
El SliV’ER Future Generation Computer Systems 11 (1995) 247-271

Implementation and evaluation of update-based cache protocols
under relaxed memory consistency models

H8kan Grahn ay *, Per Stenstrijm a, Michel Dubois b
a Department of Computer Engineering, Lund Uniuersity P.O. Box 118, S-22100 Lund, Sweden

b Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, CA90089-2562, USA

Invalidation-based cache coherence protocols have been extensively studied in the context of large-scale
shared-memory multiprocessors. Under a relaxed memory consistency model, most of the write latency can be
hidden whereas cache misses still incur a severe performance problem. By contrast, update-based protocols have a
potential to reduce both write and read penalties under relaxed memory consistency models because coherence
misses can be completely eliminated. The purpose of this paper is to compare update- and invalidation-based
protocols for their ability to reduce or hide memory access latencies and for their ease of implementation under
relaxed memory consistency models.

Based on a detailed simulation study, we find that write-update protocols augmented with simple competitive
mechanisms - we call such protocols competitive-update protocols - can hide all the write latency and cut the read
penalty by as much as 46% at the cost of some increase in the memory traffic. However, as compared to
write-invalidate, update-based protocols require more aggressive memory consistency models and more local
buffering in the second-level cache to be effective. In addition, their increased number of global writes may cause
increased synchronization overhead in applications with high contention for critical sections.

Keyworuk: Shared-memory multiprocessor; Write-update cache coherence protocols; Relaxed memory consistency
models; Lockup-free cache design; Performance evaluation

1. Introduction

Shared-memory multiprocessors do not easily
scale to large numbers of processors because of
the latency of accesses to shared data. Using
private caches with a directory-based write-in-

* Corresponding author. Email: nesse @dit.lth.se

validate cache coherence protocol is a common
approach to reduce these latencies [30]. However,
as faster processors are designed, cache coher-
ence and miss handling can significantly reduce
processor efficiency. Several latency-tolerating
and hiding techniques have been proposed and
evaluated [191 including prefetching [8,10,26],
multiple hardware contexts [21, and memory ac-
cess buffering under relaxed memory consistency
models [1,13,16].

0167-739X/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved
SSDZ 0167-739X(94)00067-0

248 H. Grahn et al. /Future Generation Computer Systems II (1995) 247-271

Previous studies have shown that under re-
laxed memory consistency models the write la-
tency can be easily hidden by overlapping write
requests with each other and with local computa-
tion. Gharachorloo et al. [17] studied the effec-
tiveness of hardware mechanisms under memory
consistency model relaxation to hide write latency
in the context of processors with blocking loads.
Hiding read latency has also been studied in two
subsequent papers by Zucker and Baer [361 and
by Gharachorloo et al. [18] by considering proces-
sors that do not block on load accesses. Unfortu-
nately, the tolerance to read miss latency by re-
laxing the memory consistency model can be
severely restricted by the limited ability to sched-
ule loads sufficiently far ahead of the miss or by
the hardware complexity needed in the processor
to dynamically schedule the loads.

These observations have motivated us to evalu-
ate update-based cache protocols, which maintain
consistency by propagating the data values on
each shared write, in the context of standard
blocking load processors. Update-based protocols
trade a reduction in the miss rate for an increase
in the write traffic. Unfortunately, several prob-
lems may eliminate this performance advantage.
First, update-based protocols generate more write
traffic and block the processors on a write more
often than invalidation-based protocols; therefore
more aggressive hardware mechanisms and mem-
ory consistency models may be needed to hide
the write latency. Second, even if the write la-
tency can be hidden, the larger write traffic can
cause network contention which, as a secondary
effect, may increase the latency of misses; to
offset this effect, higher bandwidth networks may
be required.

In this study, we quantify these performance
effects to compare update-based to invalidation-
based protocols. As a basis for the comparison,
we consider a two-level cache hierarchy in each
processor node consisting of a simple and fast
write-through, direct-mapped first-level cache in-
terfaced to a second-level write-back cache with
various degrees of write buffering. We especially
focus on the implementation issues related to a
lockup-free [23,31] second-level cache. A previous
study by Gharachorloo et al. has partly addressed

this issue in the context of write-invalidate proto-
cols [17] but not for update-based protocols.

A detailed simulation study of four applica-
tions from the SPLASH suite [29] reveals that
pure write-update protocols have an unaccept-
able level of traffic in some cases. However, corn-
petitive-update protocols, which are update-based
protocols augmented with simple competitive
mechanisms to invalidate a block, have a poten-
tial to reduce the read penalty provided that the
application’s bandwidth requirement is moderate
as compared to the available network bandwidth.
We show that competitive-update protocols can
reduce the read penalty by as much as 46% as
compared to write-invalidate protocols. However,
the management of the cache for competitive-up-
date protocols requires more complex hardware
and is only effective under relaxed memory con-
sistency models. We identify the hardware mech-
anisms needed to fully exploit the read-latency
reducing capability of update-based protocols.

As a background, we begin in the next section
by comparing the performance potentials and
limitations of write-invalidate and update-based
protocols under relaxed memory consistency
models. Then, in Section 3, we describe the
lockup-free mechanisms needed to hide the write
latency by reviewing the architecture of the simu-
lated multiprocessor system used in our simula-
tions. In Section 4 we present the simulation
methodology, the detailed architectural assump-
tions, and the benchmark programs. The experi-
mental results are presented in Section 5 and our
findings are contrasted with the work of others in
Section 6. Finally, we conclude in Section 7.

2. Background

In shared-memory multiprocessors, the mem-
ory access penalty, i.e. the accumulated time the
processor has to stall for completing memory
accesses during the program execution, consists
of two components - the write and the read
penalties. In a write-invalidate protocol, the write
penalty is due to the invalidation of remote copies
upon a write request whereas the read penalty
comes from the handling of cache load misses.

H. Grahn et al. /Future Generation Computer Systems I1 (1995) 247-271 249

Write latencies can be very high because copies
in remote caches, far away from the processor,
must sometimes be invalidated. The effectiveness
of mechanisms to hide these latencies depends on
the memory conshency model.

2.1. Memory consistency models

The memory consistency model refers to the
logical model offered by the memory system to
the programmer or to the compiler. This model
in turn constrains the possible ordering and inter-
leaving of memory accesses in the multiprocessor.

Sequential Consistency [241 is the most restric-
tive model as far as the ordering of memory
accesses is concerned. The major drawback of
sequential consistency is the severe limitation it
imposes on the overlap of writes with subsequent
reads, writes, or local computation in the proces-
sor. In essence, no read or write request (to
shared data) can be handled before a previous
write request has been completed.

To remedy this problem the constraints on the
ordering of shared memory accesses [1,13,16] must
be relaxed by assuming that ordering is only
enforced on special synchronization operations
rather than on all memory accesses. All synchro-
nizations among parallel threads are done through
explicit, hardware-recognizable synchronization
operations (i.e. these operations must be distin-
guishable from regular load/store instructions).
The processor must perform all its preceding
loads and stores globally before it can issue a
synchronization operation; moreover, a processor
may issue no memory loads or stores following a
synchronization point in program order until the
synchronization operation is successfully com-
pleted. In systems where these two conditions
apply we say that loads and stores are Weakly
Ordered and that the memory system is weakly
ordered (WO) [12].

Special types of synchronization operations al-
low additional relaxation of the above conditions.
For synchronization based on critical sections, a
refinement called Release Consistency [161 distin-
guishes between acquire (acquiring a lock) and
release (releasing a lock). Release Consistency
requires that all global accesses preceding a re-

lease are globally performed before the release,
and that no global access following a acquire is
issued before the acquire has compl ted. In its
strictest form, Release “, Consistency (RCsc) re-
quires that all processors must
quires and releases in their p
essence, releases can be b
in the same write buffer provided
ceding a release in the FIFO orde
are performed before the release 1
that buffer and acquires are no
pass releases. In a more relaxed
Consistency (RCpc), acquires a
pass previous releases, but
must still be performed in
forth we will only assume
it as RC for simplicity.

Under Release Consistency, previous work has
shown that there is a potential to lide all the
write latency by local computation given enough
hardware support [17]. However, the read penalty
cannot be reduced significantly by using relaxed
memory models, unless loads are non-blocking in
the processor. These non-blocking loads must
either be scheduled statically by the user/com-
piler or dynamically by dynamic instruction-
scheduling mechanisms. Static scheduling of loads
is difficult because of intra-processor depen-
dences. A study by Gharachorloo et al. [18] has
shown that the performance potential attained by
dynamic load scheduling does not justify the in-
creased complexity of the processors. Therefore,
in this study, we only consider standard proces-
sors with blocking loads.

2.2. Write-invalidate versus write-updat e protocols

Most implementations of and
large-scale multiprocessors use
protocols [3,21,25] because early studi
bus-based multiprocessors such
that they exhibit reduced traffic and
ter performance. Write-invalidate pr

from other processors, only the first

250 H. Grahn et al. /Future Generation Computer Systems 11 (1995) 247-271

misses can incur a significant read penalty be-
cause the read request must be forwarded from
the memory module to the cache keeping the
exclusive copy. The cache with the exclusive copy
then must update the memory and the block must
be supplied to the requesting cache. Thus, the
total read penalty to service a coherence miss
includes several node-to-node block transfers.

By contrast, in write-update protocols all co-
herence misses are eliminated since all copies of
a memory block are updated with the new value
instead of invalidated on a write request to a
shared block. The price to pay for the elimination
of the coherence misses is an increased number
of global write actions.

The write penalty under sequential consistency
is substantially higher for write-update protocols
than for write-invalidate protocols because of two
reasons: (i) each write action incurs more latency
to guarantee causal correctness [28] and (ii) the
number of global write actions is larger than
under write-invalidate. To guarantee causal cor-
rectness, all writes must appear in the same order
with respect to each processor. Wilson and
LaRowe presented a two-phase protocol [34]
which guarantees causal correctness. In their pro-
tocol, two transactions per update must take
place. During the first transaction, the data val-
ues are updated but the copies are locked. A
processor that accesses a locked block is stalled.
During the second transaction, the copies are
unlocked and the processors are allowed to ac-
cess their copies again. Because of the large
overhead associated with this two-phase protocol,
write-update protocols are not feasible in the
context of sequential consistency models.

