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Abstract—Data mining algorithms are usually designed to
optimize a trade-off between predictive accuracy and compu-
tational efficiency. This paper introduces energy consumption
and energy efficiency as important factors to consider during
data mining algorithm analysis and evaluation. We extended
the CRISP (Cross Industry Standard Process for Data Mining)
framework to include energy consumption analysis. Based on
this framework, we conducted an experiment to illustrate how
energy consumption and accuracy are affected when varying the
parameters of the Very Fast Decision Tree (VFDT) algorithm.
The results indicate that energy consumption can be reduced by
up to 92.5% (557 J) while maintaining accuracy.

I. INTRODUCTION

Data stream mining is gaining importance with the evolu-
tion of hardware, sensor systems and technology. The rate at
which data is generated is increasing day by day, challenging
storage and computational efficiency [1]. Digital Universe
Study1 has predicted that by 2020, 40,000 exabytes of data
will be processed, most of them originating from devices that
automatically generate data. Many algorithms in data stream
mining are designed to process fast and potentially infinite
streams [2], [3].

Traditionally, the machine learning community has consid-
ered accuracy as the main factor when building algorithms.
With the appearance of data stream mining, scalability has
also been a key factor to consider. In this context, scalability
stands for how fast an algorithm can process the incoming
data. The problem that we address in this study is the fact that
few researchers in the data mining community consider energy
consumption as an important measure.

It has been shown that energy consumption can be reduced
in every layer of the Open Systems Interconnection (OSI)
model [4], [5]. Hardware solutions to reduce energy con-
sumption have been focused on, e.g. using Dynamic Voltage
Frequency Scaling (DVFS) and on parallel computing [6], [7].
Software solutions have also been developed in order to reduce
the energy consumption of applications, although not in such
depth as the hardware solutions. However, no solutions related
to data stream mining have addressed energy consumption as
a key factor, instead they have been centered towards specific
applications.

This paper introduces energy consumption and energy
efficiency as important factors to consider during data mining
algorithm analysis and evaluation, and to demonstrate the use

1https://www.emc.com/collateral/analyst-reports/
idc-digital-universe-united-states.pdf

of these factors in a data stream mining context. The consider-
ation of energy efficiency can help companies and researchers
move towards green computing [8] while improving business
profits.

We conducted an experiment to illustrate a possible sce-
nario where energy consumption is relevant to study. More
specifically, we studied how energy is affected by changing
the parameters of the VFDT (Very Fast Decision Tree) algo-
rithm [2]. The results indicate that it is possible to reduce the
energy consumption of the VFDT algorithm by up to 92.5%
while maintaining similar levels of accuracy. The main contri-
bution of this paper is the introduction of energy consumption
as a key factor to consider in data mining algorithms. This
is supported by an experiment that illustrates an example of
sustainable and efficient algorithms.

II. BACKGROUND

In this section we first explain the importance of energy
consumption in data mining. Then, we briefly explain data
stream mining and why it is different from standard data
mining, and finally we introduce some terminology related to
power, energy, energy efficiency, and computational efficiency.

A. Energy-awareness

The demand for energy is increasing day by day [4]. World
leaders and scientists focus on finding a solution towards this
problem, centering on two key factors: developing new sources
of clean energy and decreasing energy usage [9], [10], which
would lead to a reduction in CO2 emissions. The main reason
why researchers and every citizen should be aware of energy
consumption is because energy pollutes. Every device that we
use on a daily bases that consumes energy produces CO2.
Nowadays, based on a study conducted by the World Health
Organization, air pollution kills more people than malaria and
aids combined [11].

There was a study conducted by Alex Wissner-Gross mea-
suring the CO2 emissions of a search query on a search engine.
Considering that there are approximately 66k Google queries
per second2, reducing the CO2 emissions of search queries
will significantly impact the environment. If we translate this
example to data stream mining, we can picture the execution
of data stream mining algorithms in servers running 24 hours
a day, for a complete year. In this case, building energy-aware
algorithms has the following consequences:

• Reduction of CO2 emissions to the atmosphere.

2http://www.statisticbrain.com/google-searches/



• Reduction of air pollution, therefore reduction on the
number of deaths per year due to this matter.

• Reduction of the money spent on energy.

