
The Accuracy of Fault Prediction in Modified Code –
Statistical Model vs. Expert Estimation

Piotr Tomaszewski, Jim Håkansson, Lars Lundberg, Håkan Grahn

School of Engineering
Blekinge Institute of Technology

SE-372 25 Ronneby, Sweden
{piotr.tomaszewski, lars.lundberg, hakan.grahn}@bth.se

Abstract

Fault prediction models still seem to be more
popular in academia than in industry. In industry
expert estimations of fault proneness are the most
popular methods of deciding where to focus the fault
detection efforts. In this paper we present a study in
which we empirically evaluate the accuracy of fault
prediction offered by statistical models as compared to
expert estimations. The study is industry based. It
involves a large telecommunication system and experts
that were involved in the development of this system.
Expert estimations are compared to simple prediction
models built on another large system, also from the
telecommunication domain. We show that the
statistical methods clearly outperform the expert
estimations. As the main reason for the superiority of
the statistical models we see their ability to cope with
large datasets, which results in their ability to perform
reliable predictions for larger number of components
in the system, as well as the ability to perform
prediction at a more fine-grain level, e.g., at the class
instead of at the component level.

1. Introduction

Large cost of finding and fixing faults in software
has recently attracted a lot of attention. In literature we
can find many case studies, according to which the
activities connected with fault detection and removal
account for a significant part of the project budget, e.g.,
in [6] 45% of the project resources were devoted to
testing and simulation. Therefore, a lot of effort has
been put into finding methods that attempt to increase
the efficiency of fault detection.

One common approach is to build fault prediction
models. The prediction models are particularly useful
because of the Pareto principle [11]. It is a commonly
know that in software systems faults are seldom
distributed evenly. Usually small portions of code tend
to contain a majority of faults, i.e., the Pareto principle
(for a brief overview of research concerning the Pareto

principle see [11]). By identifying the most fault prone
modules prediction models make it possible to focus
fault detection efforts (e.g., inspections) on the code
that is most likely to contain faults, thus making fault
detection more efficient. The fault prediction models
usually aim at predicting either the number of faults [6,
7, 22, 29, 32] or the probability that the code unit
contains faults [3, 4, 9, 13, 19].

Our experience shows that fault prediction models
are much more popular in academia than in industry.
Whether presented with the graphs describing the
accuracy of fault prediction, statistical measures of
model goodness, or percentages of correctly classified
classes, the practitioners usually find it difficult to
assess the practical value and accuracy of the model.
The usual question is: “Are your prediction models
better than our guess?”. We find it difficult to give a
good answer to that question. Neither our experience,
nor the literature give us any indication what the truth
might be. Therefore, we decided to set up a study
comparing the accuracy of the fault prediction made by
a fault prediction model vs. expert predictions.

In this paper we present the results obtained in this
study. The study is industry based. We selected two
large software projects done at Ericsson. One of them
(System B) is used to build prediction models; the
other one (System A) is used to evaluate them. To
perform the expert estimation we invited six persons
involved in the development of the System A. These
were experienced designers and developers, who
worked with the examined system for several years.

In this study we build prediction models for
modified code. The reason is that when analyzing the
code, we found that the most fault-prone code is the
code introduced as modification to existing classes (for
details see Section 3).

We assume that the cost of finding all faults in the
class is proportional to the size of the class that
contains these faults. Therefore, as the most efficient,
we consider analyzing code units (e.g., classes,
components) in descending fault density order.

lpto
Text Box
Proceedings of the 13th Annual IEEE International Conference on the Engineering of Computer Based Systems (ECBS 2006), Potsdam, Germany, 2006

The reminder of this paper is structured as follows:
in Section 2 we present the work done by others in the
area of expert estimations and fault prediction. In
Section 3 we describe experts and systems from our
study. Section 4 contains the description of methods
we have used. In Section 5 we present the results. In
Section 6 we discuss our findings. Section 7 contains
the most important conclusions from this study.

2. Related Work

A lot of the research reports have been published in
the area of improvement of fault detection. Mostly this
research focuses on building fault prediction models.
Depending on the output (the dependant variable),
these fault prediction models belong to one of the
following groups [20]: Quality prediction models
quantify the quality, e.g. by predicting the number of
faults in the code unit. Examples of such models can be
found in [6, 7, 22, 29, 32]. Classification models
classify code units as fault-prone or not. Examples of
such models can be found in [4, 9, 13, 19].

