
Transactional Memory

H̊akan Grahn, Guest editor

School of Computing
Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

Hakan.Grahn@bth.se, http://www.ipd.bth.se/˜hgr/

Abstract

Current and future processor generations are based on multicore architectures where the performance increase comes
from an increasing number of cores on a chip. In order to utilize the performance potential of multicore architectures
the programs also need to be parallel, but writing parallel programs is a non-trivial task. Transactional memory tries
to ease parallel program development by providing atomic and isolated execution of code sequences, enabling software
composability and protected access to shared data. In addition, transactional memory has the ability to execute atomic
code sequences in parallel as long as no data conflicts occur. Transactional memory implementation proposals exit
for both hardware and software, as well as hybrid solutions. This special issue on transactional memory introduces
transactional memory as a concept, presents an overview of some of the most important approaches so far, and finally,
includes five articles that advances the state-of-the-art in transactional memory research.

Key words: Multiprocessors, Parallel Programming, Concurrency, Transactions, Synchronization

1. Introduction

Today we are in the middle of a paradigm shift in the
computer industry. Previous processor generations were
based on uni-processor technology, while current and fu-
ture processor generations are based on multicore archi-
tectures where the performance increase are expected to
mainly come from an increasing number of cores on a
chip [1]. However, the software needs to be parallel as well
as scalable in order to harvest the multicore performance
potential [2, 3, 4].

Parallel programming in the multicore era is a chal-
lenging task. Writing parallel applications can be cum-
bersome, fault-prone, and take a lot of time and effort.
Partitioning the application into concurrent threads and
ensuring that the application is properly synchronized in-
troduce correctness issues, e.g., race conditions, deadlocks,
and priority inversion problems. The introduction of syn-
chronizations may also lead to unnecessary dependencies
in the code that can have a severe negative performance
impact. Thus, novel approaches are needed to ease the
development of parallel applications.

Transactional memory [5, 6, 7, 8] has been proposed
as an alternative to the traditional lock-based approach
to express and manage concurrency. During the last few
years we have seen an increasing interest in programming
languages, run-time systems, and hardware to support
transactional memory, speculative concurrency, and fail-
ure atomicy.

This special issue of the Journal of Parallel and Dis-

tributed Computing covers a wide range of aspects and
captures the state-of-the-art of an emerging area. The in-
troduction to the special issue provides an introduction to
transactional memory as well as an overview of some of
the most important transactional memory proposals up to
late 2009. A thorough presentation of transactional mem-
ory proposals up to mid 2006 is found in [7]. The other
papers in the special issue constitute a selection of high-
quality papers advancing the state-of-the-art in transac-
tional memory research.

Thirteen papers were submitted to the special issue.
Two of those papers were judged as out of scope and the
other eleven papers were sent out for review. All papers
were reviewed by three, and sometimes four, reviewers.
Many of the papers were reviewed by people from both in-
dustry and academia. Based on the reviewers’ comments,
we decided to accept five high-quality papers for inclusion
in the special issue. The papers cover several different and
important aspects of transactional memory.

The first paper, “Adaptive Locks: Combining Trans-
actions and Locks for Efficient Concurrency” by Usui,
Behrends, Evans, and Smaragdakis, addresses how to com-
bine different synchronization approaches. Their approach
is based on adaptive techniques that dynamically deter-
mine whether a critical section is best executed using locks
or transactions. They provide novel techniques for on-line
cost-benefit analysis and low-overhead statistical measure-
ments, as well as a full compiler implementation of their
techniques.

The next two papers address different aspects of trans-

Preprint submitted to Journal of Parallel and Distributed Computing June 18, 2010



actional memory in embedded systems. “Lightweight Trans-
actional Memory Systems for NoCs Based Architectures:
Design, Implementation and Comparison of Two Policies”
by Meunier and Pétrot evaluates how hardware transac-
tional memory can be used in an embedded system with
write-through caches. The paper presents a detailed hard-
ware transactional memory design for write-through caches,
as well as a comparison of both implementation cost and
performance of hardware transactional memory solutions
for write-through and write-back caches.

“Embedded-TM: Energy and Complexity-Effective Hard-
ware Transactional Memory for Embedded Multicore Sys-
tems” by Ferri, Wood, Moreshet, Bahar, and Herlihy also
addresses implementation of hardware transactional mem-
ory in embedded systems. They propose and evaluate
three alternative hardware transactional memory imple-
mentations and three contention management schemes in
terms of energy, performance, and complexity.

The fourth paper, “Extensible Transactional Memory
Testbed” by Harmanci, Gramoli, Felber, and Fetzer, ad-
dresses how to evaluate the correctness of a transactional
memory implementation. More specifically, they propose a
general framework, TMUNIT, for evaluation how different
transactional memory implementations fulfil certain cor-
rectness and semantical properties. TMUNIT also provides
a domain specific language for writing workloads.

Finally, “Implementation Tradeoffs in the Design of
Flexible Transactional Memory Support” by Shriraman,
Dwarkadas, and Scott, presents a high-performance frame-
work, FlexTM (FLEXible Transactional Memory), for im-
plementing transactional memory systems. Four hardware
mechanisms are proposed in order to decouple hardware-
based conflict detection from software controlled conflict
resolution policy. Further, different hardware-software im-
plementation alternatives are presented and evaluated.

The rest of the paper is organized as follows. Section 2
presents an introduction to transactional memory in gen-
eral and the basic concepts. Then, Section 3 presents some
key concepts for basic design and implementation of hard-
ware and software transactional memory systems. In Sec-
tion 4, Section 5, and Section 6 some of the most impor-
tant hardware-based, software-based, and hybrid transac-
tional memory systems, respectively, are presented. Fi-
nally, some concluding remarks are presented in Section 7.

2. Transactional Memory Concepts and Properties

2.1. Transactional Memory
Transactional memory [5, 6, 7, 8], has attracted a sub-

stantial amount of research focus during the last decade.
Transactional memory tries to ease the development of
parallel programs by providing primitives to execute atomic
code sequences concurrently as long as no data conflicts
occur. Thus, fine-grain concurrency and data access is
enabled, and transactional memory has the potential to
achieve higher performance than in traditional lock-based

approaches [5]. Today, many argue that the main advan-
tage of transactional memory is to provide software com-
posability and enable software composition, see e.g., [7].

Transactional memory can be implemented both in hard-
ware or software, as well as in various hybrid approaches
such as virtualized hardware transactional memory sys-
tems, hardware accelerated software transactional mem-
ory systems, and systems that dynamically switch between
hardware and software execution modes. Common issues
to address for all transactional memory proposals are how
to maintain speculative data (data versioning), and how
to detect and resolve conflicts during the execution of con-
current transactions.

2.2. General Transactional Memory Terminology
Transactions is a general concept and has been used a

long time. A transaction generally has three phases:

1. Begin the transaction. A snap-shot of the execution
state is taken, which will be needed if the transaction
is aborted.

2. Execution of one or several operations/actions/tasks
(the terminology varies). The effects of these oper-
ations are not visible outside the transaction during
the execution of the transaction.

3. Commit or abort the transaction. In case of a com-
mit, the result of the transaction and its associated
operations/actions are made visible the the rest of
the system. In case of an abort, the execution is
rolled-back to the start of the transaction.

In transactional memory systems, a transaction is a
finite code sequence that satisfies the atomicity and isola-
tion properties [5, 9, 10].

• Atomicity: Either the whole transaction is exe-
cuted (committed) or none of it is done (aborted),
often referred to as the “all or nothing” property.

• Isolation: Individual memory updates within an
ongoing transaction is not visible outside the trans-
action. When the transaction commits, all memory
updates are made visible to the rest of the system.

The first proposal where caches are used to buffer spec-
ulative updates along with old values for atomic code se-
quences and then let the coherence protocol detect con-
flict is presented by Knight in [11], thus providing the
ground for future hardware transactional memory propos-
als. Ideas similar to the definition of transactional memory
can also be found in the Oklahoma Update system [12].
They propose to update multiple shared variables atomi-
cally, supporting the “all or nothing” property. Further,
the storage system of the IBM 801 implemented support
for transactions in hardware [13].

In order to continue our description of transactional
memory properties we need to (informally) describe what
me mean with the following concepts:

2



• Read-Set: The set of data items (memory loca-
tions) that are read by a transaction.

• Write-Set: The set of data items (memory loca-
tions) that are written by a transaction.

• Commit: When a transaction successfully completes,
we say that the transaction commits. When the
transaction commits, all new values for the data items
in the transaction’s write-set are made visible to the
rest of the system.

• Abort: Abort means that the transaction fails, usu-
ally as a result of a conflict. When a transaction
aborts it must restore its initial state, i.e., reset all
data items in the transaction’s write-set to the value
they had when the transaction began.

• Conflict: Two concurrent transactions is said to
conflict if one transaction’s write-set overlaps with
the other transaction’s read or write-set. In case of
a conflict, one of the transactions needs to abort.

The union of the read-set and the write-set of a trans-
action is sometimes called the footprint [14] of the trans-
action, i.e., the set of data items that have be accessed
within the transaction.

2.3. Data Version Management
A transactional memory system requires that data ver-

sion management, in software transactional memory sys-
tems often called update strategy or update policy, is imple-
mented. It is necessary so that the system can maintain
both old values of data items (i.e., valid when the trans-
action starts) that are needed if the transaction aborts,
and new values of data items (uncommitted values writ-
ten during the execution of a transaction) that are needed
when the transaction commits. For large transactions, the
state that is necessary to maintain may be large.

The two basic approaches are lazy and eager data ver-
sioning. The main principle behind lazy data versioning,
also called deferred update, is that all writes performed
within a transaction are buffered in a write buffer or stored
in a local copy of an object until the transaction commits.
When the transaction commits, the values from the write
buffer or the local object copy are written to memory and
the write buffer is emptied. If the transaction aborts, the
old values are still in memory and we only need to flush the
write buffer or discard local object copies. This approach
favors fast aborts at the price of slower commits.

The main principle behind eager data versioning, also
called direct update, is that all writes within a transaction
are performed directly in memory, and the old values of
the data items are stored in an undo log (a.k.a. transaction
log). When the transaction commits, the memory already
contains the new values and the undo log is flushed. If the
transaction aborts, the old values of the data items must
be restored, i.e., fetched from the undo log and rewritten

to memory. This approach favors fast commits at the price
of slower aborts.

2.4. Concurrency Control
A transactional memory system must also implement

concurrency control, i.e., conflict detection and resolution,
in order to detect and handle conflicts between concurrent
transactions accessing (and at least one updates) the same
variable(s). The conflicts can be read-write, write-read,
and write-write conflicts between accesses to the same data
item(s). In order to detect conflicts, each transaction needs
to keep track of its read-set and write-set. Similarly to
data versioning, there are two basic approaches to han-
dle conflict detection and resolution (i.e., maintain concur-
rency control): lazy (also referred to as late, optimistic, or
commit) and eager (also referred to as early, pessimistic,
or encounter) conflict detection and resolution.

Lazy conflict detection and resolution is based on the
principle that the system detects conflicts when a trans-
action tries to commit, i.e., the conflict itself and the de-
tection of it occur at different points in time. Then, the
write-set of the committing transaction is compared to the
read- and write-sets of other transactions. In case of a con-
flict, the committing transaction succeeds and the other
transactions abort. The advantages of lazy conflict de-
tection are, e.g., potentially fewer conflicts and enabling
bulk communication. However, conflicts are detected late,
which may result in more work to undo.

Eager conflict detection and resolution is based on the
principle that the system checks for conflicts during each
load and store, i.e., the system detects a conflict directly
when it occurs. In hardware this is done by tracking coher-
ence lookups done by the cache coherence protocol, and in
software this can be done by using locks and/or version
numbers. Conflicts are detected early in eager conflict
detection schemes, which usually results in less work to
undo in case of a conflict. However, eager conflict detec-
tion schemes may result in more aborts in some cases and
often require fine-grain communication.

The granularity of conflict detection is a key design
decision in a transactional memory system, since the read-
and write-sets are maintained for data items at the conflict
detection granularity. Conflict detection is usually done
at the word granularity, cache line granularity, or object
granularity.