• Increase of the battery life of mobile devices and
sensor networks, if the algorithm is implemented in
such scenarios.

B. Data Stream Mining

Data stream mining is the process of building models by
exploring and extracting patterns from a stream of data.

The core assumption of data stream mining, in comparison
to data mining, is that the examples are inspected only once, so
we have to assume that if they are not processed immediately
they are lost forever [12], [13]. Moreover, it is considered
that the data arrives online, with no predefined order, at a
high-speed and with time-changing characteristics. Data stream
mining algorithms should be able to process potentially infinite
streams while updating the model incrementally [3], [14].

C. Terminology

In this section we clarify several concepts related to energy,
power and efficiency. Energy is a measurement of the amount
of fuel used for a specific application. It is measured in Joules
(J) or kWh. Power is a measurement of the rate at which energy
is consumed. It is measured in Joules/second, which is equal
to Watts (W). The following is an example that illustrates the
relationship between power and energy: A process is running
for 3.94 seconds consuming an estimate power of 18.1 mW.
The total energy consumed is: 3.94×0.0181 = 0.07J = Ws =
19.9 × 10−6 Wh.

Energy efficiency has a specific definition at Green5003,
being, ”The amount of operations per watt a computer can
perform”. This definition is related to hardware. In this study,
whenever we mention energy efficiency we refer to reducing
the energy consumption of some process or algorithm.

In theoretical machine learning, researchers introduced
the computational learning theory [15], where they analyze
the computational complexity of algorithms. They approach
computational efficiency as a way of designing less computa-
tionally complex algorithms that can run in polynomial time.

III. RELATED WORK

In this section is we first review literature related to
energy awareness in software and hardware. Then, we examine
relevant works in the data stream mining field, focusing on the
VFDT algorithm. Finally, we review papers that are related to
both energy consumption and data stream mining.

Research in energy awareness at the software level started
many years ago, when researchers began to realize the im-
portance of the energy consumed by a software application.
In 1994, the first systematic attempt to model the power
consumption of the software components of a system was
presented [16]. After that, in 1999, PowerScope was pre-
sented [17], a software tool for profiling the energy usage
of applications. The novelty of this approach is that energy

3www.green500.org

consumption can be mapped to program structure to analyze
which procedures consume more energy. Companies such as
Microsoft4 and Intel5 have invested in developing software
tools to help developers reduce the energy consumption of
their applications.

In relation to energy efficiency at the hardware level, one
of the most important techniques, implemented in most con-
temporary processors, is Dynamic Voltage Frequency Scaling
(DVFS). DVFS is a power saving technique used and improved
by many researchers. One improvement is Real Time DVFS, an
implementation of DVFS for real time systems [6]. Based on
Koomey’s law, the computation per kWh doubles every 1.57
years. Therefore, computers are able to execute applications
faster with less energy consumption [18]. Another area that
is gaining importance nowadays is parallel computing, where
there are relevant energy savings by employing more cores
on a processor [7]. Several energy-saving approaches, such
as ”Cost optimization for power-aware computing” have been
developed in the past years [4].

In relation to data stream mining, researchers have devel-
oped efficient approaches to mine data streams, as outlined
below. There have been several reviews conducted in data
stream mining since 2005. Two general reviews [1], [19],
portray techniques and concepts such as data-based techniques,
task-based techniques, data stream classification and frequent
pattern mining. More specific reviews center on topics such as
sensor networks [20] and knowledge discovery [14].

From the reviews explained above, we have extracted six
main techniques and approaches in data stream mining: Data
stream clustering [21], Data stream classification [2], Frequent
Pattern Mining [22], Change Detection in data streams [23],
[24], Sliding window techniques [25] and Stream mining in
sensor networks [20], [26]. We have decided to focus in Data
Stream classification and change detection in data streams.

Concept drift refers to a change between the input data and
the target variable on an online supervised learning scenario.
The first framework that dealt with concept drift was proposed
to also address efficiency and robustness [27]. Nowadays,
researchers consider concept-drift an important aspect when
building algorithms for other specific purposes. A survey on
different methods that address concept drift has been con-
ducted in 2014 [28].

Classification is considered a challenging problem in data
stream mining [19]. The main reason is that many of the tradi-
tional classification techniques and algorithms were designed
to build models from static data.