By contrast, under a relaxed consistency model,
such as WO or RC, the write latency can be
completely hidden provided a sufficiently aggres-
sive design of the processor node and the mem-
ory subsystem. In addition, since causal correct-
ness is not required for ordinary loads and stores,
the two-phase update transaction is not needed.
However, the potential increase in traffic can
lead to more read penalty because of increased
contention which overall end up increasing the
execution time as compared to write-invalidate
protocols. The question then is whether the traf-

fic of update-based protocols can be kept at an
acceptable level so that the reduction of read
penalty they provide is not eliminated or - even
reversed - by contention.

2.3. Competitive-update protocols

In a write-update protocol, a block loaded into
a cache stays there until it is replaced, which
results in update actions from other processors
even if the local processor does not access the
block again. To remedy this problem the local
copy should be invalidated if it has been updated
by remote processors a certain number of times
with no intervening local access. Karlin et al.
introduced this mechanism which they call com-
petitive snooping in [22], in the context of bus-
based systems, where each processing node
snoops on the bus for write actions. The imple-
mentation requires a counter per cache block. On
a processor access to the block, the counter is
initialized to a given value, the competitive thresh-
old. Whenever an update message from a remote
processor is received, the counter is decre-
mented. When the counter reaches zero, the block
is invalidated.

To study the potential of read-penalty reduc-
tion of update-based protocols, we will consider a
similar protocol, referred to as competitive-up-
date. The competitive snooping protocol can eas-
ily be adapted to a directory-based protocol.
When a cache receives an update and the counter
of the block reaches zero, the copy is invalidated
and the cache notifies the memory controller of
the invalidation so that updates to that cache
ceases.

2.4. Summary

In summary, write-invalidate protocols have
lower write traffic and write penalty at the cost of
a higher coherence miss rate whereas write-up-
date protocols eliminate coherence misses at the
cost of increased write traffic in the network.
Simple competitive algorithms added to a write-
update protocol have the potential for reduced
read penalty as compared to write-invalidate pro-
tocols while maintaining an acceptable traffic
level.

H. Grahn et al. /Future Generation Computer Systems I1 (1995) 247-271 251

Whereas the performance issues related to the
policies that we consider in this paper are impor-
tant, the complexity and cost of the mechanisms
needed to overlap write requests with each other
are critical issues. In the next section, we describe
possible implementations for different write-
latency hiding mechanisms which we have consid-
ered in our study.

3. Processor node architectures for latency hiding

As a basic assumption for our analysis, we
have only considered design alternatives that are
applicable to standard microprocessors which
block on load requests. Future standard micro-
processors will have an on-chip cache for data
and instructions as contemporary microproces-
sors have. We assume throughout the paper that
this on-chip cache is a write-through cache with
no allocation on write misses and is blocking on
read misses. Such a cache is simpler and faster
than a write-back cache and is more likely to
support processors with increasing clock rates.
We also assume that the microprocessor has an
invalidation pin and a mechanism to invalidate
blocks in the on-chip cache. This pin will be
required for maintaining coherence.

3.1. The basic processor node

A simple and common way to hide write laten-
ties is the cache hierachy shown in Fig. 1 which
consists of a First-Level write-through Cache
(FLC) with no allocation on a write miss and a
Second-Level write-back Cache (SLC). To avoid
processor stalls on writes, a First-Level Write
Buffer (FLWB) between the two caches holds the
contents of all modified words that have not
updated the SLC; the processor executes all writes
in one cycle in the FLWB for as long as the

1-I .WH

(, -;-;;]_&:~~“I.~~ [

Fin-imel Fin-level Second-level y

cache \I rite buffer cache

Fig. 1. A basic two-level cache hierarchy.

buffer is not backed up. Since the SLC is only
accessed on a read miss from the FLC, there is
plenty of SLC bandwidth to satisfy the writes in
between two read misses.

The cache hierarchy in Fig. 1 can
advantage of Weakly Ordered (WO) ,”

artly take
r Release

Consistent (RC) memory consistency models be-
cause the processor is not blocked w n a write
misses or hits on a clean copy in the s cond-level

3 cache: writes are buffered in the FLW and read
misses in the FLC can bypass the wr tes in the
buffer as long as intra-processor depen

k

ences are
respected, which only leads to the follo ‘ng three
restrictions. First, synchronization bperations
cannot bypass the write buffer. Second, reads
cannot bypass synchronization operations. Third,
a read miss to a block cannot bypass ia write to
one of its words in the buffer. Ideally, ‘f the read
accesses a word in the write buffer, th d read miss
could return the value to the processor. However
this would complicate the design of bhe buffer
and the interface to the microprocessor, which
might receive either a block or the word on a
cache miss. For codes with read-after-write de-
pendencies such as recurrence relatio’
mechanism may improve perform rice. The an

s, such a

benchmarks we have run do not have such recur-
rences and therefore would not benefi/t from the
added complexity. For these reasons, hve do not
consider this possibility.

Under Release Consistency, releases can be
buffered with the writes in the same write buffer
provided all writes preceding a rele se in the
FIFO order of the buffer are perfo ed before

t

the release is issued from that buffer. ubsequent
acquires and FLC read misses may ypass the
releases in the buffer.

3.2. A processor node with a secondjleuel write
buffer

The processor node of Fig. 1 is very similar to
the architecture of the SGI cluster of the DASH
prototype [25]. In this architecture, the second-
level cache stops accepting write or tread miss
requests when a write emerges from the FLWB
and the block is not owned in the SLC. This is a
severe limitation. If we want to make dhe proces-
sor node truly tolerant to write latencies, we need

252 H. Grahn et al. /Future Generation Computer Systems I1 (1995) 247-271

to make the SLC lockup-free [23], meaning that it
can allow multiple outstanding write requests.
However, for microprocessors that block on loads,
only a single outstanding read request needs to
be supported. By including a second-level write
buffer (SLWB), as shown in Fig. 2, the SLC can
allow multiple outstanding write requests. All
writes that cause global actions (including write
misses, invalidations, or updates) can be inserted
temporarily in this buffer. Read misses in the
SLC may be allowed to bypass the writes in the
SLWB, under the same restrictions as for the
FLWB. In contrast to the FLWB, which must be
as fast as the FLC, the SLWB can afford more
complex mechanisms because it is interfaced to
the slower SLC. There are many design options
for the architecture of the SLWB and of its
controller, and we will cover some of the most
important ones in this paper.

3.2.1. Design alternatives for the first-level write
buffer

The first-level write buffer is needed because
processor writes must complete at the speed of
the processor. The major requirement of this
buffer is that it must be simple and fast. Tradi-
tionally its size has been small: depending on
memory latencies, 4 to 16 entries are sufficient to
avoid any stall on writes in the processor.

One interesting design issue is whether read
misses in the FLC should bypass the writes in the
FLWB. Since the on-chip cache blocks on a read
miss, only one such miss will ever need to bypass
the buffer but the timing of the miss is critical to
performance. To allow a read miss to bypass the
FLWB, a mechanism must check for words of the
block in the write buffer; if there is a match the

read miss request is blocked until the buffer is

empty.
In the case of Weak Ordering, the FLWB

must be emptied at the execution of each syn-
chronization instruction. By contrast, for Release
Consistency, acquires are always allowed to by-
pass the write buffer. We will investigate the
effectiveness of allowing read and acquire re-
quests to bypass write and release requests in the
FLWB.

3.2.2. Design alternatives for the second-level write
buffer (write-invalidate)

The SLWB contains entries for writes that
cause global actions (misses or invalidations). It
can be organized as a FIFO queue containing
addresses and values of modified words. The
interface to the memory system is relatively sim-
ple. If a write request is put in the buffer, the
SLWB controller issues a request for ownership
to the memory controller. The memory controller
must deal with each request one by one. (It can
queue them or it can reject them.) Based on the
state of the block in other caches, the memory
controller decides whether the requester needs a
fresh copy of the block, which happens if the
block is dirty in another cache. Note that, even if
the cache had a valid copy of the block when the
write was buffered, an invalidation may have re-
moved the copy by the time the write emerges out
of the SLWB. If there is a valid (non-owned)
block copy in the cache and a write to the block is
pending in the SLWB, writes to the block update
the SLC and read misses from the FLC return
the modified copy in the SLC, all updates to such
blocks are also inserted in the SLWB but no
additional global actions are taken. We distin-

First-level : : First-level Second-level Second-level 1 1 g :
cache ; ; write buffer cache write buffer : : _ -- :

Fig. 2. A two-level cache hierarchy with two separate write buffers and a lockup-free second-level cache.

H. Grahn et al. /Future Generation Computer System 11 (1995) 247-271 253

guish between the following cases:
(1) The block was missing in the SLC when the

write was buffered. In this case, a block copy
is returned by the memory system; the up-
dates in the SLWB must be merged into the
block copy before the block becomes accessi-
ble in the cache.

(2) The block was not missing in the SLC but the
cache did not have ownership when the write
was buffered. There are two possibilities:
(2.1) The block has been invalidated since

the write was buffered. The local up-
dates to the block are in the SLWB. A
block copy is returned by the memory
system and the updates in the SLWB
must be merged into the block copy
before it becomes accessible in the
cache.

(2.2) The block has not been invalidated since
the write was buffered. The memory
system gives ownership rights to the
cache by returning a positive acknowl-
edgment. All updates to the block must
be removed from the SLWB when this
acknowledgment is received.

