are inter-

ested in comparing how fast messages can be delivered by

the three components. We assess the performance at the

system level and look at the performance of the communi-

cation subsystem as a whole.

The second attribute is maintainability which was

selected since the system will continue to be developed and

maintained under a long period. The selected communica-

tion component will be an integral part of the system, and

must therefore be easy to maintain.

The third attribute is portability, i.e., how much effort is

needed in order to move a component from one environ-

ment/platform to another. This attribute is interesting as the

system is developed and to some extent tested on comput-

ers running Windows, but the target platform is based on

Linux.

Performance. We define performance as the time it takes

for a communication component to transfer a message

from one thread or process to another. In order to measure

this we created one prototype for each communication

component. The prototypes were constructed using a

framework that separates the communication components

from the model of the interaction, i.e., the architecture. As

a result, we can use the same interaction model for the pro-

totypes and minimize the risk of treating the communica-

tion components unequally in the test scenarios. The

framework from a previous study [15] was reused, and

functionality was added for measuring the difference in

time for computers that were connected via a network. This

information was used to adjust the timestamps in the logs

when prototypes were running on separate computers, and

to synchronize the start time for when the prototypes

should start their models.

We created two different models of the interaction: one

for communication between threads in a process and one

for communication between processes on separate comput-

ers that communicate via a network. The NDC Dispatcher
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was tested with the model for communication between

threads in a process and NCC was tested with the model for

communication over the network. TAO RTEC was tested

with both models since it can handle both cases. 

An example of a model can be seen in Figure 2 which

shows the interaction between threads in a process for the

NDC Dispatcher prototype. Here, thread A sends a mes-

sage to thread B every 50 ms. Thread B sends the message

on to thread C. Thread C sends it to thread D which in turn

send it back to thread B. Each message is marked with a

timestamp and stored to a logfile for offline analysis.

The prototypes were executed three times on a test plat-

form similar to the target environment and we calculated

the average response time of the three runs. The test envi-

ronment consisted of two computers with a 233Mhz Pen-

tium 2 processor and 128 MB RAM each. Both computers

were running the Linux 2.4 kernel and they were connected

with a dedicated 10Mbps network.

Maintainability. We use a tool called CCCC [13, 14] to

collect a number of measures (e.g., number of modules,

lines of code, and cyclomatic complexity) on the source

code of the components. The objective is to use these mea-

sures to calculate a maintainability index metric [17] for

the components. The maintainability index (MI) is a com-

bination of the average halstead volume per module

(aveVol), the average cyclomatic complexity per module

(aveV(g’)), average lines of code per module (aveLoc), and

average percentage of lines of comments per module

(aveCM), as shown in Figure 3. The maintainability index

calculation results in a value that should be as high as pos-

sible. Values above 85 are considered to indicate good

maintainability, between 85 and 65 is medium maintain-

ability, and finally, values below 65 are indicating low

maintainability [17]. Based on the maintainability index

together with our qualitative experiences from developing

the prototypes, we evaluate and compare the maintainabil-

ity of the components. We do not see the maintainability

index as a definite judgement of the maintainability of the

components but more as a tool to indicate the properties of

the components and to make them comparable.

Portability. We define portability as the effort needed to

move the prototypes and communication components from

a Windows XP based platform to a Linux 2.4 based plat-

form. This is a simple way of assessing the attribute but it

verifies that the prototypes actually works on the different

platforms and it gives us some experience from making the

port. Based on this experience we can make a qualitative

comparison of the three components.

4. Evaluation Results

During the evaluation, the largest effort was devoted to

implementing the three prototypes and running the perfor-

mance benchmarks. The data from the performance bench-

marks gave us quantitative performance figures which

together with the experience from the implementations

were used to assess the maintainability and portability of

the components.

4.1. Performance Results

After implementing the prototypes and performing the

test runs, the gathered logs were processed by an analysis

tool that merged the log entries, compensated for the differ-

ences in time on the different machines and calculated the

time it took to transfer each message.

4.2. Intra Process Communication

The intra process communication results in Table 1

show that the average time it takes for the NDC Dispatcher

to deliver a message is 0,3 milliseconds. The same value

for TAO RTEC is 0,6 milliseconds. The extra time that it

takes for TAO RTEC is mainly due to the differences in

size between TAO RTEC and the NDC Dispatcher. TAO

RTEC makes use of a CORBA ORB for dispatching the

events between the threads in the prototype. This makes

TAO RTEC very flexible but it impacts its performance

Figure 2. Interaction within a prototype.