• Word granularity: Tracking the read and write-
sets at the word granularity maintains the read- and
write-sets exactly, i.e., no false sharing [15, 16] oc-
curs. However, this approach introduces higher over-
head in terms of time and space (state information).

• Cache line granularity: Tracking the read and
write-sets at the cache line granularity is suitable
mainly for hardware and hybrid transactional mem-
ory implementations, and can leverage on existing
coherence mechanisms. However, there is a risk for
false sharing, which may lead to unnecessary aborts.

3



• Object granularity: Tracking the read and write-
sets at the object granularity matches the program-
mer’s reasoning, has low overhead in terms of time
and space, and is suitable for software and hybrid
transactional memory implementations. However,
there is a risk for false sharing on large objects, which
may lead to unnecessary aborts.

2.5. Nested Transactions
A nested transaction is a transaction that have one

or several other transactions inside of it. The main mo-
tivation for supporting nesting is software composability.
A piece of software executing within a transaction may
invoke a routine in another module, which may contain
transactions as well.

Closed nested transactions extend atomicity and isola-
tion of an inner transaction until the outermost (top-level)
transaction commits. Some hardware transactional mem-
ory systems implement closed nesting by flattening nested
transactions into the outermost level [9, 17, 10]. In such
systems an abort of an inner transaction may cause a com-
plete abort to the beginning of the outermost transaction,
which may result in low performance. A partial abort
of only the inner transaction may result in higher perfor-
mance by avoiding the abortion of the, possibly longer,
outermost transaction [18].

Open nested transactions, in contrast, allow a com-
mitting inner transaction to release isolation immediately.
This will potentially result in higher parallelism and ex-
pressiveness [18]. However, there is also a higher cost in
terms of more complex hardware and software.

2.6. Strong and Weak Atomicity
There is a question whether non-transactional code

can, from outside the transaction, read non-committed up-
dated values within an ongoing transaction. Weak atom-
icity [19, 20] (sometimes called weak isolation) is when
non-transactional code can read non-committed updates,
while strong atomicity [19, 20] (sometimes called strong
isolation) is when non-committed updates cannot be read
from the outside of a transaction.

Strong atomicity provides a simple and intuitive model
to the programmer, but may be difficult to implement ef-
ficiently. In contrast, weak atomicity may be easier to
implement efficiently but provides a less intuitive model
to the programmer since shared data may be accessed
from outside transactions that were supposed to be atomic.
However, it is important to notice that applications that
assume and execute correctly under weak atomicity do
not necessarily execute correctly under strong atomicity
as shown in [20].

Strong atomicity is relatively easy to implement in hard-
ware transactional memory systems since all reads and
writes to a memory block are tracked by the coherence
protocol. As a result, all hardware transactional memory
proposals in this survey support strong atomicity. How-
ever, strong atomicity is more difficult to implement in

software transactional memory systems. Most software
transactional memory proposals so far have only supported
weak atomicity, but recent work, e.g., [21, 22, 23, 24], show
how some of these short-comings can be addressed.

3. Transactional Memory Implementation

This section describes some generic implementation prin-
ciples of transactional memory. The focus is on the gen-
eral mechanisms necessary and the general way of work-
ing. Then, Section 4 and Section 5 describe specific hard-
ware and software transactional memory proposals, re-
spectively, that have been published.

3.1. Implementation of Hardware Transactional Memory
One of the most important argument in favor of im-

plementing transactional memory systems in hardware is
performance. They have, in general, higher performance
than both traditional lock-based approaches and software-
based implementations of transactional memory. A sec-
ond important argument of hardware transactional mem-
ory systems are binary compatibility. Ideally, a hardware
transactional memory system works with all binaries and
libraries without any need for recompilation.

The most prominent drawback of hardware transac-
tional memory systems is the limitation in hardware re-
sources. A certain hardware implementation will have a
limited amount of resources to handle transactions, e.g.,
a fixed maximum size of the read- and write-sets. This
limitation has impact on, and may cause problems for,
unbounded (long) transactions as well as nested transac-
tions. This is the reason why most hardware transactional
memory systems have some virtualization support, either
in time or space, as will be described later.

A hardware transactional memory does, in general, rely
on the cache hierarchy and the coherence protocol to im-
plement version handling and conflict detection. In addi-
tion, it requires at least three hardware mechanisms:

1. A check-pointing mechanism. The check-pointing
mechanism stores the processor state (e.g., program
counter and register values) at the start of the trans-
action. The check-pointed state is needed if the
transaction is aborted and needs to restart.

2. Data version management. The system needs
to store both old data values (restored at aborts)
and new values (needed at commits). Lazy version
management schemes store the new data values in
a hardware write-buffer. Eager version management
schemes copy old values to an undo log in hardware
and new values are written to the cache.

3. Conflict detection and resolution. The read-
and write-sets of a transaction are tracked by asso-
ciating read and write bits with either each word or
each cache line in the cache. Since the coherence
protocol usually works at the cache line granular-
ity, adding read and write bits with each cache line

4



is a minor extension. The read- and write-sets are
updated as a result of regular cache accesses. The
coherence protocol actions in combination with the
read and write bits can then detect transaction con-
flicts. All read and write bits are cleared when a
transaction aborts or commits.

3.2. Virtualization of Hardware Transactional Memory
Pure hardware transactional memory implementations

have only a fixed and platform specific number of resources,
which may cause problems when these resources are ex-
hausted. The limitations can be in both space and time.
Space related limitations to handle may be, e.g., a lim-
ited number of entries in the undo log or write buffer [5],
support for only a limited number of updates [12], or no
support for nested transactions [10]. Time related limita-
tions to handle include, e.g., context switches, process mi-
gration, and other types of interrupts such as page faults.
Further, in many cases the programmer must know these
limitations when programming transactional memory.

One solution to the problems mentioned above is to
use virtualization techniques in order to enable execution
of transactions with large footprints and also make trans-
actions survive various types of interrupts, e.g., context
switches and page faults. Examples of hardware trans-
actional memory proposals supporting virtualization are
UTM [17], VTM [25], and XTM [26].

3.3. Signature-Based Transactional Memory
An alternative approach to implement unbounded trans-

actional memory is to use signatures [27, 28, 29, 21, 30].
Signatures are data structures that can store the access in-
formation, i.e., addresses and read-/write-sets, for a thread
in a compact form using Bloom filters [31]. Since a sig-
nature uses hashing to encode the addresses, a superset
representation of the original addresses is created. Thus,
in contrast to other pure hardware transactional memory
proposals, a signature-based transactional memory uses an
inexact representation of the read- and write-sets.

In a signature-based hardware transactional memory
system, the read- and write-bits in the caches are replaced
by hardware implemented Bloom filters [31]. Various com-
binations of Bloom [31] and Cockoo hashing [32, 33], called
Cuckoo-Bloom Signatures have also been evaluated [30].
One filter encodes the read-set and one encodes the write-
set. The filters are updated at each load and store access,
as well as checked on coherence messages from other nodes.

Advantages of signatures include, e.g., decoupling the
tracking of the read-/write-sets from the cache design, en-
coding of unbounded read- and write-sets into a fixed-
size hardware structure, simplified nesting (easy to merge
Bloom signatures), and signatures can be swapped to mem-
ory or sent to other processors easily. Disadvantages in-
clude, e.g., inexact read-/write-set information and inexact
operations on them. This may lead to false conflicts (a.k.a.
false positives), possibly resulting in lower performance.

3.4. Implementation of Software Transactional Memory
There are several arguments in favor of implement-

ing transactional memory systems in software. In general,
a software transactional memory implementation runs on
conventional systems and and do not require any changes
to the hardware. At the same time, it is not bound by
the same resource limitations as a hardware transactional
memory system is. Further, software is more flexible and
easier to evolve than hardware. However, one of the most
troublesome drawback of software transactional memory
systems is performance. Although, software transactional
memory performance has improved over the years, it is
still often significantly slower than traditional lock-based
and hardware transactional memory solutions.

Meta data structures are necessary in a software trans-
actional memory system in order to manage the state of
the ongoing transactions, and Section 5 presents different
approaches to do this. For example, conflict detection and
resolution in a software transactional memory is done by
executing software methods. To track the relation between
a transaction and a shared object, the system can either
record the objects read or updated by a certain transaction
(i.e., track the read- and write-set) or record the transac-
tions that have read or updated a certain object in a reader
set and a writer set, respectively.

Some software transactional memory systems do not
track transactional reads of shared objects, a.k.a. invisible
reads. Thus, such systems cannot detect read-write con-
flicts. In order to handle the possible inconsistency, three
approaches exist: (i) validation, i.e., the transaction val-
idates that no other transaction has modified any of the
objects in its read-set, (ii), invalidation, i.e., track which
transactions that read an object and abort them when a
transaction opens the object for updates, and (iii), tolerate
inconsistency, i.e., allow the transactions to execute with
an inconsistent state, which in some situations can be tol-
erable but may result in exceptions or incorrect behavior
in other situations (see, e.g., [7]) .

3.5. Synchronization Strategies
One issue when implementing concurrency control in

software transactional memory systems is how to handle
synchronization and forward progress. In general, there are
two main alternatives: blocking and non-blocking synchro-
nization. Blocking synchronization is familiar from tradi-
tional synchronization primitives such as locks, semaphores,
and monitors. Programs written using blocking synchro-
nization cannot guarantee the forward progress of the sys-
tem, e.g., due to potential problems with deadlocks and
priority inversion.

A software transactional memory implementation us-
ing non-blocking synchronization can support three levels
of forward progress guarantee: (i) wait-freedom, (ii) lock-
freedom, and (iii) obstruction-freedom. Wait-freedom [34,
35] is the strongest of the three and guarantees that all
threads that contend for a set of shared objects make for-
ward progress in a finite amount of time, i.e., system-wide

5



forward progress is guaranteed. Lock-freedom [36, 37, 38]
only guarantees that at least one thread of those contend-
ing for a set of shared objects makes forward progress in a
finite amount of time. Finally, obstruction-freedom [39] is
the weakest form of forward progress guarantee. It guar-
antees that a thread makes forward progress in a finite
number of its own time steps in the absence of contention
from other threads for shared objects.

3.6. Contention Management
In order to resolve conflicts between concurrent trans-

actions we often need to abort one of the conflicting trans-
actions. A contention manager typically implements one
or several contention management policies in order to de-
cide which transaction(s) to abort. Several studies have
been conducted on contention managers and policies, e.g.,
[40, 41, 42, 43, 44]. A general conclusion has been that no
contention management policy outperforms all other poli-
cies in all situations. Examples of contention managers
and policies are:

• Greedy [42], which guarantees that each transaction
commits within a finite or bounded time.

• Karma [41], which considers the amount processing
the conflicting transactions have done so far. The
one with the least amount of work done is aborted.

• Polite [45], which uses an exponential back-off strat-
egy to resolve the conflict. When a transaction un-
successfully has tried to commit a specific number of
times, the contention manager aborts the competing
transaction(s).

• Polka [41], which backs off for different intervals pro-
portional to the difference in priorities between the
transaction and its enemy.

• Time-based [46], which records the start time of a
transaction, and in case of a conflict it aborts the
transaction(s) with the newest time stamps.

• Timid [40], which always aborts a transaction when-
ever a conflict occurs.

3.7. Privatization
One problem with software transactional memory sys-

tems only supporting weak atomicity (isolation) is the pri-
vatization problem [47, 22, 48]. The problem occurs when
a thread makes some shared object(s) private for, e.g.,
performance reasons. A typical example is elements in a
shared list. A thread may then (inside a transaction) cre-
ate a private copy of the head pointer to the list. Then,
the thread can access the objects in the shared list using
its private list head pointer, which is outside transactional
control. As a result, non-transactional code can possibly
access variables that should be protected by transactions
but without transactional control. Some solutions to the
privatization problem is presented in, e.g., [49, 50].

3.8. Hardware Supported Software Transactional Memory
In order to alleviate some of the performance problems

associated with software transactional memory implemen-
tations, several researchers have proposed to add some
hardware support. One approach is to use hardware signa-
tures to track the read- and write-sets of the transactions,
as suggested in, e.g., SigTM [21] and FlexTM [51]. Fur-
ther, Shriraman et al. [51] suggest four hardware primitives
to support high-performance and flexible software transac-
tional memory implementations. Finally, researchers have
also proposed to use hardware memory protection mecha-
nisms to implement strongly atomic software transactional
memory systems, e.g., [23, 24].