A first question is whether the SLWB could
issue more than one ownership request at a time.
In this case, the buffer controller must keep track
of each issued request until it receives an ac-
knowledgment or a block copy; moreover, when a
block copy is returned by the memory controller,
all entries for the block must be removed from
the buffer and possibly merged into the block

COPY.
A second question is the effect of read misses

in the SLC. We assume that the SLC can only
accept one read miss at a time (since the proces-
sor and the FLC are blocked anyway). The prob-
lems associated with allowing read miss requests
to bypass writes in the SLWB are very similar as
for the FLWB. If there is an entry in the SLWB
for a word in the missing block, the read miss is
blocked until the block copy or ownership is
received, and then the miss is retried in the SLC.

Finally, under RC, releases may be buffered in
the SLWB as well. Whereas the buffer may have
multiple ownership requests pending, a release is
not allowed to issue from the buffer until the

memory responses for all the entries 1 preceding
the release in the FIFO order of the bbffer have
been received. Acquires may also bypass the
SLWB under the same restrictions as for the
FLWB.

3.2.3. Design alternatives for the second#evel write
buffer (write-update)

Most of the design issues for the SL
,“”

under
write-invalidate also apply to a syste using a
write-update policy. For example, if a w
in the SLC, we must keep track of al 1

ite misses
modified

words in the SLWB and later merge them with
the fresh copy from the memory. Als
update the SLC on a write without a

,”

, we can
aiting the

pending write’s completion. However, there are
two differences. First, under write-in alidate
block in the SLC can be invalidated w

i

a
ile a write

to that block is in the SLWB but t is cannot
happen under write-update. Second, w

I

ile only a
single write request per block is issue from the
SLWB at the same time under write- nvalidate,
write-update allows an unlimited nu ber of is-
sued writes (updates) at a time, given F FO order
of requests between two nodes in t e system.
Therefore, in a write-invalidate pr tocol, all
SLWB entries to the same block can be de-alloc-
ated when the invalidation request has been glob-
ally performed, but, under write-updage, we can
only de-allocate the entry containing 1 the write
request which has been globally derformed.
Write-update protocols are likely to have a larger
number of issued writes and the size of he SLWB

: is expected to be larger in order to full hide the
write latency. In turn, it becomes more advanta-
geous to allow read and acquire requ sts to by-
pass writes and releases in the e FLWB when the
SLWB becomes full. Note that, in orde& to main-
tain coherence, the copy of a block in he FLC is
invalidated upon receiving an update re

1
uest from

a remote processor to a block residing i both the
FLC and the SLC.

3.2.4. Design alternatives for the secondilevel write
buffer (competitive-update)

In order to keep the number of shared copies
under control in an update-based protocol, a
simple competitive-update mechanism iconsisting

254 H. Grahn et al. /Future Generation Computer Systems 11 (1995) 247-271

of a counter per SLC line keeps track of the
number of updates by remote processors to a
block. On a read miss in the FLC, the block is
loaded into the FLC and the counter associated
with the block in the SLC is initialized to a
predefined value C, the competitive threshold.
When the SLC receives an update message from
another processor node, the actions taken de-
pend on the value of the counter.
(1) If the counter is not zero, it is decremented,

the corresponding block in the SLC is up-
dated, and the block in the FLC is invali-
dated. In addition, an UpAck (update-
acknowledgment) message is returned to the
memory controller.

(2) If the counter is zero, the blocks in the SLC
and FLC are invalidated and an UpAckInv
(update-acknowledgment-invalidated) is re-
turned to the memory controller indicating
that the processor node does not have a copy
any longer.

Consequently, after C consecutive update mes-
sages to a block from other nodes with no inter-
vening local reference to the block, the block is
invalidated. Like write-invalidate protocols, the

block becomes exclusive (dirty) in an SLC if no
other SLC has a copy of the block. With this
implementation, we manage to keep the FLC fast
and simple. The only two external operations on
the FLC are invalidation of a block and loading a
block. All complexity of the competitive mecha-
nism is handled in the SLC.

The competitive threshold is an important de-
sign parameter, which we will study later in this
paper. Too small a threshold prevents the proto-
col from reducing the coherence miss rate and
thus the read penalty, whereas too big a thresh-
old generates excessive write traffic, which may
impact adversely on the read-penalty reduction.

4. Simulation methodology, architectural designs,
and benchmark programs

In this section, we present the evaluation
methodology, including the simulation environ-
ment and the detailed architectural assumptions
(Section 4.1), the buffering alternatives for the
cache hierarchy (Section 4.2), and the benchmark
programs (Section 4.3).

Standard microprocessor Interface for hiding the latency of the system

s s write buffer write buffer :

Network Network
Interface Interface
Control Control

4-by-4 wormhole routed mesh (16 nodes) 1

Fig. 3. The processor environment and the simulated architecture.

H. Grahn et al. /Future Generation Computer Systems 11 (1995) 247-271 255

4.1. Simulation environment and memory system
assumptions

The simulation models are built on top of the
CacheMire Test Bench [7], a program-driven sim-
ulator and a programming environment. The sim-
ulator consists of two parts : (i> a functional simu-
lator of multiple SPARC processors and (ii) an
architectural simulator. The SPARC processors
in the functional simulator issue memory refer-
ences and the architectural simulator delays the
processors according to its timing model. Thus, a
correct interleaving of memory references is
maintained by keeping track of the global time
because the sequence of memory references is
derived by correctly modeling the delays in the
target architecture.

The high-level organization of the processor
node model we study is shown in Fig. 3. The
two-level cache hierarchy we simulate consists of
a 2 Kbyte FLC and an infinite SLC, both with a
cache-line size of 16 bytes. While we also study
variations on the size of the write buffers, we will
assume that they both contain 16 entries by de-
fault. The cache hierarchy, referred to as the
processor environment, is interfaced to the local
portion of the shared memory and the Network
Interface Control (NIC) by a local bus according
to Fig. 3.

Cache coherence is supported by a directory-
based protocol similar to Censier and Feautrier’s
[91; each memory block is associated with a direc-
tory entry containing a presence flag vector indi-
cating which nodes have a copy of the block. The
memory module in which a particular block is
allocated is called the home of that block. The
page size is 4 Kbyte and we assume that pages
are allocated to memory modules in a round-robin
fashion; pages are interleaved across nodes. A
read miss in the SLC sends a read request to
home. If the home is the local node and if the
memory block is clean, the miss is serviced lo-
cally. Otherwise, the miss is serviced either in two
or in four node-to-node traversals depending on
whether the block is clean or dirty. Upon an
invalidation or an update request, the home
memory controller is responsible for sending ex-
plicit invalidations or updates to each node ac-

cording to the state of the presence ‘flag vector
and the global coherence state of the block. An
invalidation/ update from the memqry module
generates one single message on thei local bus,
including a presence flag vector; then the NIC
sends explicit messages to eat
of the block. The NIC is a
collecting invalidation/ updat
from other nodes. When
all acknowledgments, it sen
edgment over the bus to the memo
Finally, acquire and release
ported by a queue-based lock
to the one implemented in DASH
where a lock variable is allocated
that single lock variable and no 0th

As far as the timing and architectu
ters are concerned, we consider SP
sors and FLCs that are clocked at
pclock = 10 ns). The access time of
assumed to be 30 ns @RAM tech
memory is assumed to be built fr
technology and is fully interleaved wi
time of 90 ns. The SLC
connected to the NIC and the local memory
module by a 128-bit wide split trans ction a bus
clocked at 100 MHz. Thus, it takes1 10 ns to
arbitrate for the bus and 10 ns to Itransfer a
request or a block. We simulate a very fast bus
since the bus load is an orthogonal issue in this
study. Table 1 shows the time it takes to service a
read request when data is fetched from different
levels in the memory hierarchy, assuming a 100
MHz processor and a contention-free
our simulations, requests
longer time as a result of
late a system with 16 nodes

Table 1
Latency of processor read requests when dat(t is supplied
from different levels in the memory hierarchy

Latency of read requests 1 pciock = 10 ns
WI0 MHZ)

256 H. Grahn et al. /Future Generation Computer Systems 11 (1995) 247-271

4-by-4 wormhole routed synchronous mesh with a
flit size of 64 bits and clocked at 100 MHz to be
compatible in speed with the processors. The
aggregate bandwidth out from and into each node
is 800 Mbytes/second. We model contention for
all components in the processor node and in the
mesh network.

4.2. Restrictions on buffering

We have simulated three different design al-
ternatives for the cache hierarchy under Release
Consistency. These designs differ in the aggres-
siveness of the lockup-free mechanism of the
SLC. In addition, we also evaluate the effective-
ness of read misses bypassing writes in the FLWB
in the context of each model.

Model RC-I corresponds to an architecture
with a FLWB between the first-level and second-
level caches as shown in Fig. 1. The SLC is
blocking and there is no SLWB; a write request
causing a global action (write miss, invalidation,
or update) blocks the SLC for as long as the
request is pending. Note that the processor is
blocked only if the FLWB is full or if a read
access misses in the FLC.

In models RC-II and RC-III, global write re-
quests are buffered in the SLWB. Under model
RC-II and RC-III we assume read miss and ac-
quire bypass in the SLWB, but not in the FLWB.
There can be only one pending acquire or read

miss request in the SLC. The only difference
between model RC-II and model RC-III stems
from the number of pending write requests in the
network. While model RC-II allows only one
pending read and one pending write request is-
sued from the SLWB at a time, model RC-III
allows as many pending write requests as there
are entries in the SLWB, with the restriction that
no more than one request to the same block is
issued to the network in the write-invalidate pro-
tocol at any time. Table 2 summarizes the fea-
tures of the design alternatives.

Under WO and RC reads are allowed to by-
pass writes in the write buffers, as long as they
are not to the same address, and thus we also
evaluate the effectiveness of a read-bypass mech-
anism added to the FLWB of each model. Since
acquires are treated as read requests to synchro-
nization variables, the processor blocks on ac-
quires just like it does on read misses. Under RC,
which is the default memory consistency model,
acquires are allowed to bypass previous writes
and releases. When the three models are ex-
tended with a bypassing mechanism in the FLWB,
we refer to them as RC-I-bp, RC-II-bp, and
RC-III-bp.