Not only the models predict different things but
very often they operate at different levels of the logical
structure of the code. There are models that predict
fault-proneness of classes [1, 5, 6, 9, 21, 32], modules
[11, 18, 19, 25], components [23], or files [26].

The prediction is usually based on different
characteristics of the examined code units. The most
common candidates are different code metrics (e.g.,
[17, 28, 32]) or, for classes, variations of C&K [8]
object oriented metrics (e.g., [4, 9, 32]). There are also
studies that take historical information about code
fault-proneness into account (e.g., [27, 28]).

Usually the prediction model construction starts
with selecting independent variables (variables that are
used to predict dependant variable). The initial set of
independent variables is often large. A common
assumption is that models based on a large number of
variables are less robust and have lower practical value
(more metrics have to be collected) [6, 10]. Therefore,
some authors (e.g., [6]) build only simple models, i.e.
containing one or at most two predicators.

Different methods are used in building prediction
models. A commonly used method to select the best
fault predicators is correlation analysis ([6, 9, 32]). The
methods for building prediction models range from
uni- and multivariate linear regression (e.g., [6, 7, 22,
25, 29, 32]) and logistic regression (e.g., [4, 9, 13, 19])
through regression trees (e.g., [17, 18]) to neural
networks (e.g., [20, 31]).

Despite the fact that expert judgement is an
accepted and practiced way of performing estimations
[2, 16, 30] in many software related areas, we failed to
find a lot of research that connects expert estimations

with prediction of the fault-proneness of the individual
code units. One example, was very interesting research
[33, 34] in which expert estimations were used with
statistical analysis as complementary methods.
However, we failed to find any report presenting a
comparative evaluation of expert judgments and
statistical fault prediction models.

3. Study Subjects

In this study we use two software systems (System
A, and System B) developed by Ericsson. Both
systems are working within the service layer of mobile
phone network. We use System B to build prediction
models that are later evaluated by applying them to
System A. Because System A is used for evaluating, all
experts invited to participate in this study are involved
in the development of System A.

3.1 Systems Under Study

We use the most current releases of System A and
System B. These are large telecommunication systems.
Their sizes are about 800 classes (500 KLOC), and
1000 classes (600 KLOC) for System A and System B,
respectively. Both systems are mature and have been
on the market for over 6 years. Both systems are
implemented using C++. One of the projects has been
developed in Sweden. The other one has mostly been
developed in China.

When analyzing the code we found that the most
fault-prone code is the code introduced as modification
to existing classes. In System A the modification of
classes from the previous release accounted for 37% of
the code written in the current release (63% of the new
code was introduced as new classes). These 37% of the
code contained 62% of the faults found in the project
release we examine in this study. A similar trend has
also been observed in System B - 44% of the code was
introduced as modification to classes from the previous
release. These 44% of the code contained 78% of all
faults. Therefore, in our study we decided to focus
specifically on the modified code.

Both systems are divided into components, which
contain classes. The number of components modified
in the examined releases of the products was 35 in
System A, and 41 in System B. That corresponds to
249 modified classes in System A and 319 modified
classes in System B. The information about faults was
available both at the class and component level.

3.2 Participating Experts

We invited six experts to participate in the study.
All of them are directly involved in the development of
System A. All of them have several years of working

Table 1. Metrics collected at the class level.
Name Variable Description

Independent metrics
Coup Coupling Number of classes the class is coupled to [8, 12]
NoC Number of Children Number of immediate subclasses [8]
WMC Weighted Methods per Class Number of methods defined locally in the class [8]
RFC Response for Class Number of methods in the class including inherited ones[8]
DIT Depth of Inheritance Tree Maximal depth of the class in the inheritance tree[8, 11]
LCOM Lack of Cohesion “how closely the local methods are related to the local instance

variables in the class” [12]. In the study LCOM was calculated as
suggested by Graham [14, 15]

Stmt Number of statements Number of statements in the code
MaxCyc Maximum cyclomatic complexity The highest McCabe complexity of a function within the class
ChgSize Change Size Number of new and modified LOC (from previous release)

Dependent variables
Faults Number of faults Number of faults found in the class
FaultDensity Fault density Fault density of the class

experience with System A. Their major tasks within
System A are design and implementation.

At the time of the study, the implementation of the
examined release of System A was finished. All the
experts are familiar with the architecture of System A.
They all know what kind of functionality is
implemented in each component. They also have
extensive knowledge and experience in the system
domain – telecommunications. All the experts know
the scope of the current release of System A– they
know what functionality was implemented and where.