4. Hardware Transactional Memory Proposals

In this section, some of the most important hardware
transactional memory implementations are described. They
are summarized in Table 1, classified according the how
they handle version management and conflict detection.
Several of the proposals (shown in italic in Table 1) are
described in depth in [7].

Most hardware implementations of transactional mem-
ory are not only implemented in hardware. Instead, most
of them employ some virtualization technique in order
to overcome the limited hardware resources in hardware-
only schemes. Therefore, we do not distinguish between
hardware-only and virtualized hardware schemes in this
section. Looking at Table 1, we can observe that:

1. No proposals exist for the combination of eager ver-
sion management and lazy conflict detection. This is
probably due to semantic problems of how to eagerly
update data values, while at the same time postpone
detecting conflicts until committing the transaction.

2. Almost all recent hardware transactional memory
proposals, i.e., from mid 2007 until today, use ea-
ger instead of lazy conflict detection.

3. Most recent hardware transactional memory propos-
als favor eager data version management over lazy
data version management.

4.1. H&M Transactional Memory
Herlihy and Moss [5] wrote one of the first papers that

proposes transactional memory as a way to support lock-
free synchronization as efficient as traditional locking tech-
niques, and also as easy to use. They define a transaction
as a finite sequence of instruction, executed in a single
process, and that satisfies the atomicity and serializability
(isolation) properties.

Their transactional memory is a hardware-only imple-
mentation that is based on extensions to the cache co-
herence protocol. Memory is accessed through three in-
structions that affect the transaction’s read- and write-
sets: load-transactional, load-transactional-exclusive, and
store-transactional. The transactional memory state can

6



Table 1: A classification of hardware transactional memory propos-
als, structured the same way as in [10]. The proposals shown in
italic are thoroughly covered in [7]. Recent proposals, from 2007
and onwards, are marked with an underline.

Conflict Version management
detection Lazy Eager

Lazy TCC [9, 52, 53, 54],
Bulk [27] and
BulkSC [28],
TM Semantics [55, 56],
Scalable-TCC [57],
FlexTM [51]

No hardware trans-
actional memory
proposals.

Eager H&M TM [5],
TLR [58, 59],
LTM [17],
VTM [25],
Best Effort HTM [60,
61, 62, 63],
FlexTM [51],
EazyHTM [64]

UTM [17],
LogTM [10, 18],
LogTM-SE [29],
ONETM [65],
MetaTM [66, 67, 68],
TokenTM [69],
LiteTM [70],
FASTM [71]

be manipulated by three other instructions: commit, abort,
and validate (checks if the current transaction has aborted).

The implementation proposal introduces a separate first-
level cache that handles all transactional memory accesses.
Regular loads and stores are handled by a usual first-level
cache. The necessary hardware modifications are limited
to the first-level caches and the instructions needed to com-
municate with them. Transaction commit or abort is thus
a local cache operation. Further, the authors propose to
rely on the cache coherence protocol to detect conflicts,
since the coherence protocol already tracks all memory
read and write operations.

4.2. Transactional Coherence and Consistency, TCC
Transactional Coherence and Consistency (TCC) [9,

52, 53, 54, 57] is based on the observation that for well syn-
chronized programs, coherence and consistency are only
needed to be maintained at synchronization points. TCC
is proposed as a new shared memory model where atomic
transactions always are the basic units of work and com-
munication, as well as for memory coherence and consis-
tency. As a result, coherence and consistency is only nec-
essary to maintain at transaction boundaries.

TCC hardware combines multiple writes from the same
transaction into a single packet and then sends them to the
shared memory as one large atomic block. This bulk com-
munication eliminates the small coherence messages used
in conventional coherence protocols. The TCC program-
ming model requires that all accesses to shared data are
done within transactions. Thus, TCC can remove the con-
ventional coherence protocol and instead rely only on the
read and write bits for the transaction.

When a transaction is complete in TCC and is ready
to commit, the hardware must obtain system-wide per-

mission to commit the transaction’s writes. If no conflicts
occur, the hardware broadcasts all writes as once. Other
nodes in the system snoop on these packages sent at com-
mit time, and can thus detect potential data conflicts be-
tween transactions. Each node performs the conflict de-
tection by checking whether any data read by the node has
subsequently been written by another transaction. When
a conflict is detected, the transaction does a rollback. The
snooping version of TCC is modified in [57] to a scalable
version based on a directory protocol solution.

The approach in TCC to only maintain coherence at
commit points has some interesting implications. Instead
of maintaining ordering between individual loads and stores,
TCC only needs to maintain ordering between transac-
tions. TCC imposes a sequentially consistent [72] execu-
tion of all transactions in the system.

4.3. Bulk and BulkSC
Bulk [27] is the first proposal that use signatures (dis-

cussed in Section 3.3) to track the access information, i.e.,
addresses and read/write information, of a transaction.
The access information is hash encoded using Bloom fil-
ters [31] into signatures. Thus, the read- and write-sets
of a transaction are maintained using a read and a write
signature. The signatures are updated on each load and
store, and also checked for potential data conflicts for each
coherence message that arrives. Two advantages of using
signatures are that they support unbounded transactions
and nested transactions in a easy way.

Multiple addresses are easily merged into a single sig-
nature. However, since the address are hash encoded, the
access information is inexact. As a result, there is a risk
of so called ’false positives’, i.e., a data conflict is detected
but for two difference addresses that actually do not have
any conflict. This may result in lower performance if the
number of false positives is high. Ceze et al. [27] present
how the encoding of addresses into signatures can be im-
plemented, as well as the definition and implementation
of a number of operations on signatures, e.g., signature
intersection and union, empty and membership tests, and
signature decoding into sets.

BulkSC [28] supports sequential consistency [72], which
presents simple semantics to the programmer. However,
implementing sequential consistency with high performance
is challenging and may require complex hardware sup-
port [73, 74, 75, 76]. The approach in BulkSC is to or-
ganize a number of consecutive instructions into chunks
of code that appear to execute atomically and in isola-
tion. Chunks are built dynamically by the hardware at
run-time, in contrast to transactions that are high-level
programming constructs. Memory accesses are allowed
to be reordered within each chunk to increase the per-
formance, while a sequential execution order is enforced
between chunks. Thus, BulkSC maintains coarse-grain se-
quential consistency at the hardware level, while still pro-
viding a fine-grain (at the memory access level) sequen-
tially consistent model to the programmer.

7



4.4. Transactional Lock Removal, TLR
Transactional Lock Removal (TLR) [58, 59] is an ap-

proach to dynamically and transparently convert tradi-
tional lock-protected critical sections into lock-free trans-
actions. TLR uses Speculative Lock Elision (SLE) [77] as
an enabling mechanism in order to create an optimistic
transaction. SLE relies on traditional lock acquires in
presence of data conflicts. In contrast, TLR relies on
a timestamp-based conflict resolution scheme in order to
provide serializability and lock-free execution also in cases
with data conflicts. The timestamps are based on a local
logical clock [78] and the processor identity. Thus, glob-
ally unique timestamps are obtained. In case of a conflict,
the transaction with the earliest timestamp wins.

The TLR algorithm is executed in four steps.

1. Calcute timestamp. Calculate a timestamp for
the transaction.

2. Transaction start. Initiate TLR mode and remove
locks using SLE.

3. Speculative transactional execution. The trans-
action is speculatively executed, updates are buffered
locally, conflicts are detected, cache blocks are fetched,
etc. If there are insufficient resources or an irre-
versible operation is encountered, e.g., an I/O op-
eration, TLR acquires the lock before proceeding.

4. Transaction end. Commit the transaction; if all
cache blocks are in the correct state, e.g., exclusive
for writes, update the cache with buffered values,
commit transaction register state, service potential
waiters, and update local timestamp.

4.5. Unbounded and Large Transactional Memory, UTM
& LTM

Unbounded Transactional Memory (UTM) [17] was the
first transactional memory proposal supporting unbounded
transactions. While many studies at that time argued that
most transactions were small (short) and/or occurred in-
frequently, Ananian et al. argued that a transactional
memory system “should support transactions of arbitrary
size and duration” [17]. In other words, the system shall
be able to handle transactions with footprints, i.e., the
set of memory locations accessed [14], almost as large as
the size of the virtual memory of the system. Further, a
transaction can also execute for an arbitrary long time.

UTM stores information about the transaction state in
a transaction log, which is a memory-resident data struc-
ture called the xstate, instead of a processor specific data
structure in hardware. As a result, data about a transac-
tion’s state is independent of process interrupts, reschedul-
ing, and migration. The xstate is shared between all
transactions in the system, and contains a log entry for
each active transaction in the system. Since the xstate is
stored in memory, UTM supports unbounded transactions
as long as the transaction log fit in virtual memory.

UTM stores new values for a data item in-place in
memory, and pointers to blocks with the original values

are stored in the xstate as a linked list. Each list cor-
responds to a memory block that has been updated by a
transaction. If a potential conflict is detected, the linked
list for that block is traversed in order to find out whether
other (potentially conflicting) transactions have accessed
the block. UTM extends the processor with two new in-
structions: XBEGIN pc and XEND. The pc argument is the
address to an abort handler. If a transaction fails, the pro-
cessor and memory states are rolled back and the abort
handler is executed.

In order to guarantee forward progress when two or
more transactions have a conflict, a timestamp-based strat-
egy is used. UTM writes a timestamp into the transaction
log the first time a new transaction begins. In case of a
conflict, the oldest transaction has priority and the other
transactions are aborted.

Large Transactional Memory (LTM) [17] is a simplified
version of UTM. UTM requires significant modifications
to the processor, cache, and memory system. LTM is a
design alternative with less modifications to the hardware,
but still with support for large transactions. The major
differences between UTM and LTM are as follows:

• LTM only support transaction footprints [14] up to
(almost) the size of the physical memory.

• In LTM a transaction must execute and commit within
one time slice.

• LTM binds a transaction and its associated state to
a particular cache.

• LTM uses lazy version management, while UTM uses
eager version management.

4.6. Virtual Transactional Memory, VTM
Hardware transactional memory implementations can

provide high performance but their limited hardware re-
sources are a major drawback, which led Rajwar et al. to
propose the Virtual Transactional Memory (VTM) [25].
They argue that if transactional memory shall be widely
accepted, the programmers must be shielded from platform-
specific hardware limitations. For example, limited buffer
sizes etc. must not be exposed to the programmer as part
of a hardware architecture. If hardware limitations are
exposed, it would limit both the flexibility in different
hardware implementations and the portability of the code.
Further, storing the transaction state in virtual memory
makes it a process specific resource, and thus it can mi-
grate to other processors as well as be swapped to disk if
necessary. In addition, the transactional memory will also
automatically benefit from the protection that the virtual
memory system provides.

VTM is a hybrid hardware/software proposal that hides
resource exhaustion both in space (e.g, limited buffer space
and cache overflow) and time (e.g., context switches, inter-
rupts, scheduling, and process migration). VTM works in
two different modes. The first mode is a fast hardware-only

8



mode for common case transactions that neither exceed
the hardware resources nor encounter an interrupt. The
second mode is a hardware/software mode that is used
for transactions that encounter buffer overflows, context
switches, etc. The transactional state in VTM is split into
two parts: one part of the state is cached in a processor-
local buffers and one part of state, i.e., the overflowed part,
resides in the virtual memory of the application.

When a transaction overflows its buffers, the transac-
tion’s evicted entries are moved to the Translation Address
Data Table (XADT ) in virtual memory. Similarly, when a
time slice expires or an interrupt occurs the transaction’s
state is saved in the XADT so it can be resumed later.
The XADT is consulted each time a transaction isses a
load or store that causes a cache miss, to check whether
the memory access conflicts with an overflowed address in
the XADT. Further, an XSW (Transaction Status Word)
is defined for each transaction, and since a transaction is
associated with exactly one thread the XSW is a part of
that thread’s state.

4.7. Log-Based Transactional Memory, LogTM
Log-based Transactional Memory (LogTM) [10] is one

of the first proposals that focuses on achieving fast com-
mits by using an eager version management approach. The
design decision is based on the assumption that commits
are more common than aborts. LogTM stores old data
values in a per-tread undo log in virtual memory, and up-
dates the memory location with the new value directly.
This approach enables fast commits, and the undo log is
traversed using software handlers when an abort occurs.