One of the key breakthroughs in supervised online learning
was made with the development of the Hoeffding Tree algo-
rithm and the Very Fast Decision Tree (VDFT) learner [2].
In contrast to previous algorithms, such as SPRINT [29]
and ID5R [30], this new approach was able to deal with
potential infinite streams, arriving at a fast pace and with
low computational cost. The VFDT learner is able to process
examples at a high rate in constant time. One year later, the
same authors created a new version of the VDFT algorithm,
CVFDT, that was able to adapt to concept-drift [3]. Another

4http://research.microsoft.com/apps/pubs/default.aspx?id=166288
5https://software.intel.com/en-us/energy-efficient-software



extension on the VFDT algorithm appeared two years later,
with a new decision tree learner that could efficiently process
numerical attributes [31]. In the same line, a decision tree
algorithm was created for spatial data streams [32].

We would like to mention relevant methods that address
different classification problems, namely: On-Demand classi-
fication [23], [33], Online Information Network (OLIN) [34],
LWClass [35], ANNCAD [36] and SCALLOP [37].

In relation to energy awareness in data stream mining,
several researches have conducted studies where they empha-
size the importance of energy consumption [1], [38], [39].
While the first two are concerned on energy saving for sensor
networks, the second one centers on examine the energy
consumption of different data analysis techniques. To the best
of our knowledge, the last work is the one most related to ours.

We can observe how there is no specific research on making
energy consumption a key factor on data stream mining, since
the research has been centered towards specific applications or
hardware modifications. We would like to change this approach
by proposing energy consumption as the new factor to consider
when building, optimizing or creating new algorithms in data
stream mining. We believe that this the next natural step to
take, since other researchers in similar fields, hardware and
software, have already taken that step.

IV. PROPOSING ENERGY EFFICIENCY AS KEY FACTOR IN
DATA STREAM MINING

Data stream mining is gaining a lot of interest in the
research community with the appearance of big data. Research
conducted in this area has been mainly focused on improving
two factors: the accuracy of the model and the maximum speed
at which the model is able to process the data. Nowadays,
online learners are able to process fast streams of data in
constant time, consume low memory, deal with concept drift
and have a high accuracy. However, most of the studies do not
consider energy consumption.

We argue that energy consumption is a key factor when
dealing with data stream mining problems. Therefore, it should
be considered as a top priority when building data stream
mining models, together with accuracy and scalability.

We propose a generic framework based on the CRISP
(Cross Industry Standard Process for Data Mining) model [40].
CRISP is a data mining process model that clearly describes
how to approach data mining tasks. The framework, portrayed
in Figure 1, has seven phases: business understanding, data un-
derstanding, data preparation, energy measurement, modeling,
evaluation, and deployment. They are outlined below:

1) Problem Definition: The first step is to clearly define
the problem, by getting an understanding of the ob-
jectives and requirements from a business perspective.

2) Data Understanding: This phase covers data collec-
tion, understanding the data and discovering interest-
ing features of the data. We need to identify how
to obtain the dataset, or find a way to synthetically
generate it.

3) Data Preparation: In this step we select and clean
the data that we consider relevant for the problem.

Problem
Definition

Data 
Understanding

Data 
Preparation

Modeling

Energy 
MeasurementEvaluation

Deployment

DATA$

Fig. 1. Generic Framework. Based on CRISP-DM [40]

4) Energy Measurement: This step is not part of the
CRISP model but directly relates to our goal of
measuring energy consumption of data mining algo-
rithms. We need to select a tool to measure energy
that, first, estimates the power or energy at the process
level and second, is able to run during the exact
execution time of a process.

5) Modeling: In this step we create the model for the task
defined in step 1. We need to choose and motivate the
choice of a specific algorithm and parameters. While
the model is running, we need to run in parallel the
tool that estimates power or energy, to know exactly
the amount of energy consumed by the algorithm.
We have to find a way to input the execution of the
algorithm to the power estimate tool.

6) Evaluation: This step centers on evaluating the results
based on accuracy and the requirements defined on
step one. The researcher needs to also review the
process in case there is some missing point.

7) Deployment: In this last step we need to organize
the results obtained from the model and transform it
to knowledge. The way we propose to do this is by
creating a script that automates the complete process.
Therefore, it can input the data mining modeling
algorithm into the energy estimate tool, and then
output the results in a file or report showing key
values and comparisons.