One risk of such a study set-up is that the
developers may basically know the fault distribution.
We believe it has not been the case in our study. The
work in the project is organized according to the
“component responsibility” idea - each developer is
fully responsible for one or more components. Because
of that, in practice, the developers do not have a global
picture concerning fault distribution – they only
receive information concerning the faults that were
found in the components they are responsible for.
Normally, they are not provided with any global
statistics concerning faults. Therefore, their prediction
concerning the faults made in this study is not based on
any global statistics but on their own “gut-feeling”,
based on experience and knowledge of the project.

4. Methods

In this section we present the methods we use in this
study. Section 4.1 presents methods we used to build
prediction models. Section 4.2 presents the way we
collected and used the data gathered from our experts.
In Section 4.3 we present the way in which we
evaluated and compared both methods.

4.1 Building Prediction Models
Our models predict the fault density of individual

code units. This can be predicted in two ways:
- by predicting fault density (Faults/Size) – fault

density is a dependant variable in the model.
- by predicting the number of faults (Faults) and

dividing the predicted number of faults by real size
(Size) of the code unit – Faults are predicted by the
model, while size (Size) is measured.
We collected the data for prediction at the class and

at the component level. The class level metrics are
summarized in Table 1. These are mostly C&K [8]
design metrics, and code metrics. The component
level metrics are summarized in Table 2. These are
only code metrics. In the components we performed
measurements only on classes that were modified.

Similarly to [6], we build simple prediction models
based on one predicator only. Such models do not
suffer from multicolinearity risk [10]. Therefore,
simple models are more likely to be stable over
releases. Additionally, such models require less data to
be collected compared to multivariate models.
Obviously, by using one metric only, we deliberately
give up the potential benefit from introducing more
information, carried by other metrics, into the model.

To select the best single fault predicators we
performed a correlation analysis. A correlation analysis
is commonly used for that purpose by other researchers
[24, 32]. It quantifies the relation between two metrics
as a value between -1 and 1. An absolute value close to
one characterizes good predicator variables. Values
close to zero indicate very weak linear relationship
between the variables and thus low applicability of one
variable to predict the other.

Table 2. Metrics collected at the component level.
Name Variable Description

Independent metrics
CompStmt Number of statements Number of statements in the component (only statements from

modified classes in the component were counted)
CompMeth Number of methods Number of statements in the component (only methods from modified

classes in the component were counted)
CompClass Number of modified classes Number of modified classes in the component
CompChg Change size Number of new and modified LOC (compared to previous release)

Dependent variables
CompFaults Number of faults Number of faults found in the component
CompFaultDensity Fault density Fault density of the component

To build our prediction models we use the
univariate linear regression. The univariate linear
regression estimates value of the dependant variable
(number of faults or fault-density) as a function of the
independent variable [24]:

f(x) = a + bx (1)

4.2 Expert Estimation
The expected outcome of the expert estimation was

a ranking of the code units according to their
decreasing fault density. In the beginning of the study
we performed a number of interviews to establish an
appropriate level to perform the expert predictions. The
question was if the experts should perform estimations
at the class or at the component level. It quickly turned
out that the class level presents too fine-grained
information. Even though the experts knew what each
component did, it was very difficult for them to predict
the responsibility of particular classes. Additionally,
the amount of data (249 classes) was considered
unmanageable. The number of components (35 in
System A) was much smaller. Therefore, the expert
estimation was performed only at the component level.

 The expert estimation was done individually by
each of our experts. Later the individual rankings were
used as an input to a consensus meeting. The goal of
the meeting was a joint ranking of the components.

During the individual rankings the experts were
provided with a list of modified components.
Additionally, for each component, we enclosed
information concerning the subsystem the component
belonged to, as well as the accumulated size of
modified classes within the component, which is
considered the cost of analyzing the component in our
study. The experts were asked to indicate in which
order they would analyze the components, so that they
analyze the components with the highest fault densities
first. Each expert was given an explanation concerning
our study in order to assure the full understanding of
the task they were asked to perform.

The experts were allowed not to rank all the
components. In fact, it turned out that no one ranked

more than eight components. The experts said that they
are able to identify a couple of the most fault prone
components, but after a certain point they would put
the components in random order.