The approach to store the undo log in virtual mem-
ory in LogTM has several advantages. Limited hardware
support is needed as compared to many other hardware
transactional memory proposals, i.e., checkpointing hard-
ware, two hardware pointers to handle the undo log, start
address for the software handler, and some counters. Fur-
ther, LogTM supports unbounded transactions as long as
there is space in virtual memory for the undo log. Finally,
flushing the undo log is fast since only a change of the
hardware pointer to the undo log in memory is needed.

LogTM enables eager conflict detection by using the
underlaying hardware cache coherence protocol. One of
the contributions of LogTM is the extension of the coher-
ence protocol to handle conflict detection also for blocks
that are evicted from the cache due to replacements.

The basic LogTM proposal is extended in [18] to sup-
port nested transactions. First, the flat closed nesting of
transactions in the basic LogTM is extended to support
partial aborts in closed nesting allowing inner transactions
to abort without aborting the outer transactions. This is
implemented using a stack of activation records that holds
the transaction log for different levels of nesting. Second,
open nested transactions is supported, which is used for
highly contented resources accessed within transactions.
As a result, the parallelism and performance are poten-
tially increased. Third, support is added for calls to lower-

level non-transactional code from within a transaction by
using escape actions, which bypass the transaction version
management and conflict detection mechanisms. It is im-
plemented using a per-thread flag that, when set, disables
logging and conflict detection.

LogTM is modified in [29] to use signatures to track
the read- and write-sets of a transaction, and is then called
LogTM Signature Edition, LogTM-SE. Eager conflict de-
tection is done by checking the signatures for each coher-
ence request arriving at the node (cache). By using sig-
natures and a memory log for old values, LogTM-SE de-
couples transactional memory management from the first-
level cache structures. Since both the undo log and the
signatures are accessible by software, they are virtualiz-
able, support unbounded transactions, transactions with
arbitrary nesting depth (both open and closed nesting),
thread migration, and context switches.

4.8. Architectural Semantics for TM
McDonald et al. [55, 56] propose an instruction set

architecture (ISA) together with three key mechanisms
with well-defined semantics in order to provide a hard-
ware/software interface for transactional memory systems.
Well-defined semantics are crucial in order to, e.g., han-
dle composable libraries, implement language or operating
system support for transactional memory, and handle I/O
and system calls.

The ISA extensions include instructions to start, com-
mit, and abort transactions, instructions to manipulate
transaction state registers, manipulate read- and write-
sets, and manage violation handlers. The three key mech-
anisms suggested are:

1. Two-phase transaction commit.
2. Support for software handlers on commit, violation,

and abort.
3. Support for nested transactions (both open and closed

nesting) with independent roll-back.

Using the three proposed mechanisms above, McDon-
ald et al. [55] show that they provide support for program-
ming languages and operating systems, including support
for transparent library calls, system calls, I/O calls, and
exceptions within transactions.

4.9. ONETM
Blundell et al. [65] propose an approach to implement

unbounded transactional memory, using two synergistic
techniques: (i) a permissions-only cache that reduces the
probability that a transaction overflows, and (ii) ONETM
which simplifies the implementation of unbounded trans-
actions by allowing only one overflowed transaction.

The permissions-only cache stores the coherence infor-
mation (permissions), but no data, for blocks that have
been evicted from the processor caches but have been read
or written transactionally. As a result, the coherence pro-
tocol can detect conflicts also for evicted (overflowed) cache

9



blocks using only a few hardware bits per evicted block.
In the implementation proposal two bits per evicted cache
block are used. This corresponds to a 256:1 compression
ratio as compared to storing also data, assuming 64-bytes
blocks. In other words, the permission-only cache increases
the size of bounded transactions by a factor of 256. Thus,
the fast case, i.e., bounded transactions that are handled
in hardware, will be more common than before.

ONETM is a way to handle unbounded transactions
that overflow the permission-only cache, and simplifies the
implementation by allowing only one overflowed transac-
tion to execute at a time. ONETM relies on the fact that
the permission-only cache reduces the number of trans-
actions that actually overflows. ONETM-Serialized and
ONETM-Concurrent are two instantiations of ONETM. In
ONETM-Serialized, all threads in the same process are
stalled when an overflowed transaction executes. In con-
trast, ONETM-Concurrent allows other non-transactional
code as well as non-overflowed transactions to execute con-
currently with the single overflowed transaction.

4.10. MetaTM/TxLinux
MetaTM/TxLinux [66, 67, 68] is one of the first efforts

to evaluate the impact of large-scale operating system code
on the performance of hardware transactional memory sys-
tems. MetaTM is the hardware transactional memory im-
plementation that supports TxLinux, a Linux version that
is modified to use transactions. MetaTM uses eager ver-
sion management, eager conflict detection, and supports
multiple methods for conflict resolution.

MetaTM uses two instructions, xbegin and xend, to
start a transaction and to commit it, respectively. A third
instruction, xrestart, restarts a transaction. Nested trans-
actions are not supported in MetaTM. Instead, MetaTM
implements stack-based concurrent transactions. The in-
struction xpush suspends the current transaction and stores
the transaction state on the stack, and the instruction
xpop restores the transaction state and continues the exe-
cution of a previously stacked transaction.

One of the largest advantages of supporting stack-based
transactions is that it simplifies the interaction between
I/O (and interrupt handling) and transactions. When an
I/O operation (or interrupt) occurs within a transaction,
the current transaction is pushed on the stack and restored
when the I/O operation is finished.

MetaTM supports the contention management strate-
gies proposed in [41], though adapted to a hardware trans-
actional memory environment. Further, a new policy called
SizeMatters is also implemented, which favours transac-
tions with large working sets. In [68] is shown how MetaTM
can be combined with a software transactional memory
system to form a hybrid transactional memory system.

4.11. Best Effort Hardware Transactional Memory in Rock
Rock [61, 62, 63] is the first commercial processor that

supports hardware transactional memory, and it imple-

ments a so called best effort hardware transactional mem-
ory. In order to support transactional memory, two new
instructions have been added to the SPARC instruction
set — chkpt and commit.

Best effort hardware transactional memory has a lim-
ited number of hardware resources to handle memory trans-
actions. In this case, Rock can handle 32 stores within a
transaction. A transaction fails when, e.g., the hardware
resources are exhausted, a conflict with another transac-
tion occurs, or a cache line in the read set is evicted. When
a transaction fails, the processor stores the reason in a
checkpoint status register and transfers the control to the
PC-relative offset fail pc, which is specified by the chkpt
instruction executed when a transaction starts. Depending
on the fail reason, the software may retry the transaction,
fall back on some software transactional memory imple-
mentation, or resort to a software contention manager.

Dice et al. [79] show that Rock’s best effort hardware
transactional memory can be used to implement and sup-
port a variety of transactional memory systems. For ex-
ample, they have implemented Transactional Lock Eli-
sion, which is similar to Speculative Lock Elision [58],
HyTM [80], SpHT [81], and PhTM [82]. Finally, an early
performance evaluation of the hardware transactional mem-
ory in Rock is presented in [63].

4.12. Unbounded Transactional Memory using Tokens, To-
kenTM

TokenTM [69] is a hardware transactional memory pro-
posal supporting unbounded transactions and is based on
the concept of tokens. Each memory block has a number
of tokens associated with it. When a transaction needs to
read a memory block it acquires one token, and when it
needs to write to a block it acquires all tokens for that
block. As a result, a memory block is either (i) not ac-
cessed by any transaction, (ii) part of the read-set of one
or several transactions, or (iii) part of the write-set of pre-
cisely one transaction. When a transaction fails to obtain
the needed tokens, it detects a conflict and a software con-
tention manager is invoked. The token states are recorded
both in per-block metastates and in software-visible per-
thread logs.

In order to implement TokenTM efficiently, two novel
mechanisms are introduced: (i) metastate fission/fusion
for efficient modification of tokens by concurrent transac-
tions, and (ii) fast token release which enables small trans-
actions to release their tokens in constant time. Using
these two mechanisms TokenTM is able to perform fast
conflict detection between an arbitrary number of mem-
ory blocks, execute small transactions fast, and execute
large concurrent transactions without any penalty to non-
conflicting transactions. In order for fast token release
to work, all blocks associated with a transaction must be
present in the processor’s first-level cache at the time of
transaction commit. Otherwise, the per-thread log must
be traversed on commit in order to return all tokens.

10



4.13. LiteTM
LiteTM [70] is an evolution of TokenTM [69]. Simi-

larly to TokenTM, LiteTM supports unbounded transac-
tions. One of the main contributions of LiteTM is a sig-
nificantly reduced state overhead (87% lower) for imple-
menting the transactional memory system as compared to
TokenTM. This state reduction is accomplished by main-
taining only approximate information in hardware about
read- and write-sets for the transactions. Exact sharing in-
formation is maintained in software. Conflicts are detected
in hardware, but the identification of conflicting transac-
tions is done by traversing transactional logs in software.

4.14. Flexible Transactional Memory, FlexTM
Shriraman et al. [51] propose a flexible transactional

memory system (FlexTM). FlexTM coordinates four basic
hardware mechanisms in order to provide flexibility as well
as high performance. The four mechanisms are:

1. Read and write signatures. Signatures, first intro-
duced in [27], keep track of the read- and write-sets
of a transaction (see Section 3.3).

2. Per-thread conflict summary tables (CSTs). CSTs
are used to identify and track processor-to-processor
conflicts, in contrast to, e.g., conflict detection based
on cache lines. Processor-to-processor conflicts are
virtualized to thread-to-thread conflict detection.

3. Programmable data isolation (PDI). PDI, first intro-
duced in RTM [83], is a lazy version management
mechanism, that enables software to perform specu-
lative and incoherent stores to local caches.

4. Alert-on-update (AOU). AOU, also first introduced
in RTM [83], is a mechanism that allows software
to mark specific cache lines. When a coherence re-
quest (invalidation) arrives for a marked cache line,
a software handler is triggered and executed.

All four mechanisms proposed are accessible from soft-
ware in order to support virtualization as well as trans-
actions of arbitrary size and length. Further, since the
mechanisms are software accessible it is possible to im-
plement a variety of transactional memory systems. For
example, Shriraman et al. [51] evaluate and compare both
lazy and eager conflict detection in FlexTM. An extended
version of FlexTM is presented in one of the papers in this
special issue.

4.15. FASTM
FASTM [71] is a hardware transactional memory pro-

posal with eager version management, i.e., new speculative
values are stored in-place while old values are stored in a
log. A novel feature in FASTM is a new coherence pro-
tocol that stores speculative transactional values in the
first-level cache while old non-speculative values a kept in
the higher levels of the cache hierarchy. As a result, fast
abort recovery is enabled as long as transactions do not ex-
haust the first-level cache resources. Transactional values
that overflow the first-level cache are stored in a software
managed log, similar to the approach in LogTM [10].

4.16. EazyHTM
EazyHTM [64] is a hardware transactional memory

proposal that combines eager conflict detection during trans-
actional execution with lazy conflict resolution at com-
mit time. In most other proposals are conflict detection
and resolution done at the same time. By separating
them, higher performance can be obtained since the num-
ber of unnecessary aborts is reduced. Transactions are
only aborted when some transaction tries to commit, and
thus the conflict becomes unavoidable. Further, by de-
tecting conflicts eagerly, the hardware can be simplified
by using the existing coherence protocol.

5. Software Transactional Memory Proposals

This section briefly describes some of the most impor-
tant software transactional memory proposals. Table 2
and Table 3 summarize the main characteristics of the
presented proposals. We will not distinguish between pure
software transactional memory systems and those that uti-
lize some hardware primitives to enhance the performance.

5.1. Software Transactional Memory, STM
Software Transactional Memory (STM) [6] proposed by

Shavit and Touitou is the first implementation of a soft-
ware transactional memory system. It is word-based with
pessimistic concurrency control and a direct update strat-
egy. At the start of a transaction, it identifies and tries to
obtain control and ownership of those memory words used
in the transaction. If a transaction fails to obtain own-
ership of a memory location, then it aborts and releases
all memory locations it already has acquired. By acquir-
ing memory objects in an increasing order, deadlocks are
avoided. Ownership information is stored in a separate
meta data structure besides the actual data.

