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Invalidation-based cache coherence protocols have been extensively studied in the context of large-scale 
shared-memory multiprocessors. Under a relaxed memory consistency model, most of the write latency can be 
hidden whereas cache misses still incur a severe performance problem. By contrast, update-based protocols have a 
potential to reduce both write and read penalties under relaxed memory consistency models because coherence 
misses can be completely eliminated. The purpose of this paper is to compare update- and invalidation-based 
protocols for their ability to reduce or hide memory access latencies and for their ease of implementation under 
relaxed memory consistency models. 

Based on a detailed simulation study, we find that write-update protocols augmented with simple competitive 
mechanisms - we call such protocols competitive-update protocols - can hide all the write latency and cut the read 
penalty by as much as 46% at the cost of some increase in the memory traffic. However, as compared to 
write-invalidate, update-based protocols require more aggressive memory consistency models and more local 
buffering in the second-level cache to be effective. In addition, their increased number of global writes may cause 
increased synchronization overhead in applications with high contention for critical sections. 
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1. Introduction 

Shared-memory multiprocessors do not easily 
scale to large numbers of processors because of 
the latency of accesses to shared data. Using 
private caches with a directory-based write-in- 
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validate cache coherence protocol is a common 
approach to reduce these latencies [30]. However, 
as faster processors are designed, cache coher- 
ence and miss handling can significantly reduce 
processor efficiency. Several latency-tolerating 
and hiding techniques have been proposed and 
evaluated [191 including prefetching [8,10,26], 
multiple hardware contexts [21, and memory ac- 
cess buffering under relaxed memory consistency 
models [1,13,16]. 
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Previous studies have shown that under re- 
laxed memory consistency models the write la- 
tency can be easily hidden by overlapping write 
requests with each other and with local computa- 
tion. Gharachorloo et al. [17] studied the effec- 
tiveness of hardware mechanisms under memory 
consistency model relaxation to hide write latency 
in the context of processors with blocking loads. 
Hiding read latency has also been studied in two 
subsequent papers by Zucker and Baer [361 and 
by Gharachorloo et al. [18] by considering proces- 
sors that do not block on load accesses. Unfortu- 
nately, the tolerance to read miss latency by re- 
laxing the memory consistency model can be 
severely restricted by the limited ability to sched- 
ule loads sufficiently far ahead of the miss or by 
the hardware complexity needed in the processor 
to dynamically schedule the loads. 

These observations have motivated us to evalu- 
ate update-based cache protocols, which maintain 
consistency by propagating the data values on 
each shared write, in the context of standard 
blocking load processors. Update-based protocols 
trade a reduction in the miss rate for an increase 
in the write traffic. Unfortunately, several prob- 
lems may eliminate this performance advantage. 
First, update-based protocols generate more write 
traffic and block the processors on a write more 
often than invalidation-based protocols; therefore 
more aggressive hardware mechanisms and mem- 
ory consistency models may be needed to hide 
the write latency. Second, even if the write la- 
tency can be hidden, the larger write traffic can 
cause network contention which, as a secondary 
effect, may increase the latency of misses; to 
offset this effect, higher bandwidth networks may 
be required. 

In this study, we quantify these performance 
effects to compare update-based to invalidation- 
based protocols. As a basis for the comparison, 
we consider a two-level cache hierarchy in each 
processor node consisting of a simple and fast 
write-through, direct-mapped first-level cache in- 
terfaced to a second-level write-back cache with 
various degrees of write buffering. We especially 
focus on the implementation issues related to a 
lockup-free [23,31] second-level cache. A previous 
study by Gharachorloo et al. has partly addressed 

this issue in the context of write-invalidate proto- 
cols [17] but not for update-based protocols. 

A detailed simulation study of four applica- 
tions from the SPLASH suite [29] reveals that 
pure write-update protocols have an unaccept- 
able level of traffic in some cases. However, corn- 
petitive-update protocols, which are update-based 
protocols augmented with simple competitive 
mechanisms to invalidate a block, have a poten- 
tial to reduce the read penalty provided that the 
application’s bandwidth requirement is moderate 
as compared to the available network bandwidth. 
We show that competitive-update protocols can 
reduce the read penalty by as much as 46% as 
compared to write-invalidate protocols. However, 
the management of the cache for competitive-up- 
date protocols requires more complex hardware 
and is only effective under relaxed memory con- 
sistency models. We identify the hardware mech- 
anisms needed to fully exploit the read-latency 
reducing capability of update-based protocols. 

As a background, we begin in the next section 
by comparing the performance potentials and 
limitations of write-invalidate and update-based 
protocols under relaxed memory consistency 
models. Then, in Section 3, we describe the 
lockup-free mechanisms needed to hide the write 
latency by reviewing the architecture of the simu- 
lated multiprocessor system used in our simula- 
tions. In Section 4 we present the simulation 
methodology, the detailed architectural assump- 
tions, and the benchmark programs. The experi- 
mental results are presented in Section 5 and our 
findings are contrasted with the work of others in 
Section 6. Finally, we conclude in Section 7. 

2. Background 

In shared-memory multiprocessors, the mem- 
ory access penalty, i.e. the accumulated time the 
processor has to stall for completing memory 
accesses during the program execution, consists 
of two components - the write and the read 
penalties. In a write-invalidate protocol, the write 
penalty is due to the invalidation of remote copies 
upon a write request whereas the read penalty 
comes from the handling of cache load misses. 
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Write latencies can be very high because copies 
in remote caches, far away from the processor, 
must sometimes be invalidated. The effectiveness 
of mechanisms to hide these latencies depends on 
the memory conshency model. 

2.1. Memory consistency models 

The memory consistency model refers to the 
logical model offered by the memory system to 
the programmer or to the compiler. This model 
in turn constrains the possible ordering and inter- 
leaving of memory accesses in the multiprocessor. 

Sequential Consistency [241 is the most restric- 
tive model as far as the ordering of memory 
accesses is concerned. The major drawback of 
sequential consistency is the severe limitation it 
imposes on the overlap of writes with subsequent 
reads, writes, or local computation in the proces- 
sor. In essence, no read or write request (to 
shared data) can be handled before a previous 
write request has been completed. 

To remedy this problem the constraints on the 
ordering of shared memory accesses [1,13,16] must 
be relaxed by assuming that ordering is only 
enforced on special synchronization operations 
rather than on all memory accesses. All synchro- 
nizations among parallel threads are done through 
explicit, hardware-recognizable synchronization 
operations (i.e. these operations must be distin- 
guishable from regular load/store instructions). 
The processor must perform all its preceding 
loads and stores globally before it can issue a 
synchronization operation; moreover, a processor 
may issue no memory loads or stores following a 
synchronization point in program order until the 
synchronization operation is successfully com- 
pleted. In systems where these two conditions 
apply we say that loads and stores are Weakly 
Ordered and that the memory system is weakly 
ordered (WO) [12]. 

Special types of synchronization operations al- 
low additional relaxation of the above conditions. 
For synchronization based on critical sections, a 
refinement called Release Consistency [ 161 distin- 
guishes between acquire (acquiring a lock) and 
release (releasing a lock). Release Consistency 
requires that all global accesses preceding a re- 

lease are globally performed before the release, 
and that no global access following a acquire is 
issued before the acquire has compl ted. In its 
strictest form, Release “, Consistency (RCsc) re- 
quires that all processors must 
quires and releases in their p 
essence, releases can be b 
in the same write buffer provided 
ceding a release in the FIFO orde 
are performed before the release 1 
that buffer and acquires are no 
pass releases. In a more relaxed 
Consistency (RCpc), acquires a 
pass previous releases, but 
must still be performed in 
forth we will only assume 
it as RC for simplicity. 

Under Release Consistency, previous work has 
shown that there is a potential to lide all the 
write latency by local computation given enough 
hardware support [17]. However, the read penalty 
cannot be reduced significantly by using relaxed 
memory models, unless loads are non-blocking in 
the processor. These non-blocking loads must 
either be scheduled statically by the user/com- 
piler or dynamically by dynamic instruction- 
scheduling mechanisms. Static scheduling of loads 
is difficult because of intra-processor depen- 
dences. A study by Gharachorloo et al. [18] has 
shown that the performance potential attained by 
dynamic load scheduling does not justify the in- 
creased complexity of the processors. Therefore, 
in this study, we only consider standard proces- 
sors with blocking loads. 

2.2. Write-invalidate versus write-updat e protocols 

Most implementations of and 
large-scale multiprocessors use 
protocols [3,21,25] because early studi 
bus-based multiprocessors such 
that they exhibit reduced traffic and 
ter performance. Write-invalidate pr 

from other processors, only the first 
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misses can incur a significant read penalty be- 
cause the read request must be forwarded from 
the memory module to the cache keeping the 
exclusive copy. The cache with the exclusive copy 
then must update the memory and the block must 
be supplied to the requesting cache. Thus, the 
total read penalty to service a coherence miss 
includes several node-to-node block transfers. 