4.3. Benchmark programs

In order to understand the relative perfor-
mance of our architectural models under various

Table 2
Simulated architectural models

Architectural
model

Second-level cache (SLC) Second-level write buffer (SLWB)

RC-I

RC-II

Blocking. One pending request at a time.
The cache is blocked until the global
request is performed
Lockup-free. The cache is blocked
only when the SLWR is full

RGIII Lockup-free. The cache is blocked
or& when the SLWEi is full

None

One pending read and one pending write request at a time
Read misses bypass the buffer if no write to the same block
is in the buffer.
Releases are buffered and acquires always bypass the buffer
One pending read and as many pending write requests as
entries in the buffer
Read misses bypass the buffer if no write to the same block
is in the buffer.
Releases are buffered and acquires always bypass the buffer

H. Grahn et al. /Future Generation Computer Systems 11 (1995) 247-271 257

Table 3
Benchmark programs

Water
PTHOR
ocean

Water molecular dynamics simulation
Simulation of a digital circuit at the logic level
Simulation of eddy currents in an ocean basin

288 mole* 4 time steps _
RISC circuit, PO00 time steps
128~by-128 g&d, tolerance lo-’

coherence policies, we use four scientific and
engineering applications, all taken from the
SPLASH suite [29] except for the C-version of
Ocean which has been provided to us by Steven
Woo at Stanford University. The main character-
istics of the four benchmark programs, MP3D,
Water, PTHOR, and OCEAN, together with the
size of the data set used are summarized in Table
3. All programs are written in C using the PAR-
MACS macros from Argonne National Labora-
tory [61 and compiled with gee version 2.1 (optimi-
zation level -02). Statistics are collected during
the execution of the parallel section in the appli-
cations.

5. Experimental results

We start by comparing the performance of the
three coherence policies in Section 5.1. In Sec-
tion 5.2 we compare the performance of different
buffering schemes. The impact of the competitive
threshold (Section 5.3) and of the consistency
models (Section 5.4) follows. Finally, in Section

5.5, simulation results for differen network
speeds are given in order to see how s

d
nsitive our

qualitative conclusions are to network icapacity.

5.1. Relative performance of write-invalidate, com-
petitive-update and write-update

In order to separate implementa ion issues
from the performance gains of the var ous coher-

1 ence policies, we analyze the perfo ante of
write-invalidate, competitive-update, nd write-
update by assuming an aggressive ockup-free
second-level cache according to mode RC-III in
Section 4.2 with 16 entries in the [s cond-level
write buffer.

The execution times for the applications are
found in Fig. 4. All execution times are normal-

perform acquire requests, and
time due to a full first-level

W-l c-u w-u W-l c-u w-u W-l c-u WY W-l c-u w-u
MP3D Water PTHOR Ocean

Fig. 4. Normalized execution time of the benchmarks for the three coherence policies under RC.

258 H. Grahn et al. /Future Generation Computer Systems 11 (1995) 247-271

” lOOO- 947
f 900 -
+

5
SW-

796

E 700 -

= z 600 -

< 600 -

f 400-

% - t 300 - 260

200

164 166

100 - 100 100 100 129

0.
W-l c-u w-u W-l c-u w-u W-l c-u w-u W-l c-u w-u

MPBD Water PTHOR Ocean

Fig. 5. Relative amount of network traffic generated under the different coherence policies.

three bars for each application correspond to the
three coherence policies: write-invalidate (W-I),
competitive-update (C-U), and write-update (W-
U). In our measurements, we have assumed a
competitive threshold of 4.

Let us first compare write-invalidate with
write-update. In Fig. 4 we see that write-invali-
date results in significantly better system perfor-
mance than pure write-update for two of the
applications (MP3D and Water). While the stall
time due to acquires and full buffers is about the
same, the reason for the performance difference
is the longer read stall time under write-update.
The reason why the read stall time is increased
despite of the elimination of coherence misses is
because of contention due to the increase in
network traffic as a result of the updates. To see
this, we also measured the network traffic for all

applications under write-invalidate and write-up-
date. This data appears in Fig. 5.

Fig. 5 shows the amount of network traffic for
write-update (W-U) relative to write-invalidate
(W-I). The traffic is measured in number of flits
sent through the network and is normalized to
the traffic rate under the write-invalidate proto-
col for each application. The traffic under write-
update is 7 to 10 times more than under write-in-
validate for MP3D and Water. For Ocean, write-
update performs significantly better and the traf-
fic level is acceptable. MP3D and Water have
poor performance under write-update because of
migratory sharing [20,32]; as a migratory block
migrates from cache to cache, it creates copies
that may not be referenced for a long time,
flooding the network with updates. By contrast,
Ocean is based on an iterative algorithm and

3
f om-
B
a 300 -
f S
3 200 -

136

W-l c-u w-u W-l c-u w-u W-l c-u w-u W-l c-u w-u
MPBD Water PTHOR Ocean

Fig. 6. Relative read penalty under the different coherence policies.

H. Grahn et al. /Future Generation Computer System 11 (1995) 247-271 259

values are communicated among neighboring
processes. Therefore, write-update performs
much better than write-invalidate.

We now turn our attention to competitive-up-
date protocols. The main objectives of competi-
tive-update protocols are to reduce the network
traffic generated by write-update protocols and at
the same time to take advantage of the elimina-
tion of most coherence misses. In Fig. 5 we see
that the competitive-update protocol successfully
reduces the network traffic by up to 80%, as
compared to the write-update protocol. As com-
pared to write-invalidate, competitive-update
generates about 85% more traffic for MP3D and
Water which are applications exhibiting migra-
tory sharing, but only about 30% more for the
other two applications. This does not seem to be
a critical issue since the network is capable of
handling that extra amount of traffic effectively.

In Fig. 6 we show the relative read penalty
under the different coherence policies. We ob-
serve that the competitive-update protocol suc-
cessfully reduces the read penalty (from 6% to
46%) compared to the write-invalidate protocol
for all applications. The write-update protocol can
reduce the read penalty even further for applica-
tions with little migratory sharing (PTi’OR and
Ocean). Thus, competitive-update is a better de-
fault policy than write-invalidate for all four ap-
plications.

We now look at the two factors affecting the
read penalty under competitive-update. The first
factor is the reduction of the coherence miss rate
and the second factor is the fraction of times a
block is clean at the memory on a read miss, i.e.
no cache has an exclusive copy of the block. The
effect of the first factor is clear, but some in-

crease in network traffic is needed to update the
cached copies, which in turn may increase the
latency time of a cache miss. The second factor
has a positive effect because if the block is kept
up-to-date at the memory, a read m ss to the
block costs at most 2 network travers 1s in con-
trast to at most 4 network traversals i the block
is exclusive (dirty) in another cache.
of the two factors are summarized in :

he effects
,able 4.

We see in Table 4 (right column) th

“:

competi-
tive-update reduces the read latency fo all appli-
cations. For example, the average time for a read
request to complete in Ocean is 75 pcl 0 cks under
competitive-update whereas the co esponding
number for write-invalidate is 87 pcloc s. We also
observe that a block rarely becomes irty under

1

competitive-update as compared to w ite-invali-
date (the middle column); as many s 100% -
16% = 84% of all misses to blocks tha are dirty
under write-invalidate for Ocean can e serviced

“;
at the memory module under competiti e-update.
Since the competitive threshold is set o 4, i.e. a
block becomes exclusive in a cache if a processor
writes 4 times to the block with no ot er proces-
sor accessing it, we conclude that most “, ata blocks
are read and modified by different processors in
an interleaved fashion. There is a clear distinc-
tion in the reduction of coherence misses be-
tween PTHOR and Ocean on one

”

and, and
MP3D and Water on the other hand. F r PTHOR
and Ocean the coherence misses are educed by
about two thirds, but for MP3D and Water the
reduction is only 13% and 20%, respectively. The
difference can be explained by observing that
most data objects in MP3D and Water dare migra-
tory objects [20,32]. For MP3D the time for a
read request to complete decreases Avery little

Table 4
Statistics for read misses in the SLC for competitive-update relative to write-invalidate

AppIic&on lkekke coherence Relative numbers of read
n#isnrtt: misses to dirty blocks

W-I c-u W-I c-u

Time for a read miss request
to complete &I&Mcs.)

W-I C-r;

FTHOR low% 34% 100% 19% 114 81
OcMn 100% 24% 100% 16% 87 75

260 H. Grahn et al. /Future Generation Computer Systems 11 (1995) 247-271

under competitive-update as compared to write-
invalidate; even though the blocks are clean in
memory for 95% of the misses, the network con-
tention induced by increased write traffic offsets
the reduction in the pure miss latency. However,
the reduced coherence miss rate under competi-
tive-update cuts the overall read penalty by 6%
for MP3D as compared to write-invalidate (see
Fig. 6).

An overall reduction in the execution time of 3
to 13% is observed in Fig. 4. A negative effect of
competitive-update, however, appears in the case
of PTHOR. Namely, the acquire stall time is
higher under competitive-update and under
write-update than under write-invalidate. A re-
lease residing in the write buffer can not be
issued from the processing node until all previous
writes are performed. If another processor waits
for the release, it may see an increased acquire
stall time due to the delayed execution of the
release. The higher number of global writes un-

der write-update leads to an increased acquire
stall time. As a result, for applications exhibiting
contention for critical sections (or locks) the write
latency may be converted into increased synchro-
nization overhead.

In summary, competitive-update protocols suc-
cessfully reduce the coherence miss rate and the
read stall time, which results in shorter execution
times under competitive-update than under
write-invalidate for all applications. We have also
seen that competitive-update maintains an ac-
ceptable traffic level as compared to write-in-
validate. However, update-based protocols may
increase synchronization overhead for applica-
tions that exhibit contention for critical sections.