4.3 Prediction Evaluation

We evaluate the statistical prediction models and
the expert predictions from the perspective of the
increase of the efficiency of fault detection they
provide. Their goodness is measured by the amount of
code necessary to analyze to detect a certain number of
faults, i.e., one prediction is better if we are able to
detect more faults by analyzing the same amount of
code compared to another prediction. Therefore, we
perform the evaluation by plotting the percentage of
faults that would be detected if analyzing System A
according to either the experts’ suggestions or the
prediction model against the accumulated percentage
of code that would have to be analyzed.

In order to obtain a point of reference for our
evaluations, we introduce two reference models:
- Random model – the model describing completely

random search for faults
- Best model – the theoretical model in which code

units are ordered by their actual fault density
The Random model provides a baseline for our

models as it describes what results, on average, we
could expect if we analyzed the code not following any
model. We believe that we should evaluate the
predictions against the Random model because only in
this way we are able to assess their practical value.

The Best model provides a boundary of how good
the prediction can be. Obviously, the Best model
would be different for predictions at the class and at
the component level. The class level prediction has
finer granularity and therefore, at least theoretically, is
able to provide more precise results. By comparing the
Best model made for components and for classes we
can assess the practical value of having finer
granularity prediction.

The evaluation of model predictions vs. expert
estimations is performed by checking how each

particular solution performs compared to the Best
model, the Random model, and to each other. The
closer the prediction is to the Best model the better it
is. If the prediction is better than the Random model
then we can say that using it presents an improvement
over not using any method at all.

5. Results
5.1 Building Prediction Model

As described in Section 4.1, the building of
prediction models begins with a correlation analysis.
The goal of the correlation analysis is to select the best
individual fault predicator. The correlation analysis
was performed for both class and component level
metrics. The results of correlation analysis are
presented in Table 3.

As it can be noticed in Table 3, the most promising
fault predicator for both classes and components is the
size of the modification (ChgSize metric at class level,
and CompChg metric at the component level). The
highest correlations are marked in bold in Table 3. In
both cases the correlation coefficients are the highest
when predicting the number of faults. Therefore, we
build models that predict the number of faults and we
divide their output by the size of the respective code
unit, i.e., class or component.

The models based on ChgSize and CompChg are
built using linear regression. The results are presented
in Table 4. As both models are based on the
information concerning the size of the modification,
not surprisingly the models are quite similar.

5.2 Expert Estimation

The distribution of “votes” of experts, the group
consensus, and the actual ranks of the components are
presented in Table 5. Only the components that were
selected by at least one expert are presented.

 In the individual rankings neither of our experts
ranked all 35 components. Each expert ranked between
5 and 8 components. Altogether experts pointed out 15
different components, i.e., neither had any opinion
about the fault-proneness of the remaining 20
components. These 15 ranked components account for
about 60% of the code.

The “group consensus” was apparently more
difficult to reach than individual rankings because the
experts ranked only 4 components i.e., less than in any
individual ranking. These four components accounted
for about 30% of the code.

 In Table 5 it can be noticed that in the individual
rankings the components can be divided into two
subgroups. One subgroup contains components that
were selected by a majority of the experts, i.e., four
and more experts pin-pointed them. These are
components with numbers: 1, 3, 4, 5, 9, 10. To the
other group belong the components selected only by
one or two interviewees, i.e., components with
numbers: 2, 6, 7, 8, 11-15. It is quite clear that apart
from two exceptions (Component 1, and Component
10) there is a rather large discrepancy between the
ranks assigned by experts to the components. This
means that, despite the fact that most experts
considered a certain component fault-prone, their
estimation of its fault-density was different.

All components ranked in the “group consensus”
ranking are the components that were selected by the
majority of experts in the individual rankings.
Component 1 and Component 10 were ranked
according to the trend from the individual rankings,
which is not surprising - the experts were consistent in
ranking them as the first and the third in their
individual rankings. Ranking Component 9 and
Component 4 as the second and the fourth respectively
must have been an outcome of the group discussion,

Table 3. Correlation analysis results at the class and the component level. The highest correlations for
respective levels (class, component) are marked in bold.

Class level metrics Component level metrics

Coup NOC WMC RFC Stmt MaxCyc DIT LCOM ChgSize Comp
Chg

Comp
Stmt

Comp
Meth

Comp
Class

Faults 0.25 -0.01 0.14 0.04 0.26 0.31 -0.07 0.13 0.60 0.79 0.63 0.35 0.55
Fault

Density 0.06 -0.01 -0.01 -0.03 -0.02 0.01 -0.01 0.05 0.20 0.21 0.07 0.01 0.09

Table 4. Prediction models build in the study. “Prediction level” indicates if the models works at class or at
component level. “Model calculated” is the model obtained by linear regression. “Model applied” is the

transformation of the “Model calculated” so that it predicts fault density instead of the number of faults.