By contrast, in write-update protocols all co- 
herence misses are eliminated since all copies of 
a memory block are updated with the new value 
instead of invalidated on a write request to a 
shared block. The price to pay for the elimination 
of the coherence misses is an increased number 
of global write actions. 

The write penalty under sequential consistency 
is substantially higher for write-update protocols 
than for write-invalidate protocols because of two 
reasons: (i) each write action incurs more latency 
to guarantee causal correctness [28] and (ii) the 
number of global write actions is larger than 
under write-invalidate. To guarantee causal cor- 
rectness, all writes must appear in the same order 
with respect to each processor. Wilson and 
LaRowe presented a two-phase protocol [34] 
which guarantees causal correctness. In their pro- 
tocol, two transactions per update must take 
place. During the first transaction, the data val- 
ues are updated but the copies are locked. A 
processor that accesses a locked block is stalled. 
During the second transaction, the copies are 
unlocked and the processors are allowed to ac- 
cess their copies again. Because of the large 
overhead associated with this two-phase protocol, 
write-update protocols are not feasible in the 
context of sequential consistency models. 

By contrast, under a relaxed consistency model, 
such as WO or RC, the write latency can be 
completely hidden provided a sufficiently aggres- 
sive design of the processor node and the mem- 
ory subsystem. In addition, since causal correct- 
ness is not required for ordinary loads and stores, 
the two-phase update transaction is not needed. 
However, the potential increase in traffic can 
lead to more read penalty because of increased 
contention which overall end up increasing the 
execution time as compared to write-invalidate 
protocols. The question then is whether the traf- 

fic of update-based protocols can be kept at an 
acceptable level so that the reduction of read 
penalty they provide is not eliminated or - even 
reversed - by contention. 

2.3. Competitive-update protocols 

In a write-update protocol, a block loaded into 
a cache stays there until it is replaced, which 
results in update actions from other processors 
even if the local processor does not access the 
block again. To remedy this problem the local 
copy should be invalidated if it has been updated 
by remote processors a certain number of times 
with no intervening local access. Karlin et al. 
introduced this mechanism which they call com- 
petitive snooping in [22], in the context of bus- 
based systems, where each processing node 
snoops on the bus for write actions. The imple- 
mentation requires a counter per cache block. On 
a processor access to the block, the counter is 
initialized to a given value, the competitive thresh- 
old. Whenever an update message from a remote 
processor is received, the counter is decre- 
mented. When the counter reaches zero, the block 
is invalidated. 

To study the potential of read-penalty reduc- 
tion of update-based protocols, we will consider a 
similar protocol, referred to as competitive-up- 
date. The competitive snooping protocol can eas- 
ily be adapted to a directory-based protocol. 
When a cache receives an update and the counter 
of the block reaches zero, the copy is invalidated 
and the cache notifies the memory controller of 
the invalidation so that updates to that cache 
ceases. 

2.4. Summary 

In summary, write-invalidate protocols have 
lower write traffic and write penalty at the cost of 
a higher coherence miss rate whereas write-up- 
date protocols eliminate coherence misses at the 
cost of increased write traffic in the network. 
Simple competitive algorithms added to a write- 
update protocol have the potential for reduced 
read penalty as compared to write-invalidate pro- 
tocols while maintaining an acceptable traffic 
level. 
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Whereas the performance issues related to the 
policies that we consider in this paper are impor- 
tant, the complexity and cost of the mechanisms 
needed to overlap write requests with each other 
are critical issues. In the next section, we describe 
possible implementations for different write- 
latency hiding mechanisms which we have consid- 
ered in our study. 

3. Processor node architectures for latency hiding 

As a basic assumption for our analysis, we 
have only considered design alternatives that are 
applicable to standard microprocessors which 
block on load requests. Future standard micro- 
processors will have an on-chip cache for data 
and instructions as contemporary microproces- 
sors have. We assume throughout the paper that 
this on-chip cache is a write-through cache with 
no allocation on write misses and is blocking on 
read misses. Such a cache is simpler and faster 
than a write-back cache and is more likely to 
support processors with increasing clock rates. 
We also assume that the microprocessor has an 
invalidation pin and a mechanism to invalidate 
blocks in the on-chip cache. This pin will be 
required for maintaining coherence. 

3.1. The basic processor node 

A simple and common way to hide write laten- 
ties is the cache hierachy shown in Fig. 1 which 
consists of a First-Level write-through Cache 
(FLC) with no allocation on a write miss and a 
Second-Level write-back Cache (SLC). To avoid 
processor stalls on writes, a First-Level Write 
Buffer (FLWB) between the two caches holds the 
contents of all modified words that have not 
updated the SLC; the processor executes all writes 
in one cycle in the FLWB for as long as the 

1-I .WH 
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Fin-imel Fin-level Second-level y 

cache \I rite buffer cache 

Fig. 1. A basic two-level cache hierarchy. 

buffer is not backed up. Since the SLC is only 
accessed on a read miss from the FLC, there is 
plenty of SLC bandwidth to satisfy the writes in 
between two read misses. 

The cache hierarchy in Fig. 1 can 
advantage of Weakly Ordered (WO) ,” 

artly take 
r Release 

Consistent (RC) memory consistency models be- 
cause the processor is not blocked w n a write 
misses or hits on a clean copy in the s cond-level 

3 cache: writes are buffered in the FLW and read 
misses in the FLC can bypass the wr tes in the 
buffer as long as intra-processor depen 

k 

ences are 
respected, which only leads to the follo ‘ng three 
restrictions. First, synchronization bperations 
cannot bypass the write buffer. Second, reads 
cannot bypass synchronization operations. Third, 
a read miss to a block cannot bypass ia write to 
one of its words in the buffer. Ideally, ‘f the read 
accesses a word in the write buffer, th d read miss 
could return the value to the processor. However 
this would complicate the design of bhe buffer 
and the interface to the microprocessor, which 
might receive either a block or the word on a 
cache miss. For codes with read-after-write de- 
pendencies such as recurrence relatio’ 
mechanism may improve perform rice. The an 

s, such a 

benchmarks we have run do not have such recur- 
rences and therefore would not benefi/t from the 
added complexity. For these reasons, hve do not 
consider this possibility. 

Under Release Consistency, releases can be 
buffered with the writes in the same write buffer 
provided all writes preceding a rele se in the 
FIFO order of the buffer are perfo ed before 

t 

the release is issued from that buffer. ubsequent 
acquires and FLC read misses may ypass the 
releases in the buffer. 

3.2. A processor node with a secondjleuel write 
buffer 

The processor node of Fig. 1 is very similar to 
the architecture of the SGI cluster of the DASH 
prototype [25]. In this architecture, the second- 
level cache stops accepting write or tread miss 
requests when a write emerges from the FLWB 
and the block is not owned in the SLC. This is a 
severe limitation. If we want to make dhe proces- 
sor node truly tolerant to write latencies, we need 
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to make the SLC lockup-free [23], meaning that it 
can allow multiple outstanding write requests. 
However, for microprocessors that block on loads, 
only a single outstanding read request needs to 
be supported. By including a second-level write 
buffer (SLWB), as shown in Fig. 2, the SLC can 
allow multiple outstanding write requests. All 
writes that cause global actions (including write 
misses, invalidations, or updates) can be inserted 
temporarily in this buffer. Read misses in the 
SLC may be allowed to bypass the writes in the 
SLWB, under the same restrictions as for the 
FLWB. In contrast to the FLWB, which must be 
as fast as the FLC, the SLWB can afford more 
complex mechanisms because it is interfaced to 
the slower SLC. There are many design options 
for the architecture of the SLWB and of its 
controller, and we will cover some of the most 
important ones in this paper. 

3.2.1. Design alternatives for the first-level write 
buffer 

The first-level write buffer is needed because 
processor writes must complete at the speed of 
the processor. The major requirement of this 
buffer is that it must be simple and fast. Tradi- 
tionally its size has been small: depending on 
memory latencies, 4 to 16 entries are sufficient to 
avoid any stall on writes in the processor. 

One interesting design issue is whether read 
misses in the FLC should bypass the writes in the 
FLWB. Since the on-chip cache blocks on a read 
miss, only one such miss will ever need to bypass 
the buffer but the timing of the miss is critical to 
performance. To allow a read miss to bypass the 
FLWB, a mechanism must check for words of the 
block in the write buffer; if there is a match the 

read miss request is blocked until the buffer is 

empty. 
In the case of Weak Ordering, the FLWB 

must be emptied at the execution of each syn- 
chronization instruction. By contrast, for Release 
Consistency, acquires are always allowed to by- 
pass the write buffer. We will investigate the 
effectiveness of allowing read and acquire re- 
quests to bypass write and release requests in the 
FLWB. 