5.2. Evaluation of different buffering alternatives

In this section we compare the buffering alter-
natives described in Section 4.2 for write-invali-
date and competitive-update protocols.

i! 110
F 100
5 90
f 60
8 70
L! 60
% 50
3 40
c 30
z” 20

10
n

SC RC-I K-II RC-III SC RC-I RCII RC-III
MPBD Water

t 110
F 100

s 90
.s 60

8 70
d 60
B 50
Q 40
E 30
s 20

10
0

SC RC-I RCII RC-III SC RC-I RC-II RC-III
PTHOR Ocean

Fig. 7. Normalized execution time of the benchmark applications for the buffering alternatives under write-invalidate.

H. Grahn et al. /Future Generation Computer Systems 11 (1995) 247-271 261

5.2.1. Buffering alternatives for write-invalidate
protocols

We start by analyzing the impact of the three
buffering alternatives on the performance under
the write-invalidate policy. The results are com-
pared with the performance of Sequential Consis-
tency (SC). Our implementation of SC forces the
processor to stall on each shared data access. The
write buffers have a limited size; each buffer is 16
entries deep. Fig. 7 shows the execution times for
the benchmark applications under write-invali-
date.

In our first model (RC-I) buffering is limited
to a FLWB with no read bypass. We observe
reductions of the execution times by 4% to 11%
as compared to SC (Fig. 7). The only write la-
tency we can hide is the time from a write access
to a following read miss in the FLC. The read
request has to wait until the write is completed,
which may be the time it takes to perform the
write globally if the distance between the write
and the subsequent read miss is short. During
that time the SLC is blocked and can not handle
the read request. Therefore, most of the write
latency from SC is converted into read latency in
the RC-I model. The only exception is Ocean,
where less than 40% of the write latency is con-
verted into read latency. This result indicates that
there is a longer distance between a global write
access to a following read miss in the FLC in
Ocean than in the other three applications. From
Table 5 we see that a read request spends only 3
pclocks in the FLWB for Ocean, as opposed to
42, 12, and 22 pclocks for MP3D, Water, and
PTHOR, respectively. MP3D is the only applica-
tion where there is more than one request in the

Table 5
Queuing statistics for an FLC read miss in the FLWB under
buffering model RC-I

Applica- Average time Average number
tion intheFLWB of requests before

wxks) a read request
in the FLWB

MP3D
Water
PTWOR
Qc5an

42 1.4
12 0.5
22 0.1

3 0.1

buffer when the read miss occurs. Thi$ indicates
that MP3D is the only application qhere read
bypassing in the FLWB has a potential to reduce
the read penalty.

To test this intuition, we evaluated he effects
of read bypassing in the FLWB for e ch bench-
mark under RC-I and did not observe ny perfor-
mance gain at all, except for MP3D wh re a small
decrease in read stall time was obs rved. The

1

reason is that the SLC is still block d due to
pending write requests at the time the read miss
occurs. We also see in Table 5 that at the time a
read request is issued to the FLWB t e buffer is
mostly empty. If there are multiple wri e requests
in the FLWB requiring global actions, we would
expect to see a larger performance gain from
read request bypassing in the FLWB, but this is
clearly not the case. For one of the a

:

plications,
PTHOR, we even observed an increas in execu-
tion time by 1% for the RC-I-bp mod 1 as com-
pared to the RC-I model. The reason is that the
acquire stall time has increased as a& effect of
the delayed issuance of releases. Fro4 our mea-
surements we found that the average itime a re-
lease spends in the FLWB increases rom 87 to

c, 147 pclocks for PTHOR when read b assing is
allowed in the FLWB.

From Fig. 7, we see that the exec tion times
drop when one outstanding read reque

‘i

t is issued
in parallel with one outstanding write equest, as
in model RC-II. This requires the LC to be
lockup-free [23,31] and a SLWB is ntroduced
with a single pending global write repuest. The
read latency is reduced to almost the ‘same level
as in SC for all of the applications bet $ use a read
miss request can be issued from the S C at once.
For MP3D we observe a slightly h gher read
penalty under RC-II than under SC, w ich comes
from increased network contention. he reduc-
tion in the total execution times with respect to
RC-I comes from the reduced read st 11 times in
all four applications. We did not see any prob-
lems in hiding the write latency for 1 ny of the
applications.

As can be seen in Fig. 7, moving fi_om model
RC-II to RC-III does not buy us any significant
performance increase in general und e r write-in-
validate. In model RC-III, the acquire stall time

262 H. Grahn et al. /Future Generation Computer Systems 11 (1995) 247-271

for PTHOR is lower than RC-II because releases
are issued faster from the SLWB when multiple
pending write requests (up to 16) are allowed.
PTHOR is an application with a high rate of
synchronizations and it benefits from the fact that
releases are issued faster from the processing
nodes. To take advantage of Release Consistency
as much as possible in the general case, multiple
pending write requests are necessary. Unfortu-
nately, in PTHOR we observe that the reduced
acquire stall time is converted into read latency
because of network contention so the overall
performance increase is negligible.

We also evaluated the performance gains for
RC-II and RC-III when read requests are al-
lowed to bypass write requests in the FLWB,
leading to models RC-II-bp and RC-III-bp. We
did not see any performance benefit for the same
reasons as for RC-I-bp; the SLWB is large
enough, so there is never any request in the
FLWB when the read request is issued from the

FLC. Moreover, the SLC is not blocked by previ-
ous requests either.

In summary, we observe the main performance
increase when the SLC is lockup-free and a SLWB
is present so that one read miss request can be
issued in parallel with one global write request.
Supporting multiple pending global write re-
quests does not yield any significant performance
improvement under write-invalidate. Allowing
read requests to bypass write requests in the
FLWB does not yield any significant improve-
ment either since the FLWB is mostly empty at
the time it receives a read request.

5.2.2. Buffering alternatives for competitive-update
protocols

In this section we compare the different
buffering alternatives under competitive-update.
The results are summarized in Fig. 8. The base-
line model is an implementation where the pro-
cessor is stalled at each shared read or write

0 110
; 100

s 90
3 00

P 70
ti 60
P 50
Q 40

is 30
B 20

10
0

SC RC-I RCII RGIII SC RC-I RC-II RCIII
YPBD Water

a 110 ‘F 100 100

s 90
J 80
8 70
w” 60
B 50
g 40
E 30
z” 20

10
0

SC RGI RGII RC-lII SC RC-I RC-lI RGlll
PTHOR Ocean

Fig. 8. Normalized execution time of the benchmark applications for the buffering alternatives under competitive-update,

H. Grahn et al. /Future Generation Computer Systems 11 (1995) 247-271 263

request and referred to as SC although it does
not maintain Sequential Consistency in a strict
sense. The update transactions are performed in
a single pass, not in two as discussed in Section
2.2.

When we go from SC to RC-I under competi-
tive-update, we observe the same phenomenon as
for write-invalidate; a part of the write latency is
converted into read latency. The amount of write
latency converted differs among applications. For
MP3D, Water, and PTHOR almost all the write
latency is converted into read latency, whereas
for Ocean only about two thirds of the write
latency is converted.

Introducing a SLWB in the cache hierarchy
with one pending read and one pending write
request, as in model RC-II, yields a significant
performance increase under competitive-update.
The execution time is reduced by 11% to 19% as
compared to RC-I, mainly due to shorter read
stall time. Since one read and one write request
can be outstanding at the same time, the write
request does not delay the issuance of a read
request as in model RC-I. There is a small in-
crease in the acquire stall time for Ocean, how-
ever, due to contention effects in the network
which delay global write requests and releases.

In contrast to write-invalidate, we observe from
the results in Fig. 8 that allowing the issuance of
multiple write requests from the SLWB further
reduces the execution times for all applications.
In MP3D this stems from the reduced time a
read request spends in the FLWB. Global write
requests are retired from the SLWB at a higher
rate in model RC-III than in model RC-II which
makes the SLC service the requests from the
FLWB at a higher speed. In PTHOR and Ocean
the reduced execution times mainly stem from a
reduced acquire stall time. Since global writes are
completed faster, releases residing in the write
buffers can be issued from the processing node
faster and, as a result, acquires can complete
faster if they are waiting for the release. Thus, we
conclude that it is essential to allow multiple
pending writes in order to benefit from the per-
formance potential of the competitive-update
protocol. By using a relaxed memory consistency
model and appropriate hardware support, the

execution times for the applications qre reduced
by between 22% and 59% as compared to our SC
model.

When we allowed read requests to i bypass the
FLWB, as in model RC-I-bp, we did ot see any
significant improvement as compare

”

to RC-I,
except for Water where a reduction o the execu-
tion time is due to an almost 50% shorter read
stall time (not shown in Fig. 8). For Water, a read
request that bypasses writes in the 1 FLWB in
model RC-I-bp, bypasses 3 write requ sts on the
average. As a result, the write 1 reque ts and re-
leases are delayed in the FLWB. Ho ever, since
the locks are not contended in Wat

time, but the processor stall time
i

, all write
latency can be hidden. For MP3D and Ocean, we
observed a significant decrease of th read stall

d e to a full
first-level write buffer was increased y the same

i

amount. For example, in MP3D eat read miss
bypasses 12 writes in the FLWB on t e average.
This causes the FLWB to be filled/ and as a
result, the processor is stalled.

We have also evaluated the perfor’ ante gain
when read requests are allowed to b “, ass write
requests in the FLWB in the presence of an
SLWB. We did not observe any ove all perfor-
mance gain of read bypassing under mpetitive-
update. We found that the read laten

i

is slightly
reduced for some applications, but th processor
stall time due to a full first-level wri e buffer is
increased by approximately the same ~ amount as
the read latency is reduced.

In summary, unlike write-invalida e, it is es-

f sential to allow multiple pending wri e requests
under competitive-update to benefit as much as
possible from the latency hiding c pability of
Release Consistency. Like write-inval’

i

ate, a sig-
nificant performance gain is achieve with only
one pending read and one pending w ite request
at the same time for all applications; moreover
read bypassing in the FLWB does n t improve
the performance significantly, especial y when the
SLC is lookup-free.