The goal with this generic framework is to present a simple
procedure that any researcher could follow when building data
mining or data stream mining models. CRISP is currently the
state-of-the-art and standard framework for researchers and
companies [41].

V. EXPERIMENTAL DESIGN

The goal of this section is to map the general steps from
the framework portrayed in Figure 1, to a concrete experiment
that illustrates how different parameter configurations affect
energy consumption.



A. Problem Definition

The goal of this experiment is to measure the energy con-
sumption of different parameter configurations on the VFDT
algorithm [2]. We compare how energy varies against accuracy
when changing the parameters of the VFDT algorithm. Ideally,
we want to find a situation where accuracy is maintained while
energy consumption significantly decreases.

B. Data Understanding

In this experiment we use synthetic data generated with a
stream generator function in MOA [42]. We have generated
three different synthetic data streams of 1 million instances
each and mapped them to three scenarios. In all scenarios,
we compute the measurements for the different configurations
of the VFDT algorithm. In Scenario 1, the data is generated
with the Random Tree Generator. This generator creates a
decision tree by randomly splitting the nodes with the different
attributes, as explained in the VFDT implementation [2]. In
Scenario 2, the data is generated with the Agrawal function,
creating a binary classification dataset with nine attributes [43].
Finally, in Scenario 3, the dataset is generated with the SEA
stream generator function [44].

C. Data Preparation

Since the data has been synthetically generated, there is
no need to clean the data for this experiment. However, we
propose it as a relevant step in a process with real-world data.

D. Energy Measurement

We have chosen PowerTop6 to measure the power estimate
of the experiment. PowerTop is an open source tool released by
Intel in 2007 to measure and minimize the power consumption
of a computer running on battery power. PowerTop fulfills the
requirements defined in Section IV, since it shows in detail
the power estimate for different processes during a specific
workload. A workload is defined as the execution of a program
or script. In this experiment PowerTop is used to measure the
power estimate of a task in MOA.

E. Modeling

This subsection describes the specific configuration choices
for the experiment, the tool used to build the model and a
detailed explanation and motivation of the VFDT algorithm.

1) Parameter choice: Table I summarizes the different
parameter configuration of the VFDT algorithm. The meaning
of the different parameters is explained in the next subsection.
For each parameter configuration, we measure the following
values: Elapsed time, CPU usage, power estimate (W), accu-
racy (percentage of correctly classified instances) and energy
(J). Each combination of streamer, parameter configuration and
measure (CPU, Power...) is executed 10 times and then the
median, mean, maximum, minimum and standard deviation
are calculated.

In terms of hardware, on each scenario the battery was
charged to at least 95%, Bluetooth and WiFi were turned off.
No other program apart from the operating system was running

6https://01.org/powertop

on the laptop and the screen was always on. The experiment
was conducted on a Linux machine running Ubuntu 14.04 with
a 2.2 GHz Intel Core i7 processor and 16GB of RAM.

2) VFDT: The VFDT algorithm is based on Hoeffding
Trees [2]. The Hoeffding tree method proposes to build a
decision tree recursively, by picking the best attribute at each
node and leaf. In order to pick the best attribute, all attributes
from n examples are evaluated based on some heuristic G. The
key and novel idea is that the authors use the Hoeffding Bound
[45] to compute the value of n, to ensure that the attribute
chosen with n examples is the same that would be chosen
using infinite examples.

The VFDT is a decision tree learning system based on
the Hoeffding Tree algorithm with a number of refinements:
ties, G computation, memory, poor attributes, initialization
and rescans. We focus in two parameters, ties and the G
computation, since we vary them in the experiment. Ties occur
when several attributes have similar G. The user can therefore
specify a threshold value, τ . This means that if ∆G is lower
than τ , hence there is a low difference between G values,
there will be a split on the current best attribute. Moreover,
computing a G value for every new example is inefficient.
Therefore, users can specify an nmin value (parameter -g in
MOA). Being nmin the ”minimum number of new examples
that a leaf must accumulate before recomputing G”.

3) MOA: Massive Online Analysis (MOA)7 is a state-of-
the-art framework for data stream mining. It is written in
Java and developed at the University of Waikato [42]. We
have chosen MOA to perform the complete experiment, from
building the model to evaluating the results.