3.2.2. Design alternatives for the second-level write 
buffer (write-invalidate) 

The SLWB contains entries for writes that 
cause global actions (misses or invalidations). It 
can be organized as a FIFO queue containing 
addresses and values of modified words. The 
interface to the memory system is relatively sim- 
ple. If a write request is put in the buffer, the 
SLWB controller issues a request for ownership 
to the memory controller. The memory controller 
must deal with each request one by one. (It can 
queue them or it can reject them.) Based on the 
state of the block in other caches, the memory 
controller decides whether the requester needs a 
fresh copy of the block, which happens if the 
block is dirty in another cache. Note that, even if 
the cache had a valid copy of the block when the 
write was buffered, an invalidation may have re- 
moved the copy by the time the write emerges out 
of the SLWB. If there is a valid (non-owned) 
block copy in the cache and a write to the block is 
pending in the SLWB, writes to the block update 
the SLC and read misses from the FLC return 
the modified copy in the SLC, all updates to such 
blocks are also inserted in the SLWB but no 
additional global actions are taken. We distin- 

First-level : : First-level Second-level Second-level 1 1 g : 
cache ; ; write buffer cache write buffer : : _ -- : 

Fig. 2. A two-level cache hierarchy with two separate write buffers and a lockup-free second-level cache. 
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guish between the following cases: 
(1) The block was missing in the SLC when the 

write was buffered. In this case, a block copy 
is returned by the memory system; the up- 
dates in the SLWB must be merged into the 
block copy before the block becomes accessi- 
ble in the cache. 

(2) The block was not missing in the SLC but the 
cache did not have ownership when the write 
was buffered. There are two possibilities: 
(2.1) The block has been invalidated since 

the write was buffered. The local up- 
dates to the block are in the SLWB. A 
block copy is returned by the memory 
system and the updates in the SLWB 
must be merged into the block copy 
before it becomes accessible in the 
cache. 

(2.2) The block has not been invalidated since 
the write was buffered. The memory 
system gives ownership rights to the 
cache by returning a positive acknowl- 
edgment. All updates to the block must 
be removed from the SLWB when this 
acknowledgment is received. 

A first question is whether the SLWB could 
issue more than one ownership request at a time. 
In this case, the buffer controller must keep track 
of each issued request until it receives an ac- 
knowledgment or a block copy; moreover, when a 
block copy is returned by the memory controller, 
all entries for the block must be removed from 
the buffer and possibly merged into the block 

COPY. 
A second question is the effect of read misses 

in the SLC. We assume that the SLC can only 
accept one read miss at a time (since the proces- 
sor and the FLC are blocked anyway). The prob- 
lems associated with allowing read miss requests 
to bypass writes in the SLWB are very similar as 
for the FLWB. If there is an entry in the SLWB 
for a word in the missing block, the read miss is 
blocked until the block copy or ownership is 
received, and then the miss is retried in the SLC. 

Finally, under RC, releases may be buffered in 
the SLWB as well. Whereas the buffer may have 
multiple ownership requests pending, a release is 
not allowed to issue from the buffer until the 

memory responses for all the entries 1 preceding 
the release in the FIFO order of the bbffer have 
been received. Acquires may also bypass the 
SLWB under the same restrictions as for the 
FLWB. 

3.2.3. Design alternatives for the second#evel write 
buffer (write-update) 

Most of the design issues for the SL 
,“” 

under 
write-invalidate also apply to a syste using a 
write-update policy. For example, if a w 
in the SLC, we must keep track of al 1 

ite misses 
modified 

words in the SLWB and later merge them with 
the fresh copy from the memory. Als 
update the SLC on a write without a 

,” 

, we can 
aiting the 

pending write’s completion. However, there are 
two differences. First, under write-in alidate 
block in the SLC can be invalidated w 

i 

a 
ile a write 

to that block is in the SLWB but t is cannot 
happen under write-update. Second, w 

I 

ile only a 
single write request per block is issue from the 
SLWB at the same time under write- nvalidate, 
write-update allows an unlimited nu ber of is- 
sued writes (updates) at a time, given F FO order 
of requests between two nodes in t e system. 
Therefore, in a write-invalidate pr tocol, all 
SLWB entries to the same block can be de-alloc- 
ated when the invalidation request has been glob- 
ally performed, but, under write-updage, we can 
only de-allocate the entry containing 1 the write 
request which has been globally derformed. 
Write-update protocols are likely to have a larger 
number of issued writes and the size of he SLWB 

: is expected to be larger in order to full hide the 
write latency. In turn, it becomes more advanta- 
geous to allow read and acquire requ sts to by- 
pass writes and releases in the e FLWB when the 
SLWB becomes full. Note that, in orde& to main- 
tain coherence, the copy of a block in he FLC is 
invalidated upon receiving an update re 

1 
uest from 

a remote processor to a block residing i both the 
FLC and the SLC. 

3.2.4. Design alternatives for the secondilevel write 
buffer (competitive-update) 

In order to keep the number of shared copies 
under control in an update-based protocol, a 
simple competitive-update mechanism iconsisting 
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of a counter per SLC line keeps track of the 
number of updates by remote processors to a 
block. On a read miss in the FLC, the block is 
loaded into the FLC and the counter associated 
with the block in the SLC is initialized to a 
predefined value C, the competitive threshold. 
When the SLC receives an update message from 
another processor node, the actions taken de- 
pend on the value of the counter. 
(1) If the counter is not zero, it is decremented, 

the corresponding block in the SLC is up- 
dated, and the block in the FLC is invali- 
dated. In addition, an UpAck (update- 
acknowledgment) message is returned to the 
memory controller. 

(2) If the counter is zero, the blocks in the SLC 
and FLC are invalidated and an UpAckInv 
(update-acknowledgment-invalidated) is re- 
turned to the memory controller indicating 
that the processor node does not have a copy 
any longer. 

Consequently, after C consecutive update mes- 
sages to a block from other nodes with no inter- 
vening local reference to the block, the block is 
invalidated. Like write-invalidate protocols, the 

block becomes exclusive (dirty) in an SLC if no 
other SLC has a copy of the block. With this 
implementation, we manage to keep the FLC fast 
and simple. The only two external operations on 
the FLC are invalidation of a block and loading a 
block. All complexity of the competitive mecha- 
nism is handled in the SLC. 

The competitive threshold is an important de- 
sign parameter, which we will study later in this 
paper. Too small a threshold prevents the proto- 
col from reducing the coherence miss rate and 
thus the read penalty, whereas too big a thresh- 
old generates excessive write traffic, which may 
impact adversely on the read-penalty reduction. 

4. Simulation methodology, architectural designs, 
and benchmark programs 

In this section, we present the evaluation 
methodology, including the simulation environ- 
ment and the detailed architectural assumptions 
(Section 4.1), the buffering alternatives for the 
cache hierarchy (Section 4.2), and the benchmark 
programs (Section 4.3). 

Standard microprocessor Interface for hiding the latency of the system 

s s write buffer write buffer : 

Network Network 
Interface Interface 
Control Control 

4-by-4 wormhole routed mesh (16 nodes) 1 

Fig. 3. The processor environment and the simulated architecture. 
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4.1. Simulation environment and memory system 
assumptions 

The simulation models are built on top of the 
CacheMire Test Bench [7], a program-driven sim- 
ulator and a programming environment. The sim- 
ulator consists of two parts : (i> a functional simu- 
lator of multiple SPARC processors and (ii) an 
architectural simulator. The SPARC processors 
in the functional simulator issue memory refer- 
ences and the architectural simulator delays the 
processors according to its timing model. Thus, a 
correct interleaving of memory references is 
maintained by keeping track of the global time 
because the sequence of memory references is 
derived by correctly modeling the delays in the 
target architecture. 

The high-level organization of the processor 
node model we study is shown in Fig. 3. The 
two-level cache hierarchy we simulate consists of 
a 2 Kbyte FLC and an infinite SLC, both with a 
cache-line size of 16 bytes. While we also study 
variations on the size of the write buffers, we will 
assume that they both contain 16 entries by de- 
fault. The cache hierarchy, referred to as the 
processor environment, is interfaced to the local 
portion of the shared memory and the Network 
Interface Control (NIC) by a local bus according 
to Fig. 3. 