STM uses a direct update policy since it can complete
the transaction when it has acquired ownership of all nec-
essary memory locations. It uses a pessimistic concur-
rency control policy, early conflict detection, and helping
for conflict resolution, i.e., if a transaction cannot continue
further it aborts and thus helps other transactions com-
plete their execution. Non-blocking synchronization (lock-
freedom) is employed in STM. One drawback with STM
is that the programmer is required to declare all memory
locations accessed within a transaction in advance.

5.2. Word-Based Software Transactional Memory, WSTM
Word-Based Software Transactional Memory (WSTM)

[84] is the first software transactional memory that was an
integral part of an object-oriented programming language,
in this case Java. WSTM supports conflict detection at the
word-level, uses optimistic concurrency control with non-
blocking synchronization (obstruction-freedom) and late
conflict detection, and a deferred update mechanism.

11



Table 2: A classification of some software transactional memory proposals. The proposals shown in the table are thoroughly covered in [7].

System Synchronization
strategy

Concurrency
control

Granul-
arity

Update
strategy

Conflict
detection

Conflict
resolu-
tion

Nested
trans-
action
support

Isolation

STM [6] Non-blocking
(lock-free)

Pessimistic Word Direct Early Helping Not sup-
ported

Weak

WSTM
[84]

Non-blocking
(obstruction-free)

Optimistic Word Deferred Late Helping Flattened Weak

DSTM
[45]

Non-blocking
(obstruction-free)

Optimistic Object Deferred Early Contention
manager

Flattened Weak

OSTM
[36]

Non-blocking
(lock-free)

Optimistic Object Deferred Late Aborting Not sup-
ported

Weak

ASTM
[85, 86]

Non-blocking
(obstruction-free)

Optimistic Object Deferred Early or
Late

Contention
manager

Not sup-
ported

Weak

RSTM [87] Non-blocking
(obstruction-free)

Optimistic Object Deferred Early or
Late

Contention
manager

Flattened Weak

DSTM2
[88]

Obstruction-free
or Blocking

Optimistic Method Deferred Early Contention
manager

Not sup-
ported

Weak

McRT-
STM
[89, 90]

Blocking
(lock-based)

Optimistic Rd,
Pessimistic Wr

Object,
Cache line

Direct Early Wr-
Wr, Late
Wr-Rd

Aborting Closed
nested

Weak

In contrast to STM [6], WSTM does not require the
programmer to explicitly declare all memory locations ac-
cessed within transactions. In addition, WSTM supports
nested transactions using flattening. Conflict resolution in
WSTM is achieved using helping. The main drawback of
WSTM is the high overhead (as most word-based software
transactional memory implementations have).

5.3. Dynamic Software Transactional Memory, DSTM
Dynamic Software Transactional Memory (DSTM) [45]

overcame the deficiency of previous software transactional
memory systems where the transaction size and memory
requirements were statically defined in advance. DSTM is
designed to handle dynamically sized data structures. It
provides C++ and Java APIs for programming dynamic
data structures, e.g., lists and trees, for synchronized ap-
plications without locks. DSTM employs non-blocking
synchronization (obstruction-freedom), optimistic concur-
rency control with deferred update, early conflict detection
at an object-level, and an explicit contention manager for
conflict resolution.

Dynamic Software Transactional Memory II (DSTM2)
[88], is based on the earlier work on DSTM [45]. DSTM2
is a Java-based library that provides a framework for im-
plementing software transactional memory. It introduces
a novel concept, transactional factories, that is used to
convert an un-synchronized sequential class into a syn-
chronized one. DSTM2 performs conflict detection at the
method level, while DSTM that does it at the object-
level. Other differences are that DSTM only supports non-
blocking synchronization (obstruction-freedom) but DSTM2
can use non-blocking synchronization or locking, and DSTM
supports nested transactions while DSTM2 does not.

5.4. Object-Based Software Transactional Memory, OSTM
Object-Based Software Transactional Memory (OSTM)

[36] is the first software transactional memory combining
lock-free synchronization and object-based conflict detec-
tion granularity.

Each transaction in OSTM has a transaction descrip-
tor, which contains a status field and two linked-lists (one
for read-only objects and one for read-write objects). The
elements in the read-write list contain an object reference
pointing to an object header that points to the real ob-
ject, and pointers to the original object (old data) and a
modifiable copy of the object (new data). Upon a trans-
action commit, ownership is acquired for all objects in the
read-write list. If successful, the object header is updated
to point at the new version of the object.

5.5. Adaptive Software Transactional Memory, ASTM
In [85], Marathe et al. compared two software trans-

actional memory implementations, i.e., DSTM [45] and
OSTM [36]. They show that, depending on the bench-
mark, each of the systems has the potential to outperform
the other. Further, they provide application characteris-
tics for which each system works best.

Adaptive Software Transactional Memory (ASTM) [86]
is based on their observations in [85]. ASTM implements
both early and late conflict detection, and can adaptively
switch between the two depending on the workload char-
acteristics. The system defaults to early conflict detection
but switches to late for transactions that modify few ob-
jects but read many objects.

12



Table 3: A classification of some recent software transactional memory proposals. The proposals shown in the table are not covered in [7].

System Synchronization
strategy

Concurrency
control

Granul-
arity

Update
strategy

Conflict
detection

Conflict
resolu-
tion

Nested
trans-
action
support

Isolation

TL2 [91] Blocking
(lock-based)

Optimistic Word,
Object,
Region

Deferred Early or
Late

Aborting Not sup-
ported

Weak

Time-based
STM
[92, 93, 46]

Non-blocking
(obstruction-free)

Optimistic Word,
Object

Deferred Early Contention
manager

Not sup-
ported

Weak

DracoSTM
[94]

Blocking
(lock-based)

Optimistic Object Deferred
& Direct

Early or
Late

Aborting Closed
nested

Weak

TINYSTM
[95]

Blocking
(lock-based)

Pessimistic Word Deferred
& Direct

Early Aborting Not sup-
ported

Weak

SwissTM
[96]

Blocking
(lock-based)

Optimistic Rd-
Wr, Pessimistic
Wr-Wr

Word Deferred Early Wr-
Wr, Late
Wr-Rd

Contention
manager

Not sup-
ported

Weak

Strongly
Atomic
STM [24]

Blocking
(lock-based)

Optimistic Rd-
Wr, Pessimistic
Wr-Wr

Object Direct Early Wr-
Wr, Late
Wr-Rd

Aborting
or
Contention
manager

Closed
nested

Strong

ε-STM
[97]

Blocking
(lock-based)

Pessimistic Word Deferred Early Aborting
or
Contention
manager

Supported Weak

5.6. Rochester Software Transactional Memory, RSTM
Rochester Software Transactional Memory (RSTM) [87]

is a C++ library implementing an object-based non-blocking
software transactional memory system. It supports de-
ferred update, and both early and late conflict detection.
Other features of RSTM include a single level of indirection
to access data objects, an own memory allocator for use in
non-garbage collected languages, and support for several
contention management and conflict detection strategies.

RSTM introduces visible and in-visible reader lists. An
object header has a fixed-size list of transactions that have
the object open for reading, i.e., the visible reader list.
The transactions in the visible reader list do not need to
validate their read data since a conflicting write transac-
tion aborts all transactions in the visible list. If the visible
reader list is full, then a new transaction reading an object
adds itself to a private in-visible reader list. Thus, trans-
actions in the in-visible list need to validate their reads.

5.7. McRT-STM
McRT-STM [89] is a software transactional memory

system for C++ and Java implemented on top of the McRT
[90] run-time system. It employs a direct update strategy
in combination with early conflict detection for writes and
late conflict detection for reads, and supports conflict de-
tection at both cache line and object level. McRT-STM
uses a two-phase locking protocol for synchronization, al-
lowing multiple simultaneous transactional readers of an
object but only one transaction can modify an object.

5.8. Transactional Locking II, TL2
Transactional Locking II (TL2) [91], an improvement of

Transactional Locking [98, 99], is a software transactional
memory system that uses commit time two-phase locking
and a global version-clock validation technique. The global
clock, i.e., the time stamp, is incremented when a trans-
action writes to memory and is visible to all transactions.
Time stamps have also been used by, e.g., Riegel et al.
[93, 46], but their implementation is non-blocking.

TL2 uses deferred update and can select between early
or late conflict detection. Each object has a lock and a
version number associated with it. Each transaction has a
transaction descriptor containing the read and write sets.
Each entry in the read and write sets has a pointer to the
accessed object. A transaction updating an object, adds
an entry in the write set including the new value. A trans-
action reading an object adds itself to the read set, and
fetches the value either from the write set (if updated)
or from the object. If a conflict is detected, i.e., another
transaction has locked the object, the transaction can ei-
ther delay or abort itself. Upon a commit, a transaction
acquires the locks for all the objects in the transaction’s
write set, validates it’s read set, copies the updated values
to the objects, and releases the locks.

5.9. Time-Based Software Transactional Memory
Riegel et al. were the first to present a Time-Based

Software Transactional Memory [92, 93, 46], which uses
the notion of time to maintain consistency and the order

13



in which the transactions commit their results. By using a
Lazy Snapshot Algorithm (LSA) [93] they can guarantee a
consistent view of all objects for all transactional accesses,
in contrast to many other software transactional memory
systems where consistency only is checked at commit time.

The first implementation of their time-based software
transactional memory [92, 93] uses a global counter to
maintain the commit order between the transactions. How-
ever, a single global counter introduces a potential perfor-
mance bottleneck. Therefore, Riegel et al. modified their
time-based software transactional memory to use a scal-
able solution [46]. In particular, they showed that the
global counter can be replaced by an external or physical
clock, and by multiple synchronized physical clocks.

5.10. DracoSTM
DracoSTM [94] is a lock-based C++ library for soft-

ware transactional memory. DracoSTM is the first soft-
ware transactional memory implementation that supports
both direct and deferred update, and can dynamically
switch between the two at run-time. Further, DracoSTM
can also dynamically switch between early and late con-
flict detection. Thus, DracoSTM is a very flexible soft-
ware transactional memory system. A novel feature in
DracoSTM is commit time invalidation which, in contrast
to validation, can detect priority inversion.

The update strategy is closely coupled to the conflict
detection strategy. Early conflict detection is required for
the direct update strategy, since it allows only one trans-
action to update the memory location. Similarly, late con-
flict detection is performed in conjunction with deferred
update. Implementing early conflict detection with de-
ferred update can prevent transactions from committing
successfully. Therefore, late conflict detection is coupled
with the deferred update strategy.

5.11. TINYSTM
TINYSTM [95] is a lock-based, time-based, and word-

based software transactional memory system. Time-based
transactional memories are efficient for read-only transac-
tions, but the read-sets of transactions doing updates must
be validated at commit time. Felber et al. [95] suggest that
the software transactional memory implementation can be
tuned to reduce the validation overhead for transactions
with large read-sets.

TINYSTM uses several dynamic tuning parameters in
order to achieve higher transaction throughput. First, it
uses a hash function to map memory locations to locks.
TINYSTM uses right shifts to control how many contiguous
memory locations that will be mapped to the same lock.
The second parameter is the number of entries in the lock
array. A smaller value maps more memory locations to
a single lock, which decreases the size of read-sets and
increases the abort rate (due to false sharing). The third
is the array size used for hierarchical locking. A larger
array size increases the number of atomic operations but
decreases the validation overhead and the contention.

5.12. SwissTM
SwissTM [96] is a lock-based and word-based software

transactional memory implementation that targets high-
performance for large-scale complex transactional work-
loads. At the same time, it strives to have good perfor-
mance also for small-scale workloads. SwissTM uses early
conflict detection for write-write conflicts, and uses late
conflict detection for read-write conflicts.

SwissTM introduces a two-phase contention manager.
Read-only and short read-write transactions use a sim-
ple and inexpensive abort scheme, where transactions are
aborted at the first encountered conflict. More complex
long-running transactions dynamically switch to a greedy
algorithm, which incurs more overhead but favours long
transactions.