Model name Prediction
level Model calculated Model applied

ComponentPred Component Faults = 0.002*ComChg+0.209 FaultDensity = (0.002*ComChg+0.209) / CompStmt
ClassPred Class Faults = 0.002*ChgSize+0.018 FaultDensity = (0.002*ChgSize+0.018) / Stmt

0

20

40

60

80

100

0 20 40 60 80 100

% of code to analyze

%
 o

f f
au

lts
 fo

un
d

Best model class

Best model component

Random model

Figure 1. Reference models - evaluation

because such ranking was not suggested by any
individual expert.

At this point we can also perform some partial
assessment of expert prediction accuracy. By
comparing the results of individual experts with the
actual ranking of components (the last row in the table)
we can see that out of the 15 components they pointed
to, only 8 belong to the actual 15 components with the
highest fault densities. By comparing the “consensus
group” ranking with the actual ranking of components
we can see that neither of the components pin-pointed
by the experts belongs to the top 4 components with
highest fault-density.

5.3 Prediction evaluation

Our prediction starts with reference models
building. We build three reference models, one
describing an average result of random picking of code

units for analysis (Random model), and two models
describing the theoretical best result that can be
obtained. One of them describes the maximum that can
be obtained when predicting faults at the class level
(Best model class), the other when predicting at the
component level (Best model component). These
models are presented in Figure 1.

As it can be noticed in Figure 1 the Random model
is quite far from the best possible model. For example,
by analyzing 20% of the code randomly we can find
20% of faults. By analyzing appropriate 20% of code
we should find up to 70% of the faults in case of class
level prediction and up tp 50% of faults if the
prediction was made at the component level. This also
indicates that, at least theoretically, the class level
prediction should give better results, because the class
level prediction is more fine-grained and therefore
more precise. From Figure 1 we see that theoretically

Table 5. The rankings of individual experts and the joint ranking of all experts. Only 15 components out of
35 were selected, and only those components are presented in the table below. Lower rank value indicates

higher fault-density in the component predicted by expert. “Correct ranking” is the actual rank of the
component when all 35 components are ranked.

Component
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Expert1 ranking 2 4 1 5 3
Expert2 ranking 1 2 4 3 5
Expert3 ranking 1 5 7 6 4 2 3
Expert4 ranking 1 3 6 7 5 4 2
Expert5 ranking 2 1 7 3 6 5 8 4
Expert6 ranking 2 1 8 7 6 5 4 3

Group consensus ranking 1 4 2 3
Correct ranking 10 5 9 8 22 18 12 25 17 6 16 7 26 24 13

the component level prediction can provide about one-
third of the improvement over the random model
offered by the class level prediction (in Figure 1 the
distance between Best model component and Best
model class is more or less equal to 1/3 of the distance
between the Best model class and Random model).

The evaluation of prediction models and expert
estimations is presented in Figure 2. We present all the
individual expert estimations, “group consensus”, both
statistical prediction models (ClassPred,
ComponentPred) and all the reference models.

From Figure 2 we can conclude that both statistical
prediction models clearly outperform expert
estimations. They not only offer higher accuracy in the
range of code covered by expert estimations
(approximately up to 50% of code) but also provide
prediction, which is better compared to the Random
model for the rest of the code. By comparing ClassPred
with the best of expert estimations for the percentage
of code covered by expert estimations we can see that
ClassPred offers about three times as big improvement
over the Random model as the best of expert
estimations.

Other findings from Figure 2 concern the gain from
using more fine grained information and predicting at
the class level. As we can see, there is a clear practical
gain connected with predicting at the class level. For
example, for the range of code covered by expert
estimations the gain from using ClassPred is almost

equal to the maximum possible gain from using any
component level prediction model, i.e., the Best model
component. Our component level prediction model
ComponentPred is not even close to that.

Surprisingly for us, the “Group consensus”
estimation turned out to be one of the worst estimations
made by the experts. Some of individual estimations
were actually not only more correct but they also
accounted for more code.

6. Discussion
6.1 Findings

The results obtained in our study seem to support
the idea of building fault prediction models. By
comparing the accuracy of fault prediction, and the
increase of fault detection efficiency connected with it,
we showed that statistical models have two major
advantages over human estimation.