Cache coherence is supported by a directory- 
based protocol similar to Censier and Feautrier’s 
[91; each memory block is associated with a direc- 
tory entry containing a presence flag vector indi- 
cating which nodes have a copy of the block. The 
memory module in which a particular block is 
allocated is called the home of that block. The 
page size is 4 Kbyte and we assume that pages 
are allocated to memory modules in a round-robin 
fashion; pages are interleaved across nodes. A 
read miss in the SLC sends a read request to 
home. If the home is the local node and if the 
memory block is clean, the miss is serviced lo- 
cally. Otherwise, the miss is serviced either in two 
or in four node-to-node traversals depending on 
whether the block is clean or dirty. Upon an 
invalidation or an update request, the home 
memory controller is responsible for sending ex- 
plicit invalidations or updates to each node ac- 

cording to the state of the presence ‘flag vector 
and the global coherence state of the block. An 
invalidation/ update from the memqry module 
generates one single message on thei local bus, 
including a presence flag vector; then the NIC 
sends explicit messages to eat 
of the block. The NIC is a 
collecting invalidation/ updat 
from other nodes. When 
all acknowledgments, it sen 
edgment over the bus to the memo 
Finally, acquire and release 
ported by a queue-based lock 
to the one implemented in DASH 
where a lock variable is allocated 
that single lock variable and no 0th 

As far as the timing and architectu 
ters are concerned, we consider SP 
sors and FLCs that are clocked at 
pclock = 10 ns). The access time of 
assumed to be 30 ns @RAM tech 
memory is assumed to be built fr 
technology and is fully interleaved wi 
time of 90 ns. The SLC 
connected to the NIC and the local memory 
module by a 128-bit wide split trans ction a bus 
clocked at 100 MHz. Thus, it takes1 10 ns to 
arbitrate for the bus and 10 ns to Itransfer a 
request or a block. We simulate a very fast bus 
since the bus load is an orthogonal issue in this 
study. Table 1 shows the time it takes to service a 
read request when data is fetched from different 
levels in the memory hierarchy, assuming a 100 
MHz processor and a contention-free 
our simulations, requests 
longer time as a result of 
late a system with 16 nodes 

Table 1 
Latency of processor read requests when dat(t is supplied 
from different levels in the memory hierarchy 

Latency of read requests 1 pciock = 10 ns 
WI0 MHZ) 
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4-by-4 wormhole routed synchronous mesh with a 
flit size of 64 bits and clocked at 100 MHz to be 
compatible in speed with the processors. The 
aggregate bandwidth out from and into each node 
is 800 Mbytes/second. We model contention for 
all components in the processor node and in the 
mesh network. 

4.2. Restrictions on buffering 

We have simulated three different design al- 
ternatives for the cache hierarchy under Release 
Consistency. These designs differ in the aggres- 
siveness of the lockup-free mechanism of the 
SLC. In addition, we also evaluate the effective- 
ness of read misses bypassing writes in the FLWB 
in the context of each model. 

Model RC-I corresponds to an architecture 
with a FLWB between the first-level and second- 
level caches as shown in Fig. 1. The SLC is 
blocking and there is no SLWB; a write request 
causing a global action (write miss, invalidation, 
or update) blocks the SLC for as long as the 
request is pending. Note that the processor is 
blocked only if the FLWB is full or if a read 
access misses in the FLC. 

In models RC-II and RC-III, global write re- 
quests are buffered in the SLWB. Under model 
RC-II and RC-III we assume read miss and ac- 
quire bypass in the SLWB, but not in the FLWB. 
There can be only one pending acquire or read 

miss request in the SLC. The only difference 
between model RC-II and model RC-III stems 
from the number of pending write requests in the 
network. While model RC-II allows only one 
pending read and one pending write request is- 
sued from the SLWB at a time, model RC-III 
allows as many pending write requests as there 
are entries in the SLWB, with the restriction that 
no more than one request to the same block is 
issued to the network in the write-invalidate pro- 
tocol at any time. Table 2 summarizes the fea- 
tures of the design alternatives. 

Under WO and RC reads are allowed to by- 
pass writes in the write buffers, as long as they 
are not to the same address, and thus we also 
evaluate the effectiveness of a read-bypass mech- 
anism added to the FLWB of each model. Since 
acquires are treated as read requests to synchro- 
nization variables, the processor blocks on ac- 
quires just like it does on read misses. Under RC, 
which is the default memory consistency model, 
acquires are allowed to bypass previous writes 
and releases. When the three models are ex- 
tended with a bypassing mechanism in the FLWB, 
we refer to them as RC-I-bp, RC-II-bp, and 
RC-III-bp. 

4.3. Benchmark programs 

In order to understand the relative perfor- 
mance of our architectural models under various 

Table 2 
Simulated architectural models 

Architectural 
model 

Second-level cache (SLC) Second-level write buffer (SLWB) 

RC-I 

RC-II 

Blocking. One pending request at a time. 
The cache is blocked until the global 
request is performed 
Lockup-free. The cache is blocked 
only when the SLWR is full 

RGIII Lockup-free. The cache is blocked 
or& when the SLWEi is full 

None 

One pending read and one pending write request at a time 
Read misses bypass the buffer if no write to the same block 
is in the buffer. 
Releases are buffered and acquires always bypass the buffer 
One pending read and as many pending write requests as 
entries in the buffer 
Read misses bypass the buffer if no write to the same block 
is in the buffer. 
Releases are buffered and acquires always bypass the buffer 
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Table 3 
Benchmark programs 

Water 
PTHOR 
ocean 

Water molecular dynamics simulation 
Simulation of a digital circuit at the logic level 
Simulation of eddy currents in an ocean basin 

288 mole* 4 time steps _ 
RISC circuit, PO00 time steps 
128~by-128 g&d, tolerance lo-’ 

coherence policies, we use four scientific and 
engineering applications, all taken from the 
SPLASH suite [29] except for the C-version of 
Ocean which has been provided to us by Steven 
Woo at Stanford University. The main character- 
istics of the four benchmark programs, MP3D, 
Water, PTHOR, and OCEAN, together with the 
size of the data set used are summarized in Table 
3. All programs are written in C using the PAR- 
MACS macros from Argonne National Labora- 
tory [61 and compiled with gee version 2.1 (optimi- 
zation level -02). Statistics are collected during 
the execution of the parallel section in the appli- 
cations. 

5. Experimental results 

We start by comparing the performance of the 
three coherence policies in Section 5.1. In Sec- 
tion 5.2 we compare the performance of different 
buffering schemes. The impact of the competitive 
threshold (Section 5.3) and of the consistency 
models (Section 5.4) follows. Finally, in Section 

5.5, simulation results for differen network 
speeds are given in order to see how s 

d 
nsitive our 

qualitative conclusions are to network icapacity. 

5.1. Relative performance of write-invalidate, com- 
petitive-update and write-update 

In order to separate implementa ion issues 
from the performance gains of the var ous coher- 

1 ence policies, we analyze the perfo ante of 
write-invalidate, competitive-update, nd write- 
update by assuming an aggressive ockup-free 
second-level cache according to mode RC-III in 
Section 4.2 with 16 entries in the [ s cond-level 
write buffer. 

The execution times for the applications are 
found in Fig. 4. All execution times are normal- 

perform acquire requests, and 
time due to a full first-level 

W-l c-u w-u W-l c-u w-u W-l c-u WY W-l c-u w-u 
MP3D Water PTHOR Ocean 

Fig. 4. Normalized execution time of the benchmarks for the three coherence policies under RC. 
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Fig. 5. Relative amount of network traffic generated under the different coherence policies. 

three bars for each application correspond to the 
three coherence policies: write-invalidate (W-I), 
competitive-update (C-U), and write-update (W- 
U). In our measurements, we have assumed a 
competitive threshold of 4. 

Let us first compare write-invalidate with 
write-update. In Fig. 4 we see that write-invali- 
date results in significantly better system perfor- 
mance than pure write-update for two of the 
applications (MP3D and Water). While the stall 
time due to acquires and full buffers is about the 
same, the reason for the performance difference 
is the longer read stall time under write-update. 
The reason why the read stall time is increased 
despite of the elimination of coherence misses is 
because of contention due to the increase in 
network traffic as a result of the updates. To see 
this, we also measured the network traffic for all 

applications under write-invalidate and write-up- 
date. This data appears in Fig. 5. 

Fig. 5 shows the amount of network traffic for 
write-update (W-U) relative to write-invalidate 
(W-I). The traffic is measured in number of flits 
sent through the network and is normalized to 
the traffic rate under the write-invalidate proto- 
col for each application. The traffic under write- 
update is 7 to 10 times more than under write-in- 
validate for MP3D and Water. For Ocean, write- 
update performs significantly better and the traf- 
fic level is acceptable. MP3D and Water have 
poor performance under write-update because of 
migratory sharing [20,32]; as a migratory block 
migrates from cache to cache, it creates copies 
that may not be referenced for a long time, 
flooding the network with updates. By contrast, 
Ocean is based on an iterative algorithm and 

3 
f om- 
B 
a 300 - 
f S 
3 200 - 

136 

W-l c-u w-u W-l c-u w-u W-l c-u w-u W-l c-u w-u 
MPBD Water PTHOR Ocean 

Fig. 6. Relative read penalty under the different coherence policies. 
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values are communicated among neighboring 
processes. Therefore, write-update performs 
much better than write-invalidate. 