5.13. Strongly Atomic STM
The software transactional memory proposal by Abadi

et al. [24] provides strong atomicity by detecting conflicts
between transactional and non-transactional code using
the standard page-level memory protection hardware mech-
anisms. Potential drawbacks with this approach are over-
head for manipulating hardware protection settings, han-
dling access violation faults, and a large conflict detection
granularity which may result in false sharing.

Abadi et al. address these issues by using different
techniques to reduce the high cost of access violations
in off-the-shelf hardware. Conflicts between transactional
and non-transactional code are detected by using two dif-
ferent virtual memory mappings for the process heap; one
that is used inside a transaction and one that is used
in normal execution. The normal software transactional
memory, based on the Bartok compiler and runtime system
[100], detects conflicts between transactions at an object-
level. Further, careful object placement and dynamic code
updates of non-transactional code for potential conflicts
also reduce the access violation costs.

5.14. Elastic Transactions, ε-STM
Elastic transactions [97] is a novel approach to opti-

mize transactional memory for search data structures. An
elastic transaction can be divide into several smaller nor-
mal transactions depending on different conflict scenarios.
The approach is especially well suited for situations where
a large part of a data structure is searched (read-only)
while updates of the data are localized.

The implementation of elastic transactions, ε-STM,
is a timestamp-based and lock-based (two-phase locking)
software transactional memory, that provides both elastic
and normal transactions. Elastic and normal transactions
can easily be combined with each other. Upon a conflict,
the elastic transaction is divided into two transactions.
One implication of this is that the read set of an elastic
transaction only contains one element, i.e., the most recent
one.

14



6. Hybrid Transactional Memory

This section presents some of the most important hy-
brid transactional memory proposals. A hybrid transac-
tional memory, as classified in this overview, is one that
dynamically can switch between hardware and software
transactional memory modes during the execution. The
presented systems are summarized in Table 4.

6.1. Hybrid Transactional Memory, HyTM
The hybrid transactional memory proposed by Damron

et al. (HyTM) [80] relies on a best effort hardware trans-
actional memory implementation. When the hardware re-
sources are exhausted, HyTM switches to a software trans-
actional memory implementation. HyTM has many simi-
larities to Hybrid TM [101], NZTM [102, 103], and the best
effort hardware transactional memory in Rock [61, 62, 63].
HyTM provides a word-based interface to the transactional
memory, in contrast to Hybrid TM and NZTM that rely
on an object-based interface.

HyTM provides a software transactional memory im-
plementation that does not rely on a specific hardware
transactional memory support. Instead, HyTM provides
the ability to execute transactions using whatever hard-
ware support for transactional memory there are. Further,
both hardware managed and software managed transac-
tions can coexist in HyTM. The approach taken to obtain
correct interaction between hardware and software trans-
actions is to augment hardware transactions with addi-
tional code. Thus, a hardware transaction can check for
conflicts with software transactions before it commits.

HyTM assumes similar ISA extensions as many other
transactional memory proposals, such as instructions to
start, commit, and abort transactions. Damron et al.
also assume that some contention control policy is imple-
mented, although HyTM does not require any particular
policy to be implemented. HyTM supports nested trans-
actions using flattening.

6.2. Hybrid Transactional Memory, HybridTM
Hybrid transactional memory proposed by Kumar et

al. (Hybrid TM) [101], is similar to HyTM [80] and NZTM
[102, 103]. Hybrid TM tries to combine the best of two
worlds: low overhead and high performance in combina-
tion with support for unbounded transactions. When the
hardware resources are exhausted or a cache line in the cur-
rent transaction’s working set is evicted, the transaction is
aborted and the system resorts to a software transactional
memory implementation instead.

Hybrid TM [101] employs two modes of execution for a
transaction, a hardware transactional memory mode and
a software transactional memory mode. Each transaction
can independently choose which mode to use, e.g., based
on available hardware resources. The hardware transac-
tional memory implementation requires a buffer to hold
transactional data, both new and old values, and some ISA
extension, e.g., instructions to start, commit, and abort

transactions. However, a standard cache coherence pro-
tocol is used for conflict detection for both hardware and
software transactions. The software transactional memory
part of Hybrid TM is a modified version of the Dynamic
Software Transactional Memory (DSTM) [45].

6.3. Phased Transactional Memory, PhTM
Phased transactional memory (PhTM) [82], builds upon

the HyTM proposal [80]. The idea behind PhTM is to
build a transactional memory system that can switch be-
tween different execution modes (“phases”) depending on
the application behavior. The different modes are exe-
cuted using different transactional memory implementa-
tions. Lev et al. [82] identify five different scenarios and
discuss the execution modes that are efficient in each of
the scenario. The five execution modes in PhTM are:

• HARDWARE. All transactions are executed in hardware.
• SOFTWARE. All transactions are executed in software.
• HYBRID. Use a hybrid mode, similar to HyTM [80].
• SEQUENTIAL. Only one transaction is executed at a

time, i.e., no conflict detection is necessary.
• SEQUENTIAL-NOABORT. Only one transaction is exe-

cuted at a time, i.e., no conflict detection is neces-
sary. Further, logging can be elided since transac-
tions do not abort explicitly.

There are several challenges involved when designing a
phased transactional memory system. For example, how
and when shall the application and system change exe-
cution modes. In order to safely switch from one ex-
ecution mode to another, PhTM does not allow trans-
actions to start in a new mode until all transactions in
the previous mode have completed (or aborted). There
is a range of policies to use in order to determine when
to switch mode and also to which mode. Examples in-
clude fixed, scheduled phases of the execution or mon-
itoring various aspects of transaction performance, e.g.,
commit/abort/restart rates and number of conflicts. Of
course, programmer hints or compiler generated directives
are also possible approaches.

The prototype implementation of PhTM implements
only the HARDWARE and SOFTWARE execution modes. When
compiling an application, the compiler generates two code
paths for each atomic block: one for the HARDWARE and
one for the SOFTWARE mode. The compiler used is the
same as in HyTM [80], but it is modified to, e.g., allow
pure hardware transactions.

6.4. Nonblocking Zero-Indirection Transactional Memory,
NZTM

Nonblocking Zero-Indirection Transactional Memory pro-
posed by Tabba et al. (NZTM) [102, 103] relies on a
best effort hardware transactional memory implementa-
tion. NZTM has many similarities to Hybrid TM [101],
HyTM [80], and Rock [61, 62, 63]. When the hardware re-
sources are exhausted, NZTM switches to a software trans-
actional memory implementation.

15



Table 4: A classification of some hybrid transactional memory system proposals. The proposals shown in italic are thoroughly covered in [7].
Recent proposals, from 2007 and onwards, are marked with an underline.

System Synchronization
strategy

Concurrency
control

Granul-
arity

Update
strat-
egy

Conflict
detection

Conflict
resolu-
tion

Nested
trans-
action
support

Isolation

HyTM
[80]

Non-blocking
(obstruction-free)

Optimistic Word Deferred Late Contention
manager

Flattened Weak

Hybrid TM
[101]

Non-blocking
(obstruction-free)

Optimistic and
Pessimistic

Object,
Cache line

Deferred
and
Direct

Early/Late Aborting
or
Contention
manager

Flattened Weak

PhTM [82] Non-blocking
(obstruction-free)

Optimistic and
Pessimistic

Word,
Cache line

Deferred
or Direct

Early/Late Contention
manager,
Aborting,
Helping

Sometime
supports

Weak
and
Strong

NZTM
[102, 103]

Non-blocking
(obstruction-free)

Optimistic Object,
Cache line

Deferred Late Contention
manager

Not sup-
ported

Weak

SigTM
[21]

Blocking
(lock-based)

Optimistic Word,
Cache line

Deferred Late Aborting Supported Strong

UFO hybrid
TM [23]

Blocking
(lock-based)

Pessimistic Cache line Direct Early Age-based
contention
manager

Flattened Strong

SpHT [81] N/A Pessimistic Cache line Deferred Early Contention
manager

Open &
closed
supported

Strong

NZTM provides an object-based transactional mem-
ory, which also Hybrid TM [101] does, but in contrast
to HyTM [80] that uses a word-based interface. NZTM
utilize a best effort hardware transactional memory im-
plementation, i.e., transactions are first executed in hard-
ware. If the hardware transaction fails, it is first retried
a number of times in hardware. After a number of un-
successful attempts in hardware, the transaction switches
to a software transactional memory implementation called
NZSTM, which is designed to work together with the best
effort NZTM.

6.5. Signature-Accelerated Transactional Memory, SigTM
Signature-Accelerated Transactional Memory (SigTM)

[21], is a hybrid transactional memory system that uses
hardware signatures to track the read- and write-sets for
penging transactions. Conflict detection is also done in
hardware, while all other TM functionality is done in soft-
ware. One of the main contributions as compared to pre-
vious proposals is that it does not modify the underlaying
caches and coherence mechanisms. SigTM is also the first
hybrid transactions memory system that provides strong
isolation between transactional and non-transactional code
blocks, without the need for read and write barriers in the
non-transactional code.

6.6. UFO hybrid TM
The UFO hybrid TM [23] is a hybrid transactional

memory system maintaining strong atomicity that com-

bines three techniques: (i) a best-effort hardware transac-
tional memory (BTM), (ii) fine-grained hardware memory
protection, and (iii) a software transactional memory im-
plementation.

The best-effort hardware transactional memory (BTM)
in UFO hybrid TM extends the first-level cache with sup-
port for transactional/speculative execution, similarly to
the H&M transactional memory [5]. Thus, only trans-
actions that fit in the transactional first-level cache are
supported in hardware. The BTM works at the cache line
granularity and the speculative execution hardware is ex-
posed to software.

The user-mode fine-grained hardware memory protec-
tion scheme assumed in the paper is an enhanced version of
iWatcher [104], and associates two User Fault-On (UFO)
bits with each cache line. These two bits are moved with
the memory block throughout the whole memory hierar-
chy, i.e., in the caches, main memory, and virtual memory
(swap file) on disk.

The UFO STM (USTM) is a software transactional
memory library for C/C++. Read and write barriers are
inserted before accesses to shared data. Thus, USTM per-
forms eager conflict detection. USTM is made strongly
atomic by utilizing the UFO bits for transactionally ac-
cessed cache lines. Fault-on-write protection is installed
at each transactional read access, and both fault-on-read
and fault-on-write protection are installed at each transac-
tional write access. Thus, when a non-transactional access
results in a conflict, a fault handler is executed.

16



6.7. Split Hardware Transactions, SpHT
Split Hardware Transactions (SpHT) [81] is an approach

to support nested transactions in situations when an un-
derlaying hardware transactional memory implementation
does not support nesting. SpHT uses a combination of
software and hardware support to divide one large trans-
action into several smaller segments.

SpHT divides a program-level transaction into a num-
ber of smaller segments, and each segment is then executed
as a separate hardware transaction. SpHT uses the un-
derlying hardware transactional memory implementation
to perform conflict detection and atomic commit. Soft-
ware support then combines the different hardware trans-
actions into one large atomic block, which corresponds
to the program-level transaction. The approach of using
split hardware transactions has several advantages, e.g., it
overcomes the limitations of “best effort” hardware trans-
actional memory in terms of hardware resources and ex-
pressiveness, enables local retry of transactions, provides
strong atomicity, and has lower overhead than pure soft-
ware transactional memory implementations.

7. Concluding remarks

Multicore computers are the main computing platform
today and in the future. In order to utilize the perfor-
mance potential of them, the software also needs to be
parallel. However, writing parallel programs is hard and
time-consuming. In addition, introducing the necessary
synchronizations in a parallel program are difficult and
may result in errors that are hard to find, e.g., deadlocks,
data races, and priority inversion problems.

Transactional memory has been proposed as a solution
to the problems mentioned above as well as enabling soft-
ware composability. Transactional memory tries to ease
the development of parallel programs by providing prim-
itives to declare code sequences as atomic, which can be
executed concurrently as long as no data conflicts occur.

This longer than normal introduction to the JPDC spe-
cial issue on transactional memory provides two main con-
tributions in order to support the understanding of the pa-
pers included in the special issue. First, it provides a brief
description of terminology and concepts for transactional
memory in general. Second, it provides an overview of the
most important transactional memory proposals up to late
2009. The overview covers both hardware and software, as
well as hybrid transactional memory proposals.