5.3. Effects of various competitive thredholds

In our default competitive-update protocol we
have used a competitive threshold of 4, i.e. a

264 H. Grahn et al. /Future Generation Computer Systems 11 (1995) 247-271

cached copy is invalidated when it has been up-
dated 4 times since the last reference by the local
processor. In this section we show simulation
results with competitive thresholds from 1 to 8.

Fig. 9 summarizes the results from the simula-
tions with various thresholds for the competitive-
update protocol. The execution times are normal-
ized to the execution time under the write-in-
validate (W-I) protocol which is the leftmost bar
for each application. The next four bars to the
right correspond to the execution times under
competitive-update (C-U) with thresholds 1, 2, 4,
and 8, respectively. The sixth bar for each appli-
cation is the normalized execution time under the
write-update (W-U) policy.

For MP3D we see that the execution time is
almost the same for competitive thresholds of 1
and 2 as for write-invalidate. For a competitive
threshold of 4 competitive-update has a shorter
execution time than write-invalidate, and for
higher thresholds the execution time increases

again. The extreme point is for the write-update
protocol, where MP3D runs almost 3.5 times
slower than for the write-invalidate protocol, as a
result of the intense migratory sharing leading to
high communication bandwidth.

For Water, we see that a threshold of 4 or 8
results in the shortest execution time. In Water
most data objects are migratory, but the commu-
nication to computation ratio is lower than in
MP3D. Therefore, the mesh network is not so
heavily loaded, and most of the write traffic can
be hidden by local computation without affecting
the read requests. In fact, the read stall time
decreases as the competitive threshold increases
since the coherence miss rate and read latency
decrease. Also Water suffers from a huge amount
of write traffic under the write-update protocol
and an increased read penalty is observed. How-
ever, the execution time under the write-update
protocol is only 8% longer than under the write-
invalidate protocol.

350 343

E
F 300

s
I 250
Jj 200

g p 150

g 100

s 50

0

Buffer full

W-l C-U1 C-U2 C-U4 C-U8 W-U

MP3D

W-l C-U1 GU2 CY4 C-U8 W-U

Water

E 110

F 100

g 90

‘2 80

8 70
i! 80

P 50
Q 40

e 30
z” 20

10
n

W-l GUI C-U2 C-U4 C-U8 W-U W-l GUI C-U2 GU4 C-U8 W-U

PTHOR Ocean

Fig. 9. Normalized execution time under competitive-update with various competitive thresholds.

H. Grahn et al. /Future Generation Computer Systems 11 (1995) 247-271 265

For PTHOR the best competitive threshold is
8. The read penalty for PTHOR decreases as the
competitive threshold increases, so the applica-
tion benefits from keeping the caches updated.
However, when the write traffic increases as the
threshold increases, releases are delayed in the
write buffers before they leave the processing
node, which in turn increases the acquire stall
time.

Ocean is the only application where the write-
update protocol results in shorter execution time
than the write-invalidate protocol. The execution
time is reduced by 12% under write-update as
compared to write-invalidate, mainly because of
the reduced read stall time. We also observe that
the threshold is not critical for Ocean, as long as
the threshold is larger than one.

In summary, we have observed that most appli-
cations benefit from keeping the caches updated.
The read penalty is reduced when the competi-
tive threshold increases, but the acquire stall time
may increase at the same time due to the in-
creased write traffic which delays the issuance of
releases. The best competitive threshold for an
application is difficult, or even impossible, to
predict statically. The optimal threshold varies
between applications depending on the communi-
cation to computation ratio and the access pat-
terns to shared data structures. The best thresh-
old may vary between blocks within the same
application and possibly for the same block dur-
ing the execution of the program. We may say
that as long as the competitive threshold is not
extremely large, competitive-update protocols
provide consistent performance improvement.

5.4. Weak ordering vs. release colzsistency under
update-based protocols

Previous studies [17,36] have shown that there
is little or no performance difference between
Weak Ordering and Release Consistency under
write-invalidate. However, no previous study has
addressed the relative effectiveness of the two
consistency models under update-based proto-
cols. One could argue that an application would
run equally fast under WO and RC since both
models have the possibility to overlap write re-

quests with local computation and read requests.
On the other hand, one could argue that the
higher rate of global write actions under update-
based protocols favors RC.

In order to understand which rel ed consis-

“s tency model is better, we ran the fo r applica-
tions under both consistency models o
tecture with our most aggressive buff ring alter-
native (model III) and 16 entries
buffers. We simulated both a networ

i

an archi-

eep write
with infi-

nite bandwidth and our default netw rk; a 100
MHz mesh network with 64-bit wide links. The
infinite-bandwidth network allows us 1 to isolate
the differences stemming from the onsistency
models and not from the implementat on. Under
WO, the processor must stall at a sync

i

ronization
point until the write buffers are em tied. This
stall time is classified as write stall timb.

We first discuss the results obtaine with the
infinite-bandwidth network. Compari

f

g RC and
WO for each of the three policies, W-I, C-U, and
W-U, we observed no significant di erence in
performance between RC and WO or MP3D
and Ocean. However, for Water and THOR we
found a difference between RC and W

i

, which is
in accordance to the results for write-i validate in
[17]. Water has very short critical se tions and
PTHOR is the only of our four applic tions with
a high synchronization rate. For ater and
PTHOR, the lower execution times Iunder RC
than under WO (8% and 12%, respe tively, un-
der C-U) stem mainly from the incr ased write
stall time and, to a lesser extent, fr m the in-
creased time to perform release req ests under

1

WO. Simulation results also showed t at the dif-
ference between RC and WO increas d as we go
from W-I, to C-U, and to W-U. As e ected, the
higher rate of global write actions dir tly affects
the write stall time under WO.

The results from the architecture wi h the mesh

% network yielded a similar difference b tween RC
and WO as the infinite-bandwidth n twork did.
However, the difference is smaller as a result of
network contention. For C-U, the exec tion times
under RC are 6% and 9% lower for

1

ater and
PTHOR, respectively, than under W . Also for
the mesh network we found an increaking differ-
ence between RC and WO as we go frbm W-I, to

266 H. Grahn et al. /Future Generation Computer Systems II (1995) 247-271

C-U, and to W-U. The write stall times under
WO increase with the write traffic (from W-I to
C-U to W-U) and this effect is even more pro-
nounced when contention is taken into account.

In summary, by running the four applications
under both Weak Ordering and Release Consis-
tency we have not found any difference between
WO and RC for two of the applications (MP3D
and Ocean) in terms of latency hiding capabilities
under update-based protocols. However, for Wa-
ter and PTHOR we observed a slight difference
between RC and WO as a result of very small
critical sections (Water) and a high synchroniza-
tion rate (PTH~R).

5.5. Effects of the speed gap between processor and
network

To get a feel for the sensitivity of our results to
variations in speed differences between the pro-

m 130 123
E 120

cessors and the network, we simulated an archi-
tecture with 100 MHz processors and three dif-
ferent networks; (i) a network with infinite band-
width but latencies comparable to a 100 MHz
mesh, (ii) a 100 MHz mesh, and (iii) a 33 MHz
mesh. The latter case corresponds to a network
clocked three times slower than the processor.
The execution times shown in Fig. 10 are normal-
ized to the execution time under write-invalidate.

By comparing the execution times of all appli-
cations under write-invalidate (W-I) and under
competitive-update (C-U) for each network, we
see that the relative difference between write-in-
validate and competitive-update is approximately
the same for the infinite bandwidth network and
the 100 MHz mesh except for MP3D, which has a
very high bandwidth demand. We also see that
competitive-update gives a consistent pegormance
improvement over write-invalidate in the architec-
ture with a 100 MHz mesh network. For the 33

i=
g 110 100
S
8

90
ti 90

70
1 60
i 50

E 40 z” 30
20
10
0

w-1 c-u W-l c-u W-l c-u W-l c-u W-l c-u w-l c-u
‘-Infinite - -iOOMHZ- --~&HZ Infinite 1 OOMHr 33MHz
Bandwidth Mesh Mesh Bandwidth Mesh Mesh

MP3D Water

@ 130
.E 120
‘; 110
2 100
a 90
I
I!

90
70

3 90
Q 50

!E 4o s 30
20
10
0

W-l c-u W-l c-u W-l c-u W-l c-u W-l c-u W-l c-u
Infinite

Bandwidth
1OOMHz 33MHz lnfinlte 1 OOMHr 33MHz

Mesh Mesh Bandwidth Mesh Mesh

PTHOR Ocean

Fig. 10. Effects of varying the capacity and the speed of the network.

H. Grahn et al. /Future Generation Computer System 11 (1995) 247-271 261

MHz mesh network, Water and Ocean have
shorter execution times under competitive-update
than under write-invalidate. For MP3D the high
communication-to-computation ratio and the pre-
dominance of migratory sharing result in a high
rate of update messages and in severe network
contention. Therefore, it is not possible to hide
the write traffic as effectively as with the faster
100 MHz mesh. For PTHOR the high synchro-
nization rate affects the total execution time.
Nevertheless, competitive-update reduces the
read penalty for PTHOR even on the slower
mesh, but the high rate of global write actions
affects the overhead of releases and acquires
adversely. From our measurements we find that
competivive-update reduces the read penalty by
32% to 43% as compared to write-invalidate for
all applications but MP3D on the architecture
with a 33 MHz mesh.

because of the heavy traffic caused by updates.
Eggers and Katz also evaluate two extensions to
pure write-invalidate and write-updhte called
read-broadcast and competitive sno ping [151.
While they show that competitive sn ping can
improve the performance of write-u date, they
do not compare the performance of ompetitive
snooping with write-invalidate as we o. Eggers
and Katz’s competitive snooping pro ocol is an
implementation of Karlin’s Snoopy-R ading pro-
tocol [22]. A writing processor keeps

1
t

,’

ack of the
number of its own consecutive writ s to each
address. When the threshold for broadcasts has
been reached, the processor sends an i validation
on the bus to the other caches.
cache re-reads the block all caches

t Wh n another
ith an in-

Qualitatively our conclusion that competitive-
update successfully reduces read penalty still
holds even with a mesh network three times
slower than the processors. In other words, the
read penalty reduction of competitive-update
protocols is not very sensitive to changes in net-
work capacity given that the ratio of computation
to communication and the distances between syn-
chronizations are sufficiently large.

valid copy of the block catch the py of the
block as it propagates on the bus (read broadcast-

r
ing) and reset their counters to the threshold.
Clearly, read-broadcast is not feasible,in a direc-
tory-based environment.