We now turn our attention to competitive-up- 
date protocols. The main objectives of competi- 
tive-update protocols are to reduce the network 
traffic generated by write-update protocols and at 
the same time to take advantage of the elimina- 
tion of most coherence misses. In Fig. 5 we see 
that the competitive-update protocol successfully 
reduces the network traffic by up to 80%, as 
compared to the write-update protocol. As com- 
pared to write-invalidate, competitive-update 
generates about 85% more traffic for MP3D and 
Water which are applications exhibiting migra- 
tory sharing, but only about 30% more for the 
other two applications. This does not seem to be 
a critical issue since the network is capable of 
handling that extra amount of traffic effectively. 

In Fig. 6 we show the relative read penalty 
under the different coherence policies. We ob- 
serve that the competitive-update protocol suc- 
cessfully reduces the read penalty (from 6% to 
46%) compared to the write-invalidate protocol 
for all applications. The write-update protocol can 
reduce the read penalty even further for applica- 
tions with little migratory sharing (PTi’OR and 
Ocean). Thus, competitive-update is a better de- 
fault policy than write-invalidate for all four ap- 
plications. 

We now look at the two factors affecting the 
read penalty under competitive-update. The first 
factor is the reduction of the coherence miss rate 
and the second factor is the fraction of times a 
block is clean at the memory on a read miss, i.e. 
no cache has an exclusive copy of the block. The 
effect of the first factor is clear, but some in- 

crease in network traffic is needed to update the 
cached copies, which in turn may increase the 
latency time of a cache miss. The second factor 
has a positive effect because if the block is kept 
up-to-date at the memory, a read m ss to the 
block costs at most 2 network travers 1s in con- 
trast to at most 4 network traversals i the block 
is exclusive (dirty) in another cache. 
of the two factors are summarized in : 

he effects 
,able 4. 

We see in Table 4 (right column) th 

“: 

competi- 
tive-update reduces the read latency fo all appli- 
cations. For example, the average time for a read 
request to complete in Ocean is 75 pcl 0 cks under 
competitive-update whereas the co esponding 
number for write-invalidate is 87 pcloc s. We also 
observe that a block rarely becomes irty under 

1 

competitive-update as compared to w ite-invali- 
date (the middle column); as many s 100% - 
16% = 84% of all misses to blocks tha are dirty 
under write-invalidate for Ocean can e serviced 

“; 
at the memory module under competiti e-update. 
Since the competitive threshold is set o 4, i.e. a 
block becomes exclusive in a cache if a processor 
writes 4 times to the block with no ot er proces- 
sor accessing it, we conclude that most “, ata blocks 
are read and modified by different processors in 
an interleaved fashion. There is a clear distinc- 
tion in the reduction of coherence misses be- 
tween PTHOR and Ocean on one 

” 

and, and 
MP3D and Water on the other hand. F r PTHOR 
and Ocean the coherence misses are educed by 
about two thirds, but for MP3D and Water the 
reduction is only 13% and 20%, respectively. The 
difference can be explained by observing that 
most data objects in MP3D and Water dare migra- 
tory objects [20,32]. For MP3D the time for a 
read request to complete decreases Avery little 

Table 4 
Statistics for read misses in the SLC for competitive-update relative to write-invalidate 

AppIic&on lkekke coherence Relative numbers of read 
n#isnrtt: misses to dirty blocks 

W-I c-u W-I c-u 

Time for a read miss request 
to complete &I&Mcs.) 

W-I C-r; 

FTHOR low% 34% 100% 19% 114 81 
OcMn 100% 24% 100% 16% 87 75 
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under competitive-update as compared to write- 
invalidate; even though the blocks are clean in 
memory for 95% of the misses, the network con- 
tention induced by increased write traffic offsets 
the reduction in the pure miss latency. However, 
the reduced coherence miss rate under competi- 
tive-update cuts the overall read penalty by 6% 
for MP3D as compared to write-invalidate (see 
Fig. 6). 

An overall reduction in the execution time of 3 
to 13% is observed in Fig. 4. A negative effect of 
competitive-update, however, appears in the case 
of PTHOR. Namely, the acquire stall time is 
higher under competitive-update and under 
write-update than under write-invalidate. A re- 
lease residing in the write buffer can not be 
issued from the processing node until all previous 
writes are performed. If another processor waits 
for the release, it may see an increased acquire 
stall time due to the delayed execution of the 
release. The higher number of global writes un- 

der write-update leads to an increased acquire 
stall time. As a result, for applications exhibiting 
contention for critical sections (or locks) the write 
latency may be converted into increased synchro- 
nization overhead. 

In summary, competitive-update protocols suc- 
cessfully reduce the coherence miss rate and the 
read stall time, which results in shorter execution 
times under competitive-update than under 
write-invalidate for all applications. We have also 
seen that competitive-update maintains an ac- 
ceptable traffic level as compared to write-in- 
validate. However, update-based protocols may 
increase synchronization overhead for applica- 
tions that exhibit contention for critical sections. 

5.2. Evaluation of different buffering alternatives 

In this section we compare the buffering alter- 
natives described in Section 4.2 for write-invali- 
date and competitive-update protocols. 
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Fig. 7. Normalized execution time of the benchmark applications for the buffering alternatives under write-invalidate. 
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5.2.1. Buffering alternatives for write-invalidate 
protocols 

We start by analyzing the impact of the three 
buffering alternatives on the performance under 
the write-invalidate policy. The results are com- 
pared with the performance of Sequential Consis- 
tency (SC). Our implementation of SC forces the 
processor to stall on each shared data access. The 
write buffers have a limited size; each buffer is 16 
entries deep. Fig. 7 shows the execution times for 
the benchmark applications under write-invali- 
date. 

In our first model (RC-I) buffering is limited 
to a FLWB with no read bypass. We observe 
reductions of the execution times by 4% to 11% 
as compared to SC (Fig. 7). The only write la- 
tency we can hide is the time from a write access 
to a following read miss in the FLC. The read 
request has to wait until the write is completed, 
which may be the time it takes to perform the 
write globally if the distance between the write 
and the subsequent read miss is short. During 
that time the SLC is blocked and can not handle 
the read request. Therefore, most of the write 
latency from SC is converted into read latency in 
the RC-I model. The only exception is Ocean, 
where less than 40% of the write latency is con- 
verted into read latency. This result indicates that 
there is a longer distance between a global write 
access to a following read miss in the FLC in 
Ocean than in the other three applications. From 
Table 5 we see that a read request spends only 3 
pclocks in the FLWB for Ocean, as opposed to 
42, 12, and 22 pclocks for MP3D, Water, and 
PTHOR, respectively. MP3D is the only applica- 
tion where there is more than one request in the 

Table 5 
Queuing statistics for an FLC read miss in the FLWB under 
buffering model RC-I 

Applica- Average time Average number 
tion intheFLWB of requests before 

wxks) a read request 
in the FLWB 

MP3D 
Water 
PTWOR 
Qc5an 

42 1.4 
12 0.5 
22 0.1 

3 0.1 

buffer when the read miss occurs. Thi$ indicates 
that MP3D is the only application qhere read 
bypassing in the FLWB has a potential to reduce 
the read penalty. 

To test this intuition, we evaluated he effects 
of read bypassing in the FLWB for e ch bench- 
mark under RC-I and did not observe ny perfor- 
mance gain at all, except for MP3D wh re a small 
decrease in read stall time was obs rved. The 

1 

reason is that the SLC is still block d due to 
pending write requests at the time the read miss 
occurs. We also see in Table 5 that at the time a 
read request is issued to the FLWB t e buffer is 
mostly empty. If there are multiple wri e requests 
in the FLWB requiring global actions, we would 
expect to see a larger performance gain from 
read request bypassing in the FLWB, but this is 
clearly not the case. For one of the a 

: 

plications, 
PTHOR, we even observed an increas in execu- 
tion time by 1% for the RC-I-bp mod 1 as com- 
pared to the RC-I model. The reason is that the 
acquire stall time has increased as a& effect of 
the delayed issuance of releases. Fro4 our mea- 
surements we found that the average itime a re- 
lease spends in the FLWB increases rom 87 to 

c, 147 pclocks for PTHOR when read b assing is 
allowed in the FLWB. 