MOA is a feature rich and powerful tool that gives the
user the opportunity to build machine learning models on data
streams. It has a wide collection of machine learning algo-
rithms, from Bayesian classifiers to concept-drift classifiers. It
also includes stream generators to generate synthetic data, a
property that is useful to test different algorithms for scalability
and performance on big data sets.

4) Motivation for choosing the VFDT learner: There are
several reasons why we chose the VFDT algorithm for our
experiment. It is an algorithm widely known by many re-
searchers that made a breakthrough in data stream mining
when it was presented. Even though many researchers made
relevant changes to this algorithm to increase its performance,
it has not been tested against energy consumption before. We
want to illustrate the reader how we can obtain interesting
results by varying certain algorithm parameters.

F. Evaluation

The novel aspect of this experiment is how the classifier
was evaluated. Traditionally, classifiers were evaluated in terms
of performance, being, the number of instances the model
correctly classified. However, our aim is to evaluate not only
the accuracy, but also the energy consumption of the classifier.
All the measurements about the energy consumption, CPU
usage, accuracy and elapsed time are presented in Table II.

7http://moa.cms.waikato.ac.nz/



G. Deployment

In order to compute the energy measurements, we coded a
Bash Shell script. This script extracts the measured results from
PowerTop of each MOA task, for a number of N iterations.
As an output, it calculates the average of the results.

There are four main actions executed in the script:

1) Compute the power estimate with PowerTop of the
execution of algorithm i in MOA.

2) Repeat step 1 for N-1 times.
3) Compute the average, mean, standard deviation, max-

imum, minimum and median of such N executions.
4) Repeat steps 1-3 for I times, I being the number of

setups or scenarios we want to test.

VI. RESULTS

In this section we present the numerical results obtained
from the experiment explained in Section V. Table I introduces
the way we configured the parameters for each execution in the
experiment. An execution corresponds to running the VFDT
algorithm with a specific parameter configuration. These exe-
cutions are mapped to a certain index, that will later be used in
Table II and in the figures in Section VII. For instance, index
E represents the execution of VFDT algorithm setting nmin
to 1400, while setting the other parameters to default. These
executions are repeated for each scenario. We have designed
a total of 19 configurations per scenario, six varying nmin,
four varying tie threshold, and eight varying the numerical
estimator. As can be observed, when varying one parameter
the others are set to their default values.

The results of the experiment and all configurations across
all scenarios are presented in Table II. For each index, we
show the average and standard deviation (in parentheses) of the
accuracy, power, time and energy. The average and standard
deviation are computed from running each setup 10 times. The
best result for each measure on each scenario is highlighted in
bold. Although the best parameter in terms of energy, power
and time is the VFML set to 10 bins, it also has a 32.5% lower
accuracy on average than the default setup. The best overall
parameter considering accuracy and energy is nmin = 1100.
Section VII explains more in depth the results and the behavior
of the data.

VII. ANALYSIS

In this section we detail several analyses extracted from the
results presented in Section VI. We start with a general analysis
between all parameters and end with specific analyses for each
group of parameters.

A. General Analysis

A comparison between energy consumption and accuracy
for each scenario, is presented in Figures 2, 3 and 4. The
main conclusion that these illustrations suggest is that varying
the parameters correctly, energy decreases significantly while
maintaining similar levels of accuracy. The biggest gain in
energy without decreasing accuracy is of 557 J (92.51%),
obtained in Scenario 3. The results also indicate that, on
average, increasing the value of nmin is the top energy saving
measure. The worst configuration across all scenarios is setting
the numerical estimator Greenwald-Khanna to 1,000 tuples.

TABLE I. PARAMETER CONFIGURATION INDEX

INDEX NMIN TIE THRESHOLD NUM. ESTIMATOR

A Default (200) Default (0.05) Default (Gauss. 10 split points)
B 500 Default Default
C 800 Default Default
D 1,100 Default Default
E 1,400 Default Default
F 1,700 Default Default
G 2,000 Default Default
H Default 0.01 Default
I Default 0.03 Default
J Default 0.07 Default
K Default 0.09 Default
L Default Default VFML 10 bins
M Default Default VFML 100 bins
N Default Default VFML 1,000 bins
O Default Default Gaussian 100 split points
P Default Default Gaussian 1,000 split points
Q Default Default Greenwald-Khanna 10 tuples
R Default Default Greenwald-Khanna 100 tuples
S Default Default Greenwald-Khanna 1,000 tuples
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Fig. 2. Comparison between energy (red) and accuracy (blue) for different
parameters configuration. Sorted from the lowest to the highest energy
consumption parameter in Scenario 1.