It can be noted that there exits a large number of differ-
ent transactional memory proposals covering many differ-
ent design alternatives and combinations of policies. Some
general trends can be observed. Below, some examples of
trends in transactional memory research are noted:

• Most recent hardware transactional memory systems
favour eager conflict detection over lazy, as Table 1
shows.

• Eager data version management seems to attend more
focus in hardware transactional memory systems than
lazy version management does, see Table 1.

• A majority of software transactional memory sys-
tems favour optimistic concurrency control over pes-
simistic.

• Early software transactional memory systems usu-
ally employ non-blocking synchronization, as Table 2
shows, while more recent software transactional mem-
ory proposals usually employ blocking synchroniza-
tion, as Table 3 shows.

• Recent software transactional memory proposals usu-
ally have a more flexible approach regarding concur-
rency control, conflict detection, and conflict resolu-
tion than older ones, as Tables 2 and 3 show.

Acknowledgment

This special issue hadn’t been possible without the help
of a number of people. First of all, I would like to thank
Professor Allan Gottlieb, Editor-in-chief of the Journal of
Parallel and Distributed Computing, for his support of this
special issue and encouraging me to write a longer than
normal introduction to the special issue. Then, I send a
special thanks to Amy Mutale for all of the quality support
she has provided throughout the production of this special
issue. Next, I would like to thank all the reviewers for their
high-quality work during the paper selection process. Fi-
nally, I would like to thank Muhammad Nasir for collecting
some of the background information for several of the pre-
sented software transactional memory systems. The work
with compiling this special issue was partly funded by the
Industrial Excellence Center EASE - Embedded Applica-
tions Software Engineering, (http://ease.cs.lth.se).

References

[1] K. Olukotun, L. Hammond, The future of microprocessors,
Queue 3 (7) (2005) 26–29.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, K. A. Yelick, The landscape of paral-
lel computing research: A view from Berkeley, Tech. Rep.
UCB/EECS-2006-183, EECS Department, University of Cali-
fornia, Berkeley (Dec 2006).

[3] R. McDougall, Extreme software scaling, Queue 3 (7) (2005)
36–46.

[4] H. Sutter, J. Larus, Software and the concurrency revolution,
Queue 3 (7) (2005) 54–62.

[5] M. Herlihy, J. E. B. Moss, Transactional memory: Architec-
tural support for lock-free data structures, in: Proc. of the 20th
Int’l Symp. on Computer Architecture, 1993, pp. 289–300.

[6] N. Shavit, D. Touitou, Software transactional memory, in:
Proc. of the 14th ACM Symp. on Principles of Distributed
Computing, 1995, pp. 204–213.

[7] J. R. Larus, R. Rajwar, Transactional Memory, Morgan &
Claypool Publishers, 2007.

[8] J. Bobba, R. Rajwar, M. Hill, Transactional mem-
ory bibliography, http://www.cs.wisc.edu/trans-
memory/biblio/index.html (2010).

17



[9] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
K. Olukotun, Transactional memory coherence and consis-
tency, in: Proc. of the 31st Int’l Symp. on Computer Architec-
ture, 2004, pp. 102–113.

[10] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, D. A.
Wood, LogTM: Log-based transactional memory, in: Proc. of
the 12th Int’l Symp. on High-Performance Computer Archi-
tecture, 2006, pp. 254–265.

[11] T. F. Knight, An architecture for mostly functional languages,
in: LFP ’86: Proc. of the ACM Lisp and Functional Program-
ming Conference, 1986, pp. 105–112.

[12] J. M. Stone, H. S. Stone, P. Heidelberger, J. Turek, Multi-
ple Reservations and the Oklahoma Update, IEEE Parallel &
Distributed Technology 1 (4) (1993) 58–71.

[13] A. Chang, M. F. Mergen, 801 storage: Architecture and pro-
gramming, ACM Transactions on Computer Systems 6 (1)
(1988) 28–50.

[14] D. Thiebaut, H. S. Stone, Footprints in the cache, ACM Trans-
actions on Computer Systems 5 (4) (1987) 305–329.

[15] S. Eggers, R. Katz, The Effect of Sharing on the Cache and Bus
Performance of Parallel Programs, in: Proc. of the 3rd Int’l
Conf. on Architectural Support for Programming Languages
and Operating Systems, 1989, pp. 230–242.

[16] M. Dubois, J. Skeppstedt, P. Strenström, Essential misses and
data traffic in coherence protocols, J. Parallel Distrib. Comput.
29 (2) (1995) 108–125.

[17] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiser-
son, S. Lie, Unbounded transactional memory, in: Proc. of the
11th Int’l Symp. on High-Performance Computer Architecture,
2005, pp. 316–327.

[18] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill,
B. Liblit, M. M. Swift, D. A. Wood, Supporting nested trans-
actional memory in LogTM, in: Proc. of the 12th Int’l Conf. on
Architectural Support for Programming Languages and Oper-
ating Systems, 2006, pp. 359–370.

[19] C. Blundell, E. C. Lewis, M. M. K. Martin, Deconstructing
transactions: The subtleties of atomicity, in: Fourth Annual
Workshop on Duplicating, Deconstructing, and Debunking,
2005.

[20] C. Blundell, E. C. Lewis, M. M. K. Martin, Subtleties of trans-
actional memory atomicity semantics, IEEE Computer Archi-
tecture Letters 5 (2) (2006) 17–17.

[21] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald,
N. Bronson, J. Casper, C. Kozyrakis, K. Olukotun, An effec-
tive hybrid transactional memory system with strong isolation
guarantees, in: Proc. of the 34th Int’l Symp. on Computer
Architecture, 2007, pp. 69–80.

[22] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, B. Saha, Enforcing
Isolation and Ordering in STM, in: Proc. of the 2007 ACM
SIGPLAN Conf. on Programming Language Design and Im-
plementation, 2007, pp. 78–88.

[23] L. Baugh, N. Neelakantam, C. Zilles, Using hardware memory
protection to build a high-performance, strongly-atomic hybrid
transactional memory, in: Proc. of the 35th Int’l Symp. on
Computer Architecture, 2008, pp. 115–126.

[24] M. Abadi, T. Harris, M. Mehrara, Transactional memory with
strong atomicity using off-the-shelf memory protection hard-
ware, in: Proc. of the 14th ACM Symp. on Principles and
Practice of Parallel Programming, 2009, pp. 185–196.

[25] R. Rajwar, M. Herlihy, K. Lai, Virtualizing transactional mem-
ory, in: Proc. of the 32nd Int’l Symp. on Computer Architec-
ture, 2005, pp. 494–505.

[26] J. Chung, C. Cao Minh, A. McDonald, T. Skare, H. Chafi,
B. D. Carlstrom, C. Kozyrakis, K. Olukotun, Tradeoffs in
transactional memory virtualization, in: Proc. of the 12th Int’l
Conf. on Architectural Support for Programming Languages
and Operating Systems, 2006, pp. 371–381.

[27] L. Ceze, J. Tuck, C. Cascaval, J. Torrellas, Bulk disambigua-
tion of speculative threads in multiprocessors, in: Proc. of the

33rd Int’l Symp. on Computer Architecture, 2006, pp. 227–238.
[28] L. Ceze, J. Tuck, P. Montesinos, J. Torrellas, BulkSC: Bulk

enforcement of sequential consistency, in: Proc. of the 34th
Int’l Symp. on Computer Architecture, 2007, pp. 278–289.

[29] L. Yen, J. Bobba, M. M. Marty, K. E. Moore, H. Volos,
M. D. Hill, M. M. Swift, D. A. Wood, LogTM-SE: Decoupling
hardware transactional memory from caches, in: Proc. of the
13th Int’l Symp. on High-Performance Computer Architecture,
2007, pp. 261–272.

[30] D. Sanchez, L. Yen, M. D. Hill, K. Sankaralingam, Implement-
ing signatures for transactional memory, in: Proc. of the 40th
IEEE/ACM Int’l Symp. on Microarchitecture, 2007, pp. 123–
133.

[31] B. H. Bloom, Space/time trade-offs in hash coding with allow-
able errors, Communications of the ACM 13 (7) (1970) 422–
426.

[32] R. Pagh, F. F. Rodler, Cuckoo hashing, in: ESA 2001: Proc. of
the 9th European Symp. on Algorithms, Vol. 2161 of Lecture
Notes in Computer Science, 2001, pp. 121–133.

[33] R. Pagh, F. F. Rodler, Cuckoo hashing, Journal of Algorithms
51 (2) (2004) 122–144.

[34] M. Herlihy, Impossibility and universality results for wait-free
synchronization, in: Proc. of the Seventh ACM Symp. on Prin-
ciples of Distributed Computing, 1988, pp. 276–290.

[35] M. Herlihy, Wait-free synchronization, ACM Transactions on
Computer Systems 13 (1) (1991) 124–149.

[36] K. Fraser, Practical lock-freedom, Ph.D. thesis, Cambridge
University Computer Laboratory, also available as Technical
Report UCAM-CL-TR-579 (February 2004).

[37] R. Colvin, B. Dongol, A general technique for proving lock-
freedom, Science of Computer Programming 74 (3) (2009) 143–
165.

[38] E. Petrank, M. Musuvathi, B. Steesngaard, Progress guarantee
for parallel programs via bounded lock-freedom, in: Proc. of
the 2009 ACM SIGPLAN Conf. on Programming Language
Design and Implementation, 2009, pp. 144–154.

[39] M. Herlihy, V. Luchangco, M. Moir, Obstruction-free synchro-
nization: Double-ended queues as an example, in: Proc. of the
23rd Int’l Conf. on Distributed Computing Systems, 2003, pp.
522–529.

[40] W. N. Scherer III, M. L. Scott, Contention management in
dynamic software transactional memory, in: Proc. of the ACM
PODC Workshop on Concurrency and Synchronization in Java
Programs, 2004.

[41] W. N. Scherer III, M. L. Scott, Advanced contention manage-
ment for dynamic software transactional memory, in: Proc. of
the 24th ACM Symp. on Principles of Distributed Computing,
2005, pp. 240–248.

[42] R. Guerraoui, M. Herlihy, B. Pochon, Toward a theory of
transactional contention managers, in: Proc. of the 24th ACM
Symp. on Principles of Distributed Computing, 2005, pp. 258–
264.

[43] R. Guerraoui, M. Herlihy, B. Pochon, Polymorphic contention
management, in: Proc. of the 19th Int’l Symp. on Distributed
Computing, 2005, pp. 303–323.

[44] M. F. Spear, L. Dalessandro, V. J. Marathe, M. L. Scott, A
comprehensive strategy for contention management in software
transactional memory, in: Proc. of the 14th ACM Symp. on
Principles and Practice of Parallel Programming, 2009, pp.
141–150.

[45] M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer III, Soft-
ware transactional memory for dynamic-sized data structures,
in: Proc. of the 22nd Symp. on Principles of Distributed Com-
puting, 2003, pp. 92–101.

[46] T. Riegel, C. Fetzer, P. Felber, Time-based transactional mem-
ory with scalable time bases, in: Proc. of the 19th ACM Symp.
on Parallelism in Algorithms and Architectures, 2007, pp. 221–
228.

[47] M. F. Spear, V. J. Marathe, L. Dalessandro, M. L. Scott, Pri-
vatization techniques for software transactional memory, in:
Proc. of the 26th ACM Symp. on Principles of Distributed

18



Computing, 2007.
[48] M. Abadi, A. Birrell, T. Harris, M. Isard, Semantics of trans-

actional memory and automatic mutual exclusion, in: Proc.
of the 35th ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, 2008, pp. 63–74.

[49] V. J. Marathe, M. F. Spear, M. L. Scott, Scalable techniques
for transparent privatization in software transactional memory,
in: Proc. of the 37th Int’l Conf. on Parallel Processing, 2008,
pp. 67–74.

[50] Y. Lev, V. Luchangco, V. Marathe, M. Moir, D. Nussbaum,
M. Olszewski, Anatomy of a scalable software transactional
memory, in: TRANSACT ’09: 4th Workshop on Transactional
Computing, 2009.

[51] A. Shriraman, S. Dwarkadas, M. L. Scott, Flexible decou-
pled transactional memory support, in: Proc. of the 35th Int’l
Symp. on Computer Architecture, 2008, pp. 139–150.