From Fig. 7, we see that the exec tion times 
drop when one outstanding read reque 

‘i 

t is issued 
in parallel with one outstanding write equest, as 
in model RC-II. This requires the LC to be 
lockup-free [23,31] and a SLWB is ntroduced 
with a single pending global write repuest. The 
read latency is reduced to almost the ‘same level 
as in SC for all of the applications bet $ use a read 
miss request can be issued from the S C at once. 
For MP3D we observe a slightly h gher read 
penalty under RC-II than under SC, w ich comes 
from increased network contention. he reduc- 
tion in the total execution times with respect to 
RC-I comes from the reduced read st 11 times in 
all four applications. We did not see any prob- 
lems in hiding the write latency for 1 ny of the 
applications. 

As can be seen in Fig. 7, moving fi_om model 
RC-II to RC-III does not buy us any significant 
performance increase in general und e r write-in- 
validate. In model RC-III, the acquire stall time 
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for PTHOR is lower than RC-II because releases 
are issued faster from the SLWB when multiple 
pending write requests (up to 16) are allowed. 
PTHOR is an application with a high rate of 
synchronizations and it benefits from the fact that 
releases are issued faster from the processing 
nodes. To take advantage of Release Consistency 
as much as possible in the general case, multiple 
pending write requests are necessary. Unfortu- 
nately, in PTHOR we observe that the reduced 
acquire stall time is converted into read latency 
because of network contention so the overall 
performance increase is negligible. 

We also evaluated the performance gains for 
RC-II and RC-III when read requests are al- 
lowed to bypass write requests in the FLWB, 
leading to models RC-II-bp and RC-III-bp. We 
did not see any performance benefit for the same 
reasons as for RC-I-bp; the SLWB is large 
enough, so there is never any request in the 
FLWB when the read request is issued from the 

FLC. Moreover, the SLC is not blocked by previ- 
ous requests either. 

In summary, we observe the main performance 
increase when the SLC is lockup-free and a SLWB 
is present so that one read miss request can be 
issued in parallel with one global write request. 
Supporting multiple pending global write re- 
quests does not yield any significant performance 
improvement under write-invalidate. Allowing 
read requests to bypass write requests in the 
FLWB does not yield any significant improve- 
ment either since the FLWB is mostly empty at 
the time it receives a read request. 

5.2.2. Buffering alternatives for competitive-update 
protocols 

In this section we compare the different 
buffering alternatives under competitive-update. 
The results are summarized in Fig. 8. The base- 
line model is an implementation where the pro- 
cessor is stalled at each shared read or write 
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Fig. 8. Normalized execution time of the benchmark applications for the buffering alternatives under competitive-update, 
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request and referred to as SC although it does 
not maintain Sequential Consistency in a strict 
sense. The update transactions are performed in 
a single pass, not in two as discussed in Section 
2.2. 

When we go from SC to RC-I under competi- 
tive-update, we observe the same phenomenon as 
for write-invalidate; a part of the write latency is 
converted into read latency. The amount of write 
latency converted differs among applications. For 
MP3D, Water, and PTHOR almost all the write 
latency is converted into read latency, whereas 
for Ocean only about two thirds of the write 
latency is converted. 

Introducing a SLWB in the cache hierarchy 
with one pending read and one pending write 
request, as in model RC-II, yields a significant 
performance increase under competitive-update. 
The execution time is reduced by 11% to 19% as 
compared to RC-I, mainly due to shorter read 
stall time. Since one read and one write request 
can be outstanding at the same time, the write 
request does not delay the issuance of a read 
request as in model RC-I. There is a small in- 
crease in the acquire stall time for Ocean, how- 
ever, due to contention effects in the network 
which delay global write requests and releases. 

In contrast to write-invalidate, we observe from 
the results in Fig. 8 that allowing the issuance of 
multiple write requests from the SLWB further 
reduces the execution times for all applications. 
In MP3D this stems from the reduced time a 
read request spends in the FLWB. Global write 
requests are retired from the SLWB at a higher 
rate in model RC-III than in model RC-II which 
makes the SLC service the requests from the 
FLWB at a higher speed. In PTHOR and Ocean 
the reduced execution times mainly stem from a 
reduced acquire stall time. Since global writes are 
completed faster, releases residing in the write 
buffers can be issued from the processing node 
faster and, as a result, acquires can complete 
faster if they are waiting for the release. Thus, we 
conclude that it is essential to allow multiple 
pending writes in order to benefit from the per- 
formance potential of the competitive-update 
protocol. By using a relaxed memory consistency 
model and appropriate hardware support, the 

execution times for the applications qre reduced 
by between 22% and 59% as compared to our SC 
model. 

When we allowed read requests to i bypass the 
FLWB, as in model RC-I-bp, we did ot see any 
significant improvement as compare 

” 

to RC-I, 
except for Water where a reduction o the execu- 
tion time is due to an almost 50% shorter read 
stall time (not shown in Fig. 8). For Water, a read 
request that bypasses writes in the 1 FLWB in 
model RC-I-bp, bypasses 3 write requ sts on the 
average. As a result, the write 1 reque ts and re- 
leases are delayed in the FLWB. Ho ever, since 
the locks are not contended in Wat 

time, but the processor stall time 
i 

, all write 
latency can be hidden. For MP3D and Ocean, we 
observed a significant decrease of th read stall 

d e to a full 
first-level write buffer was increased y the same 

i 

amount. For example, in MP3D eat read miss 
bypasses 12 writes in the FLWB on t e average. 
This causes the FLWB to be filled/ and as a 
result, the processor is stalled. 

We have also evaluated the perfor’ ante gain 
when read requests are allowed to b “, ass write 
requests in the FLWB in the presence of an 
SLWB. We did not observe any ove all perfor- 
mance gain of read bypassing under mpetitive- 
update. We found that the read laten 

i 

is slightly 
reduced for some applications, but th processor 
stall time due to a full first-level wri e buffer is 
increased by approximately the same ~ amount as 
the read latency is reduced. 

In summary, unlike write-invalida e, it is es- 

f sential to allow multiple pending wri e requests 
under competitive-update to benefit as much as 
possible from the latency hiding c pability of 
Release Consistency. Like write-inval’ 

i 

ate, a sig- 
nificant performance gain is achieve with only 
one pending read and one pending w ite request 
at the same time for all applications; moreover 
read bypassing in the FLWB does n t improve 
the performance significantly, especial y when the 
SLC is lookup-free. 

5.3. Effects of various competitive thredholds 

In our default competitive-update protocol we 
have used a competitive threshold of 4, i.e. a 
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cached copy is invalidated when it has been up- 
dated 4 times since the last reference by the local 
processor. In this section we show simulation 
results with competitive thresholds from 1 to 8. 

Fig. 9 summarizes the results from the simula- 
tions with various thresholds for the competitive- 
update protocol. The execution times are normal- 
ized to the execution time under the write-in- 
validate (W-I) protocol which is the leftmost bar 
for each application. The next four bars to the 
right correspond to the execution times under 
competitive-update (C-U) with thresholds 1, 2, 4, 
and 8, respectively. The sixth bar for each appli- 
cation is the normalized execution time under the 
write-update (W-U) policy. 

For MP3D we see that the execution time is 
almost the same for competitive thresholds of 1 
and 2 as for write-invalidate. For a competitive 
threshold of 4 competitive-update has a shorter 
execution time than write-invalidate, and for 
higher thresholds the execution time increases 

again. The extreme point is for the write-update 
protocol, where MP3D runs almost 3.5 times 
slower than for the write-invalidate protocol, as a 
result of the intense migratory sharing leading to 
high communication bandwidth. 

For Water, we see that a threshold of 4 or 8 
results in the shortest execution time. In Water 
most data objects are migratory, but the commu- 
nication to computation ratio is lower than in 
MP3D. Therefore, the mesh network is not so 
heavily loaded, and most of the write traffic can 
be hidden by local computation without affecting 
the read requests. In fact, the read stall time 
decreases as the competitive threshold increases 
since the coherence miss rate and read latency 
decrease. Also Water suffers from a huge amount 
of write traffic under the write-update protocol 
and an increased read penalty is observed. How- 
ever, the execution time under the write-update 
protocol is only 8% longer than under the write- 
invalidate protocol. 
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Fig. 9. Normalized execution time under competitive-update with various competitive thresholds. 
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For PTHOR the best competitive threshold is 
8. The read penalty for PTHOR decreases as the 
competitive threshold increases, so the applica- 
tion benefits from keeping the caches updated. 
However, when the write traffic increases as the 
threshold increases, releases are delayed in the 
write buffers before they leave the processing 
node, which in turn increases the acquire stall 
time. 

Ocean is the only application where the write- 
update protocol results in shorter execution time 
than the write-invalidate protocol. The execution 
time is reduced by 12% under write-update as 
compared to write-invalidate, mainly because of 
the reduced read stall time. We also observe that 
the threshold is not critical for Ocean, as long as 
the threshold is larger than one. 