6. Discussion and related work

The performance evaluations reported in this
paper show that competitive-update consistently
performs better than write-invalidate for applica-
tions with moderate bandwidth requirements and
small contention for critical sections. Although
the idea of using hybrid update/ invalidate proto-
cols is not new, previous proposals have been
specifically studied in bus-based systems and rely
on snooping. As we will discuss in the following,
the trade-offs become fundamentally different in
a directory-based environment.

In [4], Archibald proposed an ada tive write-
invalidate/ write-update snoopy-each

:

protocol.
His adaptive protocol starts in update mode, just
like ours, and when a single processor has issued
three consecutive writes to the same lock with-
out any intervening access by anothe processor,
all other copies of the block are inv lidated. A

1

significant difference between Arch bald’s and
our protocol is the behavior for mig atory data
objects. His protocol invalidates all pies of a
block when the same processor has written three
times to the block, while in our pro co1 writes
from several processors contribute to the invali- to
dation of a block copy. As a result, fo migratory
data objects where each processor upd tes a block
less than three times, Archibald’s p otocol will

: continuously update all block copies, which may
degrade the performance. In contrast, our proto-
col will update at most three copies o the block,
given the same threshold as Archibal ‘s protocol,
which significantly reduce the write d raffic in a
directory-based environment.

In [14], Eggers and Katz compare write-in- Veenstra and Fowler have evaluated the per-
validate and write-update snoopy-cache proto- formance of optimal hybrid protocols i

:

1331. They
cols. They conclude that neither protocol is better use three types of hybrid protocols: S atic Hybrid
than the other. Our results show that pure write- (each block uses W-I or W-U for ~ the entire
update is highly undesirable in the general case execution), Paged Hybrid (all blocks1 in a page

268 H. Grahn et al. /Future Generation Computer Systems II (1995) 247-271

uses either W-I or W-U for the entire execution),
and Dynamic Hybrid (the protocol chooses be-
tween- W-I and W-U at each write). By using
off-line optimal analysis, they found that hybrid
protocols may offer substantial performance ad-
vantages over W-I or W-U, especially for large
block sizes. As expected, the Dynamic Hybrid
protocol performs best, followed by the Static
hybrid and the Paged Hybrid protocols. However,
they found that using the static strategy was al-
most as good as the dynamic one. Their results
also indicate that, to be worthwhile, it is enough
for an on-line algorithm to converge to a good
static choice between W-I and W-U after a rea-
sonable amount time. Their results are based on
off-line algorithms while our competitive-update
protocol is an on-line algorithm, so our study and
theirs are complementing each other to cover a
broad range of hybrid protocols.

The success of competitive-update schemes as
shown in this paper comes from using a relaxed
consistency model to hide the write latency. We
have studied the detailed design issues involved
in supporting multiple outstanding requests, in
essence the design considerations for second-level
lockup-free caches. Our study thus involves some
of the issues studied by Gharachorloo et al. [171
to support relaxed consistency models but that
paper does not investigate update-based proto-
cols and its primary purpose is to compare the
effectiveness of various memory consistency mod-
els. Their implementation models are referred to
as BASIC, RDBYB, and LFC and correspond to
our models RC-I, RC-I-bp, and RC-III-bp. While
they show that bypassing of read misses in the
first-level write buffer in conjunction with a
lockup-free second-level cache is needed in order
to fully hide the write latency in write-invalidate
protocols, our study shows that read bypassing is
actually not needed. This is an important contri-
bution of this paper because read-bypassing com-
plicates the write buffer design and can make it
slower. As in their study, however, we confirm
that only a single outstanding write request needs
to be supported for write-invalidate protocols.
However, as our study indicates, write-update
protocols need lockup-free cache controller de-
signs that can issue multiple outstanding write

requests. Our evaluations of PTHOR, which uses
fine-grain synchronization, show that Release
Consistency exhibits better performance than
Weak Ordering. This is in accordance to the
results in [17]. We have extended their results by
showing that this difference is even more pro-
nounced for update-based protocols.

Update-based protocols have been considered
in several distributed shared-memory systems
where coherence is maintained at the page level
[5,34]. In [51, an architecture relying on software-
controlled replication of pages and a write-up-
date protocol in hardware for coherence mainte-
nance is presented. The simulations show high
processor efficiency over a range of applications
running on up to 64 processors.

Wilson and LaRowe present a novel technique
in [34] to maintain coherence of shared data at
the page level. The technique is a hardware-sup-
ported but software-controlled mechanism that
supports both invalidate and update-based proto-
cols. The operating system software is responsible
for choosing which coherence policy to use for
each page. This study also shows that most write
latency can be hidden by using a relaxed memory
consistency model and by choosing an appropri-
ate coherence policy for each page. Another study
by the same authors [35] shows that as the block
size increases write-update becomes preferable to
write-invalidate in terms of memory traffic.
Therefore, overall, write-update should be a much
better choice than write-invalidate for page-level
coherence in distributed shared memory systems.

In this study we show that competitive-update
successfully reduces the read penalty for a wide
range of applications as compared to write-in-
validate. However, for applications with a high
degree of migratory sharing competitive-update
generates unnecessary write traffic, which may
offset the read penalty reduction in networks
with low bandwidths. Therefore, in [27], Nilsson
and Stenstrom extend a competitive-update pro-
tocol with a previously published migratory detec-
tion mechanism [32]. The new adaptive protocol
dynamically detects migratory data blocks and
handles them with a read-exclusive policy. All
other blocks are handled according to the com-
petitive-update policy. They experimentally found

H. Grahn et al. /Future Generation Computer Systems II (1995) 247-271 269

that the adaptive protocol demands less than half
of the network bandwidth as the competitive-up-
date protocol for some of the applications with
migratory objects (MP3D and Water). The reduc-
tion of network traffic is especially important
because it makes the competitive-update policy
suitable for an even broader range of multipro-
cessors.

A continuation of the work in this paper is
presented in [ll] where Dahlgren and Stenstriim
propose to use a w&e cache as a means to reduce
the write traffic associated with a competitive-up-
date protocol. A write cache works in parallel
with the second-level cache and is a small write-
back cache with an allocate-on-write-miss and a
no-allocate-on-read-miss strategy and a single
valid/dirty-bit for each word. They evaluate the
use of write caches together with a competitive-
update protocol in a similar architectural model
as in this study. They find a significant decrease
in the write traffic and that a competitive thresh-
old of one is sufficient when using a write cache
together with a competitive-update protocol.
Moreover, they find that most of the performance
improvement is obtained with a very small (only
four blocks) and direct-mapped write cache.

Finally, we speculate that the trends for larger
systems are as follows. As more processors are
added to a multiprocessor system, network laten-
ties are expected to be longer. We believe that it
is easier to achieve scalable bandwidth than scal-
able latencies, e.g. as a result of physical dis-
tances between processor nodes. This may impact
the read and write penalties for the applications
making it even more important to reduce the
cache miss rate as much as possible. It is also
likely that update-based protocols may require
more extensive buffering as network latencies
grow. We also believe that the communication
demand and synchronization overhead will in-
crease as the number of processors increases. It is
interesting to note that a competitive-update pro-
tocol has a potential to significantly reduce the
read latencies as compared to a write-invalidate
protocol, but at some increase in network traffic.
As a result, we believe that competitive-update
protocols will become even more favorable when
the system size increases.

7. Conclusion

In this paper we analyze the relakive perfor-
mance of three different coheren e policies:
write-invalidate, write-update, and L mpetitive-
update. While previous studies hav addressed
the relative performance mainly in bu -based sys-
tems, we consider in this paper a cat e-coherent
NUMA architecture with a

i

dir ctory-based
mechanism as a basis for the each coherence
protocols, Based on program-driven simulations
of a detailed multiprocessor syste and four
benchmarks from the SPLASH suite

f

e find that,
contrary to what has been thought e rlier, write-
update cache-coherence protocols augmented
with simple competitive mechanisms, referred to
as competitive-update, have a potenti
the read penalty. We show that a co petitive-up-
date scheme can reduce the read p nalty by as
much as 46% as compared to writ -invalidate.

i

1 to reduce

While it increases the traffic by 27% o 85%, this
extra traffic did not offset the reduc ion in read
penalty as a result of coherence-mis reduction.
A negative effect appearing in one application,
however, is the increase in synchron’ ation over-
head: Since release requests take a lo

!
ger time to

be globally performed as a result lof a larger
number of global writes, the acqui e stall-time
may increase in applications 1 exh biting con-
tention for critical sections. We als found that
update-based protocols, such as co
date, are more sensitive to the choi e
tency models than write-invalidate p otocols. We

tive-update could perform as much

1

petitive-up-
of consis-

found for two of the applications t at competi-
s 9% better

under Release Consistency than und r Weak Or-
dering.

The two-level cache hierarc
have adopted is compatible
mance microprocessors becaus
and thus fast, first-level cache
protocol issues and lockup-free
the second-level cache controller. B
buffering alternatives in the second
we find that all performance benefit
Consistency can be exploited by al
single outstanding write request
pending read-miss request under

270 H. Grahn et al. /Future Generation Computer Systems 11 (1995) 247-271

However, in order to hide the write latency for
the increased number of global write actions un-
der update-based protocols, multiple outstanding
requests are needed, although we did not see any
use for more than 16 outstanding writes. We also
studied the potential of letting read misses from
the first-level cache bypass the first-level write
buffer. We did not see any significant perfor-
mance improvement from this design option. This
is an important observation because it makes it
possible to design a simpler and faster write
buffer, which will scale with the processor speed.