A

B C

D

MI 171 5.2 aveVolln 0.23 aveV g' 16.2 aveLocln––– 50 2.46 aveCMsin+=

Figure 3. Formula for calculating the maintainability index (MI) [17].
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when both publisher and subscriber are threads within the

same process; the overhead in a longer code path for each

message becomes a limiting factor. The NDC Dispatcher

on the other hand is considerably smaller in its implemen-

tation than TAO RTEC, resulting in a shorter code path and

faster message delivery. 

During the test runs of the NDC Dispatcher and the

TAO RTEC based prototypes we saw that the time it took

to deliver a message was not the same for all messages.

Figure 4 and Figure 5 show a moving average of the mea-

sured delivery times in order to illustrate the difference in

behavior between the components. In both the NDC Dis-

patcher and the TAO RTEC prototypes this time depends

on how many subscribers there are to the message, and the

order the subscribers subscribed to a particular message.

We also saw that there is a large variation in delivery time

from message to message when using TAO RTEC. It is not

possible to guarantee that the time it takes to deliver a mes-

sage will be constant when using neither the NDC Dis-

patcher nor TAO RTEC, but the NDC Dispatcher’s

behavior is more predictable. 

4.3. Inter Process Communication

The inter process communication is evaluated in two

different environments; when the communicating pro-

cesses are on the same computer and when they reside on

two different computer connected by a network. 

In Table 2 we present the message delivery times when

the processes reside on the same computer. We find that

TAO RTEC takes 2,0 milliseconds on average to deliver a

message, while NCC only takes 0,8 milliseconds to deliver

a message. Much of the difference comes from the fact that

TAO RTEC offers much more flexibility, e.g., communica-

tion one-to-many, while NCC only provides one-to-one

communication. Another contributing factor is that TAO

RTEC runs the event channel in a separate process from the

prototypes. This results in an added delay as messages are

sent to the event channel process before they are delivered

to the recipient process. NCC on the other hand, delivers

the messages directly to the recipient process.

The inter process communication in Table 3 shows that

TAO RTEC takes on average 2 milliseconds to deliver a

message from one computer to another in our test environ-

ment. NCC takes on average 1 millisecond. The extra time

needed for TAO RTEC to deliver a message is, as dis-

cussed earlier, a result of the longer code path involved due

to the use of CORBA, and the need of an intermediary pro-

cess for distributing the messages to the subscribers. The

gain of using this component is added flexibility in how

messages can be distributed between subscribers on differ-

ent computers. In comparison, the NCC component is only

able to pass messages from one point to another, making it

less complex in its implementation.  

In Table 4 we present the amount of data that is trans-

mitted (and in how many TCP/IP packages) over the net-

Table 1. Intra process communication times.

NDC Dispatcher TAO RTEC

Intra process 0,3 ms 0,6 ms

Delivery time per message 

200

250
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400

450

0 200 400 600 800 1000 1200 1400 1600 1800 2000

message number

m
s

WorkerA WorkerB WorkerC WorkerD

Figure 4. NDC Dispatcher message delivery time

(moving average).
Table 2. Communication times between processes 

running on the same computer.

TAO RTEC NCC

Inter process 2,0 ms 0,8 ms

Delivery time per message

450
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550

600

650

700

750

800

850

0 200 400 600 800 1000 1200 1400 1600 1800 2000

message number

m
s

WorkerA WorkerB WorkerC WorkerD

Figure 5. TAO RTEC message delivery time (mov-

ing average).
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work by prototypes using TAO RTEC and NCC,

respectively. In the architecture model, both prototypes

perform the same work and send the same number of mes-

sages over the network. In the table we see that both com-

ponents send about the same number of TCP/IP packages

(TAO RTEC sends 37 more than NCC). The difference is

located to the initialization of the prototypes where a num-

ber of packages are sent during ORB initialization, name

resolution, and subscriptions to the event channel etc.