In summary, we have observed that most appli- 
cations benefit from keeping the caches updated. 
The read penalty is reduced when the competi- 
tive threshold increases, but the acquire stall time 
may increase at the same time due to the in- 
creased write traffic which delays the issuance of 
releases. The best competitive threshold for an 
application is difficult, or even impossible, to 
predict statically. The optimal threshold varies 
between applications depending on the communi- 
cation to computation ratio and the access pat- 
terns to shared data structures. The best thresh- 
old may vary between blocks within the same 
application and possibly for the same block dur- 
ing the execution of the program. We may say 
that as long as the competitive threshold is not 
extremely large, competitive-update protocols 
provide consistent performance improvement. 

5.4. Weak ordering vs. release colzsistency under 
update-based protocols 

Previous studies [17,36] have shown that there 
is little or no performance difference between 
Weak Ordering and Release Consistency under 
write-invalidate. However, no previous study has 
addressed the relative effectiveness of the two 
consistency models under update-based proto- 
cols. One could argue that an application would 
run equally fast under WO and RC since both 
models have the possibility to overlap write re- 

quests with local computation and read requests. 
On the other hand, one could argue that the 
higher rate of global write actions under update- 
based protocols favors RC. 

In order to understand which rel ed consis- 

“s tency model is better, we ran the fo r applica- 
tions under both consistency models o 
tecture with our most aggressive buff ring alter- 
native (model III) and 16 entries 
buffers. We simulated both a networ 

i 

an archi- 

eep write 
with infi- 

nite bandwidth and our default netw rk; a 100 
MHz mesh network with 64-bit wide links. The 
infinite-bandwidth network allows us 1 to isolate 
the differences stemming from the onsistency 
models and not from the implementat on. Under 
WO, the processor must stall at a sync 

i 

ronization 
point until the write buffers are em tied. This 
stall time is classified as write stall timb. 

We first discuss the results obtaine with the 
infinite-bandwidth network. Compari 

f 

g RC and 
WO for each of the three policies, W-I, C-U, and 
W-U, we observed no significant di erence in 
performance between RC and WO or MP3D 
and Ocean. However, for Water and THOR we 
found a difference between RC and W 

i 

, which is 
in accordance to the results for write-i validate in 
[17]. Water has very short critical se tions and 
PTHOR is the only of our four applic tions with 
a high synchronization rate. For ater and 
PTHOR, the lower execution times Iunder RC 
than under WO (8% and 12%, respe tively, un- 
der C-U) stem mainly from the incr ased write 
stall time and, to a lesser extent, fr m the in- 
creased time to perform release req ests under 

1 

WO. Simulation results also showed t at the dif- 
ference between RC and WO increas d as we go 
from W-I, to C-U, and to W-U. As e ected, the 
higher rate of global write actions dir tly affects 
the write stall time under WO. 

The results from the architecture wi h the mesh 

% network yielded a similar difference b tween RC 
and WO as the infinite-bandwidth n twork did. 
However, the difference is smaller as a result of 
network contention. For C-U, the exec tion times 
under RC are 6% and 9% lower for 

1 

ater and 
PTHOR, respectively, than under W . Also for 
the mesh network we found an increaking differ- 
ence between RC and WO as we go frbm W-I, to 
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C-U, and to W-U. The write stall times under 
WO increase with the write traffic (from W-I to 
C-U to W-U) and this effect is even more pro- 
nounced when contention is taken into account. 

In summary, by running the four applications 
under both Weak Ordering and Release Consis- 
tency we have not found any difference between 
WO and RC for two of the applications (MP3D 
and Ocean) in terms of latency hiding capabilities 
under update-based protocols. However, for Wa- 
ter and PTHOR we observed a slight difference 
between RC and WO as a result of very small 
critical sections (Water) and a high synchroniza- 
tion rate (PTH~R). 

5.5. Effects of the speed gap between processor and 
network 

To get a feel for the sensitivity of our results to 
variations in speed differences between the pro- 

m 130 123 
E 120 

cessors and the network, we simulated an archi- 
tecture with 100 MHz processors and three dif- 
ferent networks; (i) a network with infinite band- 
width but latencies comparable to a 100 MHz 
mesh, (ii) a 100 MHz mesh, and (iii) a 33 MHz 
mesh. The latter case corresponds to a network 
clocked three times slower than the processor. 
The execution times shown in Fig. 10 are normal- 
ized to the execution time under write-invalidate. 

By comparing the execution times of all appli- 
cations under write-invalidate (W-I) and under 
competitive-update (C-U) for each network, we 
see that the relative difference between write-in- 
validate and competitive-update is approximately 
the same for the infinite bandwidth network and 
the 100 MHz mesh except for MP3D, which has a 
very high bandwidth demand. We also see that 
competitive-update gives a consistent pegormance 
improvement over write-invalidate in the architec- 
ture with a 100 MHz mesh network. For the 33 
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Fig. 10. Effects of varying the capacity and the speed of the network. 
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MHz mesh network, Water and Ocean have 
shorter execution times under competitive-update 
than under write-invalidate. For MP3D the high 
communication-to-computation ratio and the pre- 
dominance of migratory sharing result in a high 
rate of update messages and in severe network 
contention. Therefore, it is not possible to hide 
the write traffic as effectively as with the faster 
100 MHz mesh. For PTHOR the high synchro- 
nization rate affects the total execution time. 
Nevertheless, competitive-update reduces the 
read penalty for PTHOR even on the slower 
mesh, but the high rate of global write actions 
affects the overhead of releases and acquires 
adversely. From our measurements we find that 
competivive-update reduces the read penalty by 
32% to 43% as compared to write-invalidate for 
all applications but MP3D on the architecture 
with a 33 MHz mesh. 

because of the heavy traffic caused by updates. 
Eggers and Katz also evaluate two extensions to 
pure write-invalidate and write-updhte called 
read-broadcast and competitive sno ping [151. 
While they show that competitive sn ping can 
improve the performance of write-u date, they 
do not compare the performance of ompetitive 
snooping with write-invalidate as we o. Eggers 
and Katz’s competitive snooping pro ocol is an 
implementation of Karlin’s Snoopy-R ading pro- 
tocol [22]. A writing processor keeps 

1 
t 

,’ 

ack of the 
number of its own consecutive writ s to each 
address. When the threshold for broadcasts has 
been reached, the processor sends an i validation 
on the bus to the other caches. 
cache re-reads the block all caches 

t Wh n another 
ith an in- 

Qualitatively our conclusion that competitive- 
update successfully reduces read penalty still 
holds even with a mesh network three times 
slower than the processors. In other words, the 
read penalty reduction of competitive-update 
protocols is not very sensitive to changes in net- 
work capacity given that the ratio of computation 
to communication and the distances between syn- 
chronizations are sufficiently large. 

valid copy of the block catch the py of the 
block as it propagates on the bus (read broadcast- 

r 
ing) and reset their counters to the threshold. 
Clearly, read-broadcast is not feasible,in a direc- 
tory-based environment. 

6. Discussion and related work 

The performance evaluations reported in this 
paper show that competitive-update consistently 
performs better than write-invalidate for applica- 
tions with moderate bandwidth requirements and 
small contention for critical sections. Although 
the idea of using hybrid update/ invalidate proto- 
cols is not new, previous proposals have been 
specifically studied in bus-based systems and rely 
on snooping. As we will discuss in the following, 
the trade-offs become fundamentally different in 
a directory-based environment. 

In [4], Archibald proposed an ada tive write- 
invalidate/ write-update snoopy-each 

: 

protocol. 
His adaptive protocol starts in update mode, just 
like ours, and when a single processor has issued 
three consecutive writes to the same lock with- 
out any intervening access by anothe processor, 
all other copies of the block are inv lidated. A 

1 

significant difference between Arch bald’s and 
our protocol is the behavior for mig atory data 
objects. His protocol invalidates all pies of a 
block when the same processor has written three 
times to the block, while in our pro co1 writes 
from several processors contribute to the invali- to 
dation of a block copy. As a result, fo migratory 
data objects where each processor upd tes a block 
less than three times, Archibald’s p otocol will 

: continuously update all block copies, which may 
degrade the performance. In contrast, our proto- 
col will update at most three copies o the block, 
given the same threshold as Archibal ‘s protocol, 
which significantly reduce the write d raffic in a 
directory-based environment. 