This study suggests that update-based proto-
cols augmented with a simple competitive mecha-
nism can reduce the read-latency by reducing the
number of misses and the latency of the remain-
ing misses. However, since they trade the miss
reduction for a larger number of global writes,
they require relaxed consistency models to be
effective. On the premise that the programming
community accepts the use of relaxed memory
consistency models, we feel that the techniques
presented in this paper are important to achieve
the goal of scalable shared-memory systems but
there is room for additional improvements.

References

Dl

Dl

[31

[41

151

S.V. Adve and M.D. Hill, Weak ordering-A new defini-
tion, Proc. 17th Int. Symp. on Computer Architecture,
Seattle, WA (May 1990) 2-14.
A. Agarwal, B-H. Lim, D. Kranz and J. Kubiatowicz,
APRIL: A processor architecture for multi-processing,
Proc. 17th Znt. Symp. on Computer Architecture, Seattle,
WA (May 1990) 104-114.
A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubia-
towicz, K. Kurihara, B-H. Lim, G. Maa and D. Nuss-
baum, The MIT Alewife machine: A large-scale dis-
tributed-memory multiprocessor, in: M. Dubois and S.S.
Thakkar, eds., Scalable Shared Memory h4ultiprocessors
(Kluwer Academic Publishers, Boston, MA 19901 240-
261.
J.K. Archibald, A cache coherence approach for large
multiprocessor systems, Prcc. Int. Conf. on Supercomput-
ing, St. Malo, France (Jul. 1988) 337-345.
R. Bisiani and M. Ravishankar, PLUS: A distributed
shared-memory system, Proc. 17th Znt. Symp. on Com-
puter Architecture, Seattle, WA (May 1990) 115-124.

[6] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk, R.
Gverbeek, J. Patterson and R. Stevens, Portable Pro-

grams for Parallel Processors (Holt, Rinehart and Win-
ston, Inc., New York, NY, 1987).

[7] M. Brorsson, F. Dahlgren, H. Nilsson and P. Stenstrom,
The Cachemire test bench - A flexible and effective
approach for simulation of multiprocessors, Proc. 26th
Annual Simulation Symp., Arlington, VA (Mar. 1993)
41-49.

[8] D. Callahan, K. Kennedy and A. Porterfield, Software
prefetching, Proc. Fourth Int. Conf. on Arch. Support for
Prog. Lang. and Operating Syst., Santa Clara, CA (Apr.
1991) 40-51.

[9] L.M. Censier and P. Feautrier, A new solution to coher-
ence problems in multicache systems, IEEE Trans. Com-
put. C-27(12) (Dec. 1978) 1112-1118.

I101

[ill

F. Dahlgren, M. Dubois and P. Stenstrom, Fixed and
adaptive sequential prefetching in shared memory multi-
processors, Proc. 1993 Int. Conf. on Parallel Processing,
Vol I, Chicago, IL (Aug. 1993) 56-63.
F. Dahlgren and P. Stenstriim, Reducing the write traffic
for a hybrid cache protocol, Proc. 1994 Znt. Conf. on
Parallel Processing, Vol. I, Chicago, IL (Aug. 1994) 166-
173.

K4

1131

1141

Ml

[I61

[I71

W31

[I91

DO1

M. Dubois, C. Scheurich and F. Briggs, Memory access
buffering in multiprocessors, Proc. 13th Znt. Symp. on
Computer Architecture, Tokyo, Japan (Jun. 1986) 434-442.
M. Dubois and C. Scheurich, Memory access dependen-
cies in shared memory multiprocessors, IEEE Trans.
Software Eng. SE-16(6) (Jun. 1990) 660-674.
S.J. Eggers and R.H. Katz, A characterization of sharing
in parallel programs and its application to coherency
protocol evaluation, Proc. 15th Int. Symp. on Computer
Architecture, Honolulu, HA (May 1988) 373-382.
S.J. Eggers and R.H. Katz, Evaluating the performance
of four snooping cache coherency protocols, Proc. 16th
Znt. Symp. on Computer Architecture, Jerusalem, Israel
(May 1989) 2-15.
K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A.
Gupta and J. Hennessy, Memory consistency and event
ordering in scalable shared-memory multiprocessors,
Proc. 17th Int. Symp. on Computer Architecture, Seattle,
WA (May 19901 15-26.
K. Gharachorloo, A. Gupta, and J. Hennessy, Perfor-
mance evaluation of memory consistency models for
shared-memory multiprocessors, Proc. Fourth Znt. Conf.
on Arch. Support for Prog. Lang. and Operating Syst.,
Santa Clara, CA (Apr. 1991) 245-257.
K. Gharachorloo, A. Gupta and J. Hennessy, Hiding
memory latency using dynamic scheduling in shared-
memory multiprocessors, Proc. 19th Znt. Symp. on Com-
puter Architecture, Gold Coast, Australia (May 1992) 22-
33.
A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry and
W-D. Weber, Comparative evaluation of latency reducing
and tolerating techniques, Proc. 18th Znt. Symp. on Com-
puter Architecture, Toronto, Canada (May 19911254-263.
A. Gupta and W-D. Weber, Cache invalidation patterns
in shared-memory multiprocessors, IEEE Trans. Comput.
C-41(7) (Jul. 1992) 794-810.

H. Grahn et al. /Future Generation Computer Systems 11 (1995) 247-271 211

[21] E. Hagersten, A. Landin, and S. Haridi, DDM - A
cache-only memory architecture, IEEE Comput. 25(9)
(Sep. 1992) 44-54.

[22] A.R. Karlin, M.S. Manasse, L. Rudolph and D.D. Sleator,
Competitive snoopy caching, Proc. 27th Annual Symp. on
Foundations of Computer Science (Oct. 1986) 244-254.

[23] D. Kroft, Lockup-free instruction fetch/prefetch cache
organization, Proc. 8th Znt. Symp. on Computer Architec-
ture, Minneapolis, MN (May 1981) 81-87.

[24] L. Lamport, How to make a multiprocessor computer
that correctly executes multiprocess programs, IEEE
Trans. Comput. C-28(9) (Sep. 1979) 690-691.

[25] D. Lenoski, J. Laudon, K. Gharachorloo, W-D. Weber,
A. Gupta, J. Hennessy, M. Horowitz and M.S. Lam, The
Stanford Dash multiprocessor, IEEE Comput. 25(3) (Mar.
1992) 63-79.

[26] T. Mowry and A. Gupta, Tolerating latency through
software-controlled prefetching in shared-memory multi-
processors, J. Parallel Distributed Comput. 12(2) (Jun.
1991) 87-106.

[27] H. Nilsson and P. Stenstriim, An adaptive update-based
cache coherence protocol for reduction of miss rate and
traffic, Proc. Parallel Architectures and Languages Europe
(PAZUE) Conf ., Athens, Greece (Lecture Notes in Com-
puter Science, 817, Springer-Verlag, Berlin, Jul. 1994)

LB1

[291

[301

[311

[321

[331

[341

1351

363-314.
C. Scheurich, Access ordering and coherence in shared-
memory multiprocessors, Ph.D. Thesis, University of
Southern California, Los Angeles, CA, May 1989 (also
U.S.C. Tech. Rep. CENG 89-19).
J-P. Singh, W-D. Weber and A. Gupta, SPLASH: Stan-
ford parallel applications for shared-memory, ACM
SZGARCH Computer Architecture News 20(l) (Mar. 1992)
5-44.
P. StenstrGm, A survey of cache coherence schemes for
multiprocessors, IEEE Comput. 23(6) (Jun. 1990) 12-24.
P. Stenstriim, F. Dahlgren and L. Lundberg, A lockup-
free multiprocessor cache design, Proc. 1991 Znt. Conf.
on Parallel Processing, Vol. I, Chicago, IL (Aug. 1991)
246-250.
P. Stenstrijm, M. Brorsson and L. Sandberg, An adaptive
cache coherence protocol optimized for migratory shar-
ing, Proc. 20th Znt. Symp. on Computer Architecture, San
Diego, CA (May 1993) 109-118.
J.E. Veenstra and R.J. Fowler, A performance evaluation
of optimal hybrid cache coherency protocols, Proc. Fifth
Znt. Conf. on Arch. Support for Prog. Lang. and Operat-
ing Syst., Boston, MA (Oct. 1992) 149-160.
A.W. Wilson, Jr. and R.P. LaRowe, Jr., Hiding shared
memory reference latency on the Galactica Net dis-
tributed shared memory architecture, J. Parallel Dis-
tributed Compur. 15(4) (Aug. 1992) 351-367.
A.W. Wilson, Jr., R.P. LaRowe, Jr. and M.J. Teller,
Hardware assist for distributed shared memory, Proc.
13th Conf. on Distributed Computing Systems, Pittsburgh,
PA (May 1993) 246-255.

[36] R. Zucker and J-L. Baer, A performance study of mem-
ory consistency models, Proc. 19th Znt. Sy~p. on Com-
puter Architecture, Gold Coast, Australia (Ray 1992) 2-
12.

formance evaluation.

(Parallel Architectures

1984. He received an

techniques for hi

tiorocessor architectures. He i
board bf the >OUI& of Parallel ana’
and a member of the IEEE, the Computer

Computing
and of the

ACM.

Michel Oubois is an As

Engineering of the
Southern California.

C&puter Architecture and Parallel
Processing, with a focus on multipro-
cessor architecture, pe
algorithms. He curre
RPM Project, a projec

National Science Foundation, and which is a
a hardware platform for the rapid prototyping
sor systems. His current int
iterative algorithms for nume ’
lems, and their asynchronous
cessors. He has edited two
caches and one on scalable s
Dubois holds a PhD from Pur
University of Minnesota, and an engineer
Facult6 Polytechnique de Mons in Belg
Engineering. He is a member of the
member of the Computer S