B. Parameter nmin

In this subsection the behavior of parameter nmin is
analyzed. In the initial implementation of the Hoeffding Tree
algorithm, the heuristic G would be recomputed on the arrival
of new instances. However, it is unlikely that one sample
affects the value of G. For that reason, the authors suggest
to wait nmin examples to recompute G to save computational
effort. The default value of nmin is 200. We have tested the
following values of nmin to observe how accuracy and energy
were affected: 200, 500, 800, 1100, 1400, 1700, and 2000.

In Scenario 1 and Scenario 3 we observe how energy
decreases when nmin increases. Figure 5 suggests a significant
decrease of 22.03 J (82.67 %) when nmin is bigger than
800, while slightly decreasing accuracy by less than 1%. This
tendency is expected, since as the authors suggest [2], it is
computationally costly to recompute G. As shown in Table II,
the decrease in energy is due to a significant decrease on power.



TABLE II. EXPERIMENTAL RESULTS

SCENARIO 1 SCENARIO 2 SCENARIO 3
PR1 ACC 2 P(W)3 T(s)4 E(J)5 ACC P(W) T(s) E(J) ACC P(W) T(s) E(J)

A 96.63 (0.02) 6.86 (1.36) 4.20 (0.53) 28.84 (7.14) 95.07 (0.02) 27.27 (1.72) 3.45 (0.47) 93.70 (11.40) 89.66 (0.02) 29.69 (1.61) 2.39 (0.27) 70.68 (5.49)
B 96.37 (0.02) 8.63 (0.80) 3.85 (0.41) 33.10 (3.45) 95.08 (0.02) 25.88 (1.11) 3.16 (0.35) 81.92 (10.35) 89.78 (0.02) 29.23 (2.47) 2.23 (0.26) 65.81 (14.33)
C 96.36 (0.01) 6.90 (2.57) 3.97 (0.61) 26.65 (9.94) 95.08 (0.02) 30.37 (2.73) 3.10 (0.27) 93.77 (9.32) 89.74 (0.03) 28.54 (1.35) 2.11 (0.03) 60.23 (3.72)
D 96.06 (0.02) 1.19 (0.73) 3.81 (0.44) 4.62 (2.91) 95.08 (0.01) 29.86 (3.48) 3.07 (0.32) 91.02 (7.20) 89.76 (0.02) 28.23 (1.01) 2.06 (0.03) 58.25 (2.63)
E 95.92 (0.02) 1.80 (0.21) 3.65 (0.23) 6.53 (0.61) 95.08 (0.03) 26.57 (1.67) 3.13 (0.15) 83.28 (9.52) 89.72 (0.04) 28.52 (1.07) 2.10 (0.04) 59.89 (3.05)
F 95.68 (0.02) 1.60 (0.20) 3.58 (0.33) 5.75 (1.04) 95.08 (0.02) 26.56 (2.03) 3.18 (0.36) 84.42 (9.85) 89.67 (0.04) 29.49 (1.74) 2.20 (0.24) 65.12 (11.36)
G 95.29 (0.02) 1.70 (0.16) 3.76 (0.59) 6.35 (0.97) 95.08 (0.02) 32.04 (1.94) 2.95 (0.06) 94.31 (4.63) 89.68 (0.04) 30.04 (1.84) 2.15 (0.24) 65.07 (12.12)
H 95.32 (0.02) 1.64 (0.07) 4.13 (0.07) 6.78 (0.41) 94.76 (0.02) 27.98 (2.36) 3.58 (0.38) 100.26 (13.89) 89.19 (0.02) 27.99 (1.33) 1.57 (0.05) 43.97 (3.43)
I 95.92 (0.02) 1.62 (0.64) 4.40 (0.71) 6.94 (2.61) 94.87 (0.03) 27.66 (1.66) 3.52 (0.37) 97.24 (11.15) 89.49 (0.03) 31.63 (5.08) 2.09 (0.22) 65.77 (10.93)