[52] L. Hammond, B. D. Carlstrom, V. Wong, M. Chen,
C. Kozyrakis, K. Olukotun, Transactional coherence and con-
sistency: Simplifying parallel hardware and software, IEEE
Micro 24 (6) (2004) 92–103.

[53] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg,
M. Chen, C. Kozyrakis, K. Olukotun, Programming with
transactional coherence and consistency (TCC), in: Proc. of
the 11th Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, 2004, pp. 1–13.

[54] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. D. Carl-
strom, L. Hammond, C. Kozyrakis, K. Olukotun, Characteri-
zation of TCC on chip-multiprocessors, in: PACT ’05: Proc. of
the 14th Int’l Conf. on Parallel Architectures and Compilation
Techniques, 2005, pp. 63–74.

[55] A. McDonald, J. Chung, D. C. Brian, C. Cao Minh, H. Chafi,
C. Kozyrakis, K. Olukotun, Architectural semantics for prac-
tical transactional memory, in: Proc. of the 33rd Int’l Symp.
on Computer Architecture, 2006, pp. 53–65.

[56] A. McDonald, B. D. Carlstrom, J. Chung, C. Cao Minh,
H. Chafi, C. Kozyrakis, K. Olukotun, Transactional memory:
The hardware-software interface, IEEE Micro, Special Issue on
Top Picks from Architecture Conferences 27 (1) (2007) 67–76.

[57] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. Cao
Minh, W. Baek, C. Kozyrakis, K. Olukotun, A scalable, non-
blocking approach to transactional memory, in: Proc. of the
13th Int’l Symp. on High-Performance Computer Architecture,
2007, pp. 97–108.

[58] R. Rajwar, J. R. Goodman, Transactional lock-free execution
of lock-based programs, in: Proc. of the 10th Int’l Conf. on
Architectural Support for Programming Languages and Oper-
ating Systems, 2002, pp. 5–17.

[59] R. Rajwar, J. R. Goodman, Transactional execution: Toward
reliable, high-performance multithreading., IEEE Micro 23 (6)
(2003) 117–125.

[60] M. Moir, K. Moore, D. Nussbaum, The adaptive transactional
memory test platform: A tool for experimenting with trans-
actional code for Rock, in: 3rd ACM SIGPLAN Workshop on
Transactional Computing, ACM Press, 2008.

[61] M. Tremblay, S. Chaudhry, A Third-Generation 65nm 16-Core
32-Thread Plus 32-Scout-Thread CMT SPARC Processor, in:
Proc. of the 2008 IEEE Int’l Solid-State Circuits Conference,
2008, pp. 82–83.

[62] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin,
S. Yip, H. Zeffer, M. Tremblay, Rock: A High-Performance
Sparc CMT Processor, IEEE Micro 29 (2) (2009) 6–16.

[63] D. Dice, Y. Lev, M. Moir, D. Nussbaum, Early experience with
a commercial hardware transactional memory implementation,
in: Proc. of the 14th Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems, 2009, pp.
157–168.

[64] S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal,
O. Unsal, T. Harris, M. Valero, EazyHTM: Eager-lazy hard-
ware transactional memory, in: Proc. of the 42nd Int’l Symp.
on Microarchitecture, 2009, pp. 145–155.

[65] C. Blundell, J. Devietti, E. C. Lewis, M. M. K. Martin, Mak-

ing the fast case common and the uncommon case simple in
unbounded transactional memory, in: Proc. of the 34th Int’l
Symp. on Computer Architecture, 2007, pp. 24–34.

[66] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann,
A. Bhandari, E. Witchel, MetaTM/TxLinux: Transactional
memory for an operating system, in: Proc. of the 34th Int’l
Symp. on Computer Architecture, ACM, 2007, pp. 92–103.

[67] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann,
A. Bhandari, E. Witchel, MetaTM/TxLinux: Transactional
memory for an operating system, IEEE Micro 28 (1) (2008)
42–51.

[68] O. S. Hofmann, C. J. Rossbach, E. Witchel, Maximum bene-
fit from a minimal HTM, in: Proc. of the 14th Int’l Conf. on
Architectural Support for Programming Languages and Oper-
ating Systems, 2009, pp. 145–156.

[69] J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, D. A. Wood,
TokenTM: Efficient execution of large transactions with hard-
ware transactional memory, in: Proc. of the 35th Int’l Symp.
on Computer Architecture, 2008, pp. 127–138.

[70] S. A. R. Jafri, M. Thottethodi, T. N. Vijaykumar, LiteTM: Re-
ducing transactional state overhead, in: Proc. of the 16th Int’l
Symp. on High-Performance Computer Architecture, 2010, pp.
81–92.

[71] M. Lupon, G. Magklis, A. Gonzalez, FASTM: A log-based
hardware transactional memory with fast abort recovery, in:
Proc. of the 18th Int’l Conf. on Parallel Architectures and
Compilation Techniques, 2009, pp. 293–302.

[72] L. Lamport, How to make a multiprocessor computer that cor-
rectly executes multiprocess programs, IEEE Transactions on
Computers 28 (9) (1979) 690–691.

[73] K. Gharachorloo, A. Gupta, J. Hennessy, Two techniques to
enhance the performance of memory consistency models, in:
Proc. of the 1991 Int’l Conf. on Parallel Processing, Vol. I,
Architecture, 1991, pp. I:355–364.

[74] P. Ranganathan, V. S. Pai, S. V. Adve, Using speculative re-
tirement and larger instruction windows to narrow the perfor-
mance gap between memory consistency models, in: Proc. of
the 9th ACM Symp. on Parallel Algorithms and Architectures,
1997, pp. 199–210.

[75] C. Gniady, B. Falsafi, T. N. Vijaykumar, Is SC + ILP = RC?,
in: Proc. of the 26th Int’l Symp. on Computer Architecture,
1999, pp. 162–171.

[76] C. Gniady, B. Falsafi, Speculative sequential consistency with
little custom storage, in: Proc. of the 11th Int’l Conf. on Paral-
lel Architectures and Compilation Techniques, 2002, pp. 179–
188.

[77] R. Rajwar, J. R. Goodman, Speculative lock elision: Enabling
highly concurrent multithreaded execution, in: Proc. of the
34th ACM/IEEE Int’l Symp. on Microarchitecture, 2001, pp.
294–305.

[78] L. Lamport, Time, clocks, and the ordering of events in a
distributed system, Communications of the ACM 21 (7) (1978)
558–565.

[79] D. Dice, M. Herlihy, D. Lea, Y. Lev, V. Luchangco, W. Mesard,
M. Moir, K. Moore, D. Nussbaum, Applications of the adaptive
transactional memory test platform, in: 3rd ACM SIGPLAN
Workshop on Transactional Computing, 2008.

[80] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir,
D. Nussbaum, Hybrid transactional memory, in: Proc. of the
12th Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, 2006, pp. 336–346.

[81] Y. Lev, J.-W. Maessen, Split hardware transactions: True
nesting of transactions using best-effort hardware transactional
memory, in: Proc. of the 13th ACM SIGPLAN Symp. on Prin-
ciples and Practice of Parallel Programming, 2008, pp. 197–
206.

[82] Y. Lev, M. Moir, D. Nussbaum, PhTM: Phased transactional
memory, in: Workshop on Transactional Computing (TRANS-
ACT), 2007.

[83] A. Shriraman, M. F. Spear, H. Hossain, V. Marathe,
S. Dwarkadas, M. L. Scott, An integrated hardware-software

19



approach to flexible transactional memory, in: Proc. of the
34th Int’l Symp. on Computer Architecture, 2007, pp. 104–
115.

[84] T. Harris, K. Fraser, Language support for lightweight transac-
tions, in: Object-Oriented Programming, Systems, Languages,
and Applications, 2003, pp. 388–402.

[85] V. J. Marathe, W. N. Scherer III, M. L. Scott, Design tradeoffs
in modern software transactional memory systems, in: Proc.
of the 7th Workshop on Languages, Compilers, and Run-time
Systems for Scalable Systems, 2004, pp. 1–7.

[86] V. J. Marathe, W. N. Scherer III, M. L. Scott, Adaptive soft-
ware transactional memory, in: Proc. of the 19th Int’l Symp.
on Distributed Computing, Vol. 3724 of Lecture Notes in Com-
puter Science, 2005, pp. 354–368.

[87] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisen-
stat, W. N. Scherer III, M. L. Scott, Lowering the overhead
of software transactional memory, in: Proc. of the ACM SIG-
PLAN Workshop on Transactional Computing, 2006.

[88] M. Herlihy, V. Luchangco, M. Moir, A flexible framework for
implementing software transactional memory, in: Proc. of the
21st ACM SIGPLAN Conf. on Object-Oriented Programming
Systems, Languages, and Applications, 2006, pp. 253–262.

[89] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh,
B. Hertzberg, McRT-STM: a high performance software trans-
actional memory system for a multi-core runtime, in: Proc. of
the 11th ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming, 2006, pp. 187–197.

[90] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,
B. Saha, T. Shpeisman, Compiler and runtime support for
efficient software transactional memory, in: Proc. of the 2006
Conf. on Programming Language Design and Implementation,
2006, pp. 26–37.

[91] D. Dice, O. Shalev, N. Shavit, Transactional Locking II, in:
Proc. of the 20th Int’l Symp. Distributed Computing, Vol. 4167
of Lecture Notes in Computer Science, 2006, pp. 194–208.

[92] T. Riegel, C. Fetzer, P. Felber, Snapshot isolation for software
transactional memory, in: Proc. of the First ACM SIGPLAN
Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing, 2006.

[93] T. Riegel, P. Felber, C. Fetzer, A lazy snapshot algorithm with
eager validation, in: Proc. of the 20th Int’l Symp. on Dis-
tributed Computing, Vol. 4167 of Lecture Notes in Computer
Science, 2006, pp. 284–298.

[94] J. E. Gottschlich, D. A. Connors, DracoSTM: a practical C++
approach to software transactional memory, in: LCSD ’07:
Proc. of the 2007 Symp. on Library-Centric Software Design,
2007, pp. 52–66.

[95] P. Felber, C. Fetzer, T. Riegel, Dynamic performance tuning
of word-based software transactional memory, in: Proc. of the
13th ACM SIGPLAN Symp. on Principles and Practice of Par-
allel Programming, 2008, pp. 237–246.

[96] A. Dragojević, R. Guerraoui, M. Kapalka, Stretching transac-
tional memory, in: Proc. of the 2009 ACM SIGPLAN Conf.
on Programming Language Design and Implementation, 2009,
pp. 155–165.

[97] P. Felber, V. Gramoli, R. Guerraoui, Elastic transactions, in:
Proc. of the 23rd Int’l Symp. on Distributed Computing, Vol.
5805 of LNCS, 2009, pp. 93–107.

[98] D. Dice, N. Shavit, What really makes transactions faster?, in:
Proc. of the First ACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Comput-
ing, 2006.

[99] D. Dice, N. Shavit, Understanding tradeoffs in software trans-
actional memory, in: Proc. of the 2007 Int’l Symp. on Code
Generation and Optimization, 2007, pp. 21–33.

[100] T. Harris, M. Plesko, A. Shinnar, D. Tarditi, Optimizing mem-
ory transactions, in: Proc. of the 2006 Conf. on Programming
Language Design and Implementation, 2006, pp. 14–25.

[101] S. Kumar, M. Chu, C. Hughes, P. Kundu, A. Nguyen, Hybrid
transactional memory, in: Proc. of the 11th ACM SIGPLAN
Symp. on Principles and Practice of Parallel Programming,

2006, pp. 209–220.
[102] F. Tabba, C. Wang, J. R. Goodman, M. Moir, NZTM: Non-

blocking, zero-indirection transactional memory, in: Workshop
on Transactional Computing (TRANSACT), 2007.

[103] F. Tabba, M. Moir, J. R. Goodman, A. W. Hay, C. Wang,
NZTM: Nonblocking zero-indirection transactional memory,
in: Proc. of the 21st Symp. on Parallelism in Algorithms and
Architectures, 2009, pp. 204–213.

[104] P. Zhou, F. Qin, W. Liu, Y. Zhou, J. Torrellas, iWatcher:
Simple, general architectural support for software debugging,
IEEE Micro 24 (6) (2004) 50–56.

20