When we look at the amount of data sent in the packages

we see that TAO RTEC sends about 55% more data than

NCC does. This indicates that NCC has less overhead per

message than TAO RTEC has. Both components do how-

ever add considerably to the amount of data that is gener-

ated by the model, which generated 6 kb of data in 300

messages.  

In summary, we find that TAO RTEC has half the per-

formance of both the NDC Dispatcher and NCC for both

intra- and inter-process communication. However, TAO

RTEC has the advantage that it can handle both intra- and

inter-process communication using the same communica-

tion component, while the NDC Dispatcher and NCC can

handle only one type of communication (either intra-pro-

cess or inter-process).

4.4. Maintainability Results

The measures that we gathered using CCCC are listed in

Table 5, and the metrics are defined as follows. Modules

(MOD) is the number of classes and modules with identi-

fied member functions. Lines of code (LOC) and Lines of

comments (COM) are measures for the source code, and a

combination of them gives an indication of how well docu-

mented a program is (LOC/COM and LOC/MOD). The

COM measure can also be combined with the cyclomatic

complexity (CYC) to give an indication of how well docu-

mented the code is in relation to the code complexity. The

cyclomatic complexity is also used in combination with the

module count in order to give an indication of the program

complexity per module (CYC/MOD). When analyzing the

results we put the most weight on compound measures

such as the maintainability index, cyclomatic complexity

per comment, and cyclomatic complexity per module. 

The NDC Dispatcher is the smallest of the three compo-

nents with 533 lines of code in 23 modules (see Table 5).

The complexity per module is the lowest but the complex-

ity per comment is the highest of all the components. While

working with this component we found it easy to use and

easy to get an overview of. The component also has the

highest maintainability index (128,67) of the three compo-

nents, indicating a high maintainability.

NCC is 23982 lines of code in 57 modules. It is also the

most commented component of the three, which is shown

in the low cyclomatic complexity per comment value.

However, there are indications in the LOC/MOD and CYC/

MOD measures that the component has very large mod-

ules. This can make NCC difficult to overview, thus lower-

ing its maintainability. The maintainability index supports

this assessment, since NCC is the component with the low-

est maintainability index (50,88) indicating poor maintain-

ability. 

TAO RTEC is 312043 lines of code in 3098 modules.

This is by far the largest component of the three. Although

the parts that are used for the real-time communication

channel are smaller (we gathered metrics for all the parts of

TAO) it is still difficult to get an overview of the source

Table 3. Communication times between processes 

running on different computers.

TAO RTEC NCC

Inter process over network 2,0 ms 1,0 ms

Table 4. Network traffic generated by TAO RTEC and 

NCC.

TAO RTEC NCC

TCP/IP packages 800 packages 763 packages

Data over network 137 kb 88 kb

Table 5. Metrics from the CCCC tool [14].

Metric
NDC 

Dispatcher
NCC

TAO 

RTEC

Modules (MOD) 23 57 3098

Lines of code (LOC) 533 23982 312043

Lines of comments 

(COM)
128 19827 78968

LOC/COM 4,164 1,210 3,952

LOC/MOD 23,174 420,737 100,724

Cyclomatic

complexity (CYC)
69 3653 34927

CYC/COM 0,539 0,184 0,442

CYC/MOD 3,0 64,088 11,274

Maintainability Index 128,67 50,88 78,91
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code. The maintainability index for TAO RTEC (78,91)

puts it in the medium maintainability category. We do,

however, think that the size of the component makes it dif-

ficult to maintain within the company. The question of

maintainability is relevant only if one version of TAO is

selected for continued use in the company. If newer ver-

sions of TAO are used as they are released then the mainte-

nance is continuously done by the developer community

around TAO. On the other hand, there is a risk that API:s in

TAO are changed during development, breaking applica-

tions. But since the application developers are with the

company, this problem is probably easier to deal with than

defects in TAO itself. 

4.5. Portability Results

Based on our experiences from building the prototypes

we found that moving the prototypes from the Windows-

based to the Linux-based platform was generally not a

problem and did not take very long time (less than a day

per prototype). Most of the time was spent on writing new

makefiles and not on changing the code for the prototypes.

Both the NDC Dispatcher and TAO RTEC are devel-

oped on top of the ADAPTIVE Communications Environ-

ment (ACE) [19]. ACE provides a programming API that

has been designed to be portable to many platforms. Once

ACE was built on the Linux platform it was easy to build

the prototypes that used it.