J 97.09 (0.01) 4.52 (1.89) 4.16 (0.06) 18.81 (7.80) 95.09 (0.01) 27.28 (1.49) 3.12 (0.06) 85.13 (5.80) 89.49 (0.04) 32.41 (1.48) 2.65 (0.33) 85.76 (8.56)
K 97.60 (0.01) 7.45 (0.39) 4.43 (0.51) 33.13 (5.20) 95.04 (0.03) 27.40 (1.47) 3.35 (0.38) 91.92 (13.09) 89.77 (0.02) 36.11 (3.27) 2.92 (0.27) 104.96 (6.65)
L 57.83 (0.04) 5.74 (0.89) 1.79 (0.33) 10.22 (2.16) 67.22 (0.04) 20.48 (1.58) 2.07 (0.15) 42.54 (6.87) 64.41 (0.03) 26.13 (1.78) 0.74 (0.07) 19.54 (3.28)
M 57.81 (0.05) 6.16 (0.61) 2.65 (0.27) 16.31 (2.30) 67.20 (0.05) 27.20 (0.94) 2.97 (0.23) 80.76 (4.21) 64.42 (0.05) 22.02 (1.85) 1.35 (0.14) 29.85 (5.80)
N 57.82 (0.05) 4.88 (0.65) 10.40 (0.50) 50.90 (8.56) 67.22 (0.02) 25.49 (0.56) 9.10 (0.59) 231.72 (11.48) 64.39 (0.05) 27.00 (0.75) 6.03 (0.36) 162.62 (8.73)
O 96.82 (0.02) 7.58 (0.73) 4.91 (0.71) 37.04 (4.84) 95.08 (0.02) 29.42 (2.14) 3.98 (0.11) 117.03 (6.12) 89.76 (0.04) 30.24 (0.66) 3.35 (0.02) 101.16 (2.49)
P 96.74 (0.01) 6.52 (0.78) 12.53 (1.09) 81.40 (9.96) 95.08 (0.01) 26.86 (0.90) 10.44 (0.86) 280.30 (23.42) 89.65 (0.03) 27.02 (0.35) 13.87 (1.00) 374.82 (27.67)
Q 96.06 (0.02) 7.48 (0.70) 4.35 (0.47) 32.48 (3.81) 94.52 (0.03) 27.33 (1.75) 3.47 (0.59) 95.17 (19.25) 89.10 (0.02) 28.69 (0.85) 2.43 (0.30) 69.53 (7.07)
R 97.34 (0.02) 8.47 (0.55) 9.35 (1.06) 79.19 (10.34) 95.08 (0.02) 27.15 (0.42) 6.46 (0.75) 175.61 (22.82) 89.47 (0.03) 28.74 (0.69) 5.54 (0.07) 159.26 (5.54)
S 97.36 (0.02) 10.20 (0.12) 33.00 (0.91) 336.60 (10.29) 95.08 (0.03) 25.87 (0.43) 22.70 (1.48) 587.24 (39.17) 89.48 (0.03) 27.12 (0.23) 21.67 (0.35) 587.61 (12.14)

1 PR = Parameter configuration. 2 ACC = Accuracy. Correctly classified instances. 3 P = Power (Watts). 4 T = Execution time (seconds). 5 J = Energy consumption (Joules).
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Fig. 3. Comparison between energy (red) and accuracy (blue) for different
parameters configuration. Sorted from the lowest to the highest energy
consumption parameter in Scenario 2.

C. Parameter tie threshold

When several attributes have a similar value of G, many in-
stances are needed in order to make a split on the best attribute.
In this situation, while there is no difference in the attribute
that is chosen, there is indeed a waste of computational power.
For that reason, in the VFDT implementation the authors have
created the parameter τ . If the difference between the G values
of two attributes is lower than τ , the algorithm splits in the
current best attribute. The default value of τ is 0.05, and we
have tested the following values: 0.01, 0.03, 0.05, 0.07, 0.09.