In [14], Eggers and Katz compare write-in- Veenstra and Fowler have evaluated the per- 
validate and write-update snoopy-cache proto- formance of optimal hybrid protocols i 

: 

1331. They 
cols. They conclude that neither protocol is better use three types of hybrid protocols: S atic Hybrid 
than the other. Our results show that pure write- (each block uses W-I or W-U for ~ the entire 
update is highly undesirable in the general case execution), Paged Hybrid (all blocks1 in a page 
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uses either W-I or W-U for the entire execution), 
and Dynamic Hybrid (the protocol chooses be- 
tween- W-I and W-U at each write). By using 
off-line optimal analysis, they found that hybrid 
protocols may offer substantial performance ad- 
vantages over W-I or W-U, especially for large 
block sizes. As expected, the Dynamic Hybrid 
protocol performs best, followed by the Static 
hybrid and the Paged Hybrid protocols. However, 
they found that using the static strategy was al- 
most as good as the dynamic one. Their results 
also indicate that, to be worthwhile, it is enough 
for an on-line algorithm to converge to a good 
static choice between W-I and W-U after a rea- 
sonable amount time. Their results are based on 
off-line algorithms while our competitive-update 
protocol is an on-line algorithm, so our study and 
theirs are complementing each other to cover a 
broad range of hybrid protocols. 

The success of competitive-update schemes as 
shown in this paper comes from using a relaxed 
consistency model to hide the write latency. We 
have studied the detailed design issues involved 
in supporting multiple outstanding requests, in 
essence the design considerations for second-level 
lockup-free caches. Our study thus involves some 
of the issues studied by Gharachorloo et al. [171 
to support relaxed consistency models but that 
paper does not investigate update-based proto- 
cols and its primary purpose is to compare the 
effectiveness of various memory consistency mod- 
els. Their implementation models are referred to 
as BASIC, RDBYB, and LFC and correspond to 
our models RC-I, RC-I-bp, and RC-III-bp. While 
they show that bypassing of read misses in the 
first-level write buffer in conjunction with a 
lockup-free second-level cache is needed in order 
to fully hide the write latency in write-invalidate 
protocols, our study shows that read bypassing is 
actually not needed. This is an important contri- 
bution of this paper because read-bypassing com- 
plicates the write buffer design and can make it 
slower. As in their study, however, we confirm 
that only a single outstanding write request needs 
to be supported for write-invalidate protocols. 
However, as our study indicates, write-update 
protocols need lockup-free cache controller de- 
signs that can issue multiple outstanding write 

requests. Our evaluations of PTHOR, which uses 
fine-grain synchronization, show that Release 
Consistency exhibits better performance than 
Weak Ordering. This is in accordance to the 
results in [17]. We have extended their results by 
showing that this difference is even more pro- 
nounced for update-based protocols. 

Update-based protocols have been considered 
in several distributed shared-memory systems 
where coherence is maintained at the page level 
[5,34]. In [51, an architecture relying on software- 
controlled replication of pages and a write-up- 
date protocol in hardware for coherence mainte- 
nance is presented. The simulations show high 
processor efficiency over a range of applications 
running on up to 64 processors. 

Wilson and LaRowe present a novel technique 
in [34] to maintain coherence of shared data at 
the page level. The technique is a hardware-sup- 
ported but software-controlled mechanism that 
supports both invalidate and update-based proto- 
cols. The operating system software is responsible 
for choosing which coherence policy to use for 
each page. This study also shows that most write 
latency can be hidden by using a relaxed memory 
consistency model and by choosing an appropri- 
ate coherence policy for each page. Another study 
by the same authors [35] shows that as the block 
size increases write-update becomes preferable to 
write-invalidate in terms of memory traffic. 
Therefore, overall, write-update should be a much 
better choice than write-invalidate for page-level 
coherence in distributed shared memory systems. 

In this study we show that competitive-update 
successfully reduces the read penalty for a wide 
range of applications as compared to write-in- 
validate. However, for applications with a high 
degree of migratory sharing competitive-update 
generates unnecessary write traffic, which may 
offset the read penalty reduction in networks 
with low bandwidths. Therefore, in [27], Nilsson 
and Stenstrom extend a competitive-update pro- 
tocol with a previously published migratory detec- 
tion mechanism [32]. The new adaptive protocol 
dynamically detects migratory data blocks and 
handles them with a read-exclusive policy. All 
other blocks are handled according to the com- 
petitive-update policy. They experimentally found 
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that the adaptive protocol demands less than half 
of the network bandwidth as the competitive-up- 
date protocol for some of the applications with 
migratory objects (MP3D and Water). The reduc- 
tion of network traffic is especially important 
because it makes the competitive-update policy 
suitable for an even broader range of multipro- 
cessors. 

A continuation of the work in this paper is 
presented in [ll] where Dahlgren and Stenstriim 
propose to use a w&e cache as a means to reduce 
the write traffic associated with a competitive-up- 
date protocol. A write cache works in parallel 
with the second-level cache and is a small write- 
back cache with an allocate-on-write-miss and a 
no-allocate-on-read-miss strategy and a single 
valid/dirty-bit for each word. They evaluate the 
use of write caches together with a competitive- 
update protocol in a similar architectural model 
as in this study. They find a significant decrease 
in the write traffic and that a competitive thresh- 
old of one is sufficient when using a write cache 
together with a competitive-update protocol. 
Moreover, they find that most of the performance 
improvement is obtained with a very small (only 
four blocks) and direct-mapped write cache. 

Finally, we speculate that the trends for larger 
systems are as follows. As more processors are 
added to a multiprocessor system, network laten- 
ties are expected to be longer. We believe that it 
is easier to achieve scalable bandwidth than scal- 
able latencies, e.g. as a result of physical dis- 
tances between processor nodes. This may impact 
the read and write penalties for the applications 
making it even more important to reduce the 
cache miss rate as much as possible. It is also 
likely that update-based protocols may require 
more extensive buffering as network latencies 
grow. We also believe that the communication 
demand and synchronization overhead will in- 
crease as the number of processors increases. It is 
interesting to note that a competitive-update pro- 
tocol has a potential to significantly reduce the 
read latencies as compared to a write-invalidate 
protocol, but at some increase in network traffic. 
As a result, we believe that competitive-update 
protocols will become even more favorable when 
the system size increases. 

7. Conclusion 

In this paper we analyze the relakive perfor- 
mance of three different coheren e policies: 
write-invalidate, write-update, and L mpetitive- 
update. While previous studies hav addressed 
the relative performance mainly in bu -based sys- 
tems, we consider in this paper a cat e-coherent 
NUMA architecture with a 

i 

dir ctory-based 
mechanism as a basis for the each coherence 
protocols, Based on program-driven simulations 
of a detailed multiprocessor syste and four 
benchmarks from the SPLASH suite 

f 

e find that, 
contrary to what has been thought e rlier, write- 
update cache-coherence protocols augmented 
with simple competitive mechanisms, referred to 
as competitive-update, have a potenti 
the read penalty. We show that a co petitive-up- 
date scheme can reduce the read p nalty by as 
much as 46% as compared to writ -invalidate. 

i 

1 to reduce 

While it increases the traffic by 27% o 85%, this 
extra traffic did not offset the reduc ion in read 
penalty as a result of coherence-mis reduction. 
A negative effect appearing in one application, 
however, is the increase in synchron’ ation over- 
head: Since release requests take a lo 

! 
ger time to 

be globally performed as a result lof a larger 
number of global writes, the acqui e stall-time 
may increase in applications 1 exh biting con- 
tention for critical sections. We als found that 
update-based protocols, such as co 
date, are more sensitive to the choi e 
tency models than write-invalidate p otocols. We 

tive-update could perform as much 

1 

petitive-up- 
of consis- 

found for two of the applications t at competi- 
s 9% better 

under Release Consistency than und r Weak Or- 
dering. 

The two-level cache hierarc 
have adopted is compatible 
mance microprocessors becaus 
and thus fast, first-level cache 
protocol issues and lockup-free 
the second-level cache controller. B 
buffering alternatives in the second 
we find that all performance benefit 
Consistency can be exploited by al 
single outstanding write request 
pending read-miss request under 
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However, in order to hide the write latency for 
the increased number of global write actions un- 
der update-based protocols, multiple outstanding 
requests are needed, although we did not see any 
use for more than 16 outstanding writes. We also 
studied the potential of letting read misses from 
the first-level cache bypass the first-level write 
buffer. We did not see any significant perfor- 
mance improvement from this design option. This 
is an important observation because it makes it 
possible to design a simpler and faster write 
buffer, which will scale with the processor speed. 

This study suggests that update-based proto- 
cols augmented with a simple competitive mecha- 
nism can reduce the read-latency by reducing the 
number of misses and the latency of the remain- 
ing misses. However, since they trade the miss 
reduction for a larger number of global writes, 
they require relaxed consistency models to be 
effective. On the premise that the programming 
community accepts the use of relaxed memory 
consistency models, we feel that the techniques 
presented in this paper are important to achieve 
the goal of scalable shared-memory systems but 
there is room for additional improvements. 
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