NCC was originally written for the Win32 API and uses

a number of portability libraries built to emulate the neces-

sary Win32 API:s on platforms other than windows. Build-

ing the prototype using NCC was not more complicated

than those using the NDC Dispatcher or TAO RTEC.

5. Related Work

Prototypes are commonly used in interface design,

where different alternatives to graphical user interfaces can

be constructed and tested by users and developers [4]. The

use of prototypes for architecture simulation and evaluation

has been described and discussed in [2, 15]. The goal is to

evaluate architectural alternatives before the detailed

design documents have been developed, making it possible

to obtain performance characteristics for architecture alter-

natives and hardware platform working together. Other

commonly used performance models are queueing net-

works, stochastic petri nets, stochastic process algebra, and

simulation models [1]. Software Performance Engineering

based and architectural-pattern based approaches both use

information obtained from UML design documents (Use

Case, System Sequence, and Class diagrams) for the evalu-

ation of the software architecture. This makes it possible to

make performance evaluations as soon as the design of the

system begins to take shape. A weakness of these perfor-

mance evaluation models is that it is difficult to capture the

dynamic properties of the executing code when it interacts

with the operating system. 

Several methods for evaluating one aspect of a compo-

nents quality attributes have been described [22]. Most of

the methods focus on the evaluation of different perfor-

mance aspects of components. However, when selecting

components it is likely that more than the performance

attribute is of interest for the developers, this result in a

need to perform evaluations for several quality attributes

for the components. Qualities such as maintainability can

be quantified and compared using for example the main-

tainability index [17]. Using tools for static analysis of the

source code of the components makes it possible to extract

complexity and maintainability metrics for components.

Methods for assessing several quality attributes during

an evaluation exist in several architecture level evaluation

methods. Methods such as the scenario-based Software

Architecture Analysis Method (SAAM) [10] and Architec-

ture Tradeoff Analysis Method (ATAM) [11], as well as the

attribute-based ABAS [12] method can be used to assess a

number of quality attributes using scenario-based evalua-

tion. Especially ATAM tries to handle several quality

attributes and their impact on the software architecture

simultaneously. The evaluation methods that we used in

this paper can be used to supply input for both SAAM and

ATAM. In addition, the method that we have used in this

paper can also complement the results from SAAM and

ABAS, i.e., they focus around qualitative reasoning while

our method provides quantitative data. Together, the meth-

ods can address a broader spectrum of quality attributes. 

6. Conclusions

In this paper we have used a prototype-based evaluation

methods for assessing three quality attributes of three dif-

ferent communication components. We have shown that it

is possible to compare the three evaluated components in a

fair way using a common framework for building the pro-

totypes and analyzing the resulting data. The components

were one COTS component, i.e., The ACE Orb Real-Time

Event Channel (TAO RTEC), and two inhouse developed

components, the NDC Dispatcher and NCC. For each of

the components we have evaluate three quality attributes:

performance, maintainability, and portability. The perfor-

mance and maintainability are evaluated quantitatively,

while portability is evaluated qualitatively. 

The performance measurements show that TAO RTEC

has half the performance of the NDC Dispatcher in com-

munication between threads within a process. Our results

also show that TAO RTEC has approximately half the per-

formance of NCC in communication between processes.
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On the other hand, TAO RTEC provides functionality for

both intra- and inter-process communication, while the

NDC Dispatcher and NCC only support one type of com-

munication. 

As for the maintainability, the NDC Dispatcher has the

highest maintainability index of the three components (it

indicated a high maintainability for the component). NCC

turned out to have the lowest maintainability index (so low

that it indicated a low maintainability for the component).

However, even though NCC has the lowest maintainability

index of all the components, we think that it is rather easy

for the company to maintain since it has been developed

within the company and is well documented. TAO RTEC is

the largest of the three components, with a medium high

maintainability index, and the knowledge of how it is con-

structed is not within the company. Therefore, we think that

TAO RTEC is less maintainable for the company. On the

other hand, the company can take advantage of future

development of TAO RTEC with little effort as long as the

API:s remain the same.

Finally, considering the portability aspects. All three

evaluated components fulfill the portability requirement in

this study. We had no problems moving the prototypes

from a Windows-based to a Linux-based platform. 
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