In Scenario 1 and Scenario 3 there is a tendency for energy
to increase when τ increases. This phenomenon is shown in
Figure 7, extracted from Scenario 3. We can observe how there
is an increase of 61 J (138.73%) from the 0.01 value to the
0.09 and that accuracy does not vary. As shown in Table II,
the increase in energy is due to an increase in execution time.
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Fig. 4. Comparison between energy (red) and accuracy (blue) for different
parameters configuration. Sorted from the lowest to the highest energy
consumption parameter in Scenario 3.

D. Parameter NumericalEstimator

This parameter was not in the original implementation of
the VFDT algorithm, since their approach was designed for
discrete attributes. However, they later developed a toolkit [46],
VFML, that handles numeric continuous attributes. Other
ways to handle numeric attributes by applying discretization
techniques are Gaussian approximation [47] and Greenwald-
Khanna [48] technique.

In the VFML implementation, the numeric attribute values
are summarized by a set of ordered bins fixed at creation time.
If, for instance, the number of bins is set to 1,000, the summary
will be based on the first 1,000 examples that arrive from the
stream. In the experiment, the stream has 1 million instances
and the summary is based only on the first 1,000. Therefore,
since the estimator is sensitive to data order, this is a possible
reason why this parameter has a 30% lower accuracy that the
rest. The reason why VFML = 10 bins is the best parameter
in terms of energy consumption is the low execution time that
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Fig. 5. Comparison between energy (red squares) and accuracy (blue stars)
for the nmin parameter on Scenario 1.
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Fig. 6. Comparison on energy between the following numerical estimator
parameters from Scenario 2: VFML (blue) = Very Fast Machine Learning [46];
Gaussian Approximation (red) [47] and Greenwald-Khanna (green) [48].
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Fig. 7. Comparison between energy (red squares) and accuracy (blue stars)
for the tie threshold parameter on Scenario 3.

it takes to evaluate only the first 10 examples for the summary.

The Gaussian approximation is insensitive to data order
and designed to be efficient in terms of computation and
memory. The numerical data is summarized using a Gaussian
distribution with a fixed number of split points. In Figure 6,
we observe that when the number of split points is increased,
so is the energy consumption. The reason is that it takes longer
time to evaluate 1,000 split points than 10 split points.

The Greenwald-Khanna estimator is a quantile summary
method that maintains an ordered set of tuples. It has a high
accuracy in comparison to other quantile methods. The main
drawback is that the method needs to maintain the set of
tuples ordered when new instances arrive. As observed from
the results, the worst parameter configuration is when the
Greenwald-Khanna estimator is set to 1,000 tuples. The reason
is that whenever new instances arrive, we need to sort 1,000
tuples every time, which results in higher execution time.

The aim was to introduce the idea that energy consumption
is an important factor seldom considered in the data mining
community. The figures in Section VII clearly indicate that
there is a difference in energy consumption when varying the
parameters of an algorithm correctly. We are able to reduce
energy consumption while maintaining predictive accuracy.

American data centers produce 61 billion kWh of electric-
ity every year [4], so even reducing a 1% of the electricity
would save a large amount of energy and money.

VIII. CONCLUSIONS AND FUTURE WORK

The aim was to introduce energy consumption as an
important factor during data mining algorithm evaluation and
analysis. While performance and computational effort are
factors usually considered in data mining, energy consumption
is seldom evaluated. Energy awareness leads to reducing
CO2 emissions, increasing battery life of mobile devices and
reducing air pollution.

In order to measure energy consumption, we proposed a
generic framework. This framework was designed by adding
energy measurement to the CRISP-DM model. CRISP-DM is
considered the state-of-the-art process in data mining. Thus,
we believe that adding energy measurement as an extra step
to CRISP-DM, is more straightforward than proposing a com-
pletely new framework.

We then designed an experiment where we varied the
parameters of the VFDT algorithm and measured the energy
consumption and accuracy. The results indicate that it is
possible to reduce the energy consumption of an algorithm
without reducing accuracy by correctly varying the parameters
of the algorithm.

Future work is to investigate why certain parameter choices
consume more energy than others. For this purpose, we aim
to break down data stream mining algorithms into generic
sub tasks to allow a more fine-grained comparison of energy
consumption across various algorithms and algorithm config-
urations. Another potential study is to investigate how the
VFDT algorithm with different configurations affect energy
consumption on a real world scenario with real data.
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