The first advantage is that they are not affected by
the size of dataset and therefore they are able to rank
the entire project. The experts that we were invited to
participate in this study were able to rank 5 to 8 out of
35 components. The second advantage of prediction
models is that they can easily operate on fine-grained
data. In our case, while the class level prediction was
not feasible for our experts to perform, the statistical
prediction model accomplished this task with very

0

20

40

60

80

100

0 20 40 60 80 100

% of code to analyze

%
 o

f f
au

lts
 fo

un
d

Best model class

Best model component

ClassPred

ComponentPred

Expert predictions

Group consensus

Random model

Figure 2. Prediction model vs. expert estimation – evaluation.

good results. This advantage is partially caused by the
statistical model’s ability of coping with large datasets,
but also by human inability to grasp and understand
large system structures (e.g., 250 classes in our case).

There is also one more advantage of predication
models, not evaluated in this study. It is their cost.
They are reasonably cheap to build and even cheaper to
apply – normally they can be implemented in the form
of e.g., script that collects and processes all the
information automatically. Expert estimation is more
expensive, since for each project it must be set up and
performed independently. Obviously to perform expert
estimation we need experts – sometimes, in relatively
new projects, or when projects are overtaken by other
team, the experts might simply not be available.

On the other hand an expert estimation has other
advantages. A statistical prediction model predicts
faults, but it does not classify them in any way.
Naturally, not all faults are the same – some of them
might be more difficult to find than the others, because
they may be related to the complexity of the
functionality that the code implements. Some faults
may be more severe than the others. It is possible that
the experts tend to pin-point more correctly the
components that are more likely to contain this kind of
faults. Due to the lack of appropriate data concerning
fault severity we could not verify this hypothesis in our
study. Also the experts take into account information
that is not present in the statistical model – e.g., in our
case the size of the change is considered to be the best
fault predicator. However, in the project, it might
happen so, that even though the change in the
component is relatively small, there was a number of
people involved in introducing it, which may make it
more prone to faults compared to the change
introduced by a single designer.

The results obtained in our study quite clearly show
that prediction models outperformed expert estimation
in almost every aspect. They were reasonably accurate
and consistent in providing improvement over the
Random model for any percentage of the code. Also,
when analysing expert estimations, we can find a
number of worrying factors. The experts did not agree
with each other, they either selected different
components, or, if they selected the same components,
they estimated their fault density differently. From
Table 3 we can see that even though most of the
experts agreed on high fault densities in some of the
components, in fact the components they selected are
actually not the most fault-prone in the entire system.
Neither of the experts mentioned any of the actual four
most fault-prone components in the system.

6.2 Validity
The reader must bear in mind that this paper has

been meant more as an experience report than a formal
experiment. Our selection of projects, and selection of
experts are convenience-based – we selected projects
and experts that were available to us. Probably
selecting different experts could have given different
results. Also the entire exercise was not performed as a
controlled experiment and we can not assure that e.g.,
the experts did not have some partial knowledge about
the actual fault-proneness of the components. The
number of the experts was also small and therefore it is
difficult to generalize their performance to the
performance of experts at all.

However, we still believe that some general lessons
can be learned from our study. It seems quite probable
that most experts would face the problems our experts
faced, e.g., problems with coping with large amounts
of fine-grained data. It is also sure that prediction on a
low level, like e.g., the class level, would give better
results compared to prediction on a higher level, e.g.,
the component level. We are almost sure that for most
medium-to-large system the class level prediction is
not feasible to be performed by people.

We also believe that the statistical prediction
models obtained in our study are general. When
building them we followed a good academic practise of
building models on other system than the system used
to evaluate the models.

Most issues concerning expert estimation validity,
like the experts’ possible knowledge about actual fault
distribution, should result in better than average
performance of experts. This might be considered an
argument supporting our conclusions, because, even
with this “handicap”, the expert estimations where
outperformed by the statistical prediction models.

7. Conclusions

The goal of this study was to compare the accuracy
of fault prediction made by a statistical fault prediction
model and by human experts. To perform the
comparison we built two simple statistical fault
prediction models and we asked a number of experts to
perform the individual as well as group estimations of
fault-proneness of components from a large
telecommunication system.

The evaluation was performed from the perspective
of fault detection efficiency increase that could be
obtained if analyzing the code according to suggestions
made by experts or made by the statistical models.
Additionally, the models were evaluated against three
reference models: model based on a random selection
of the code units for analysis, the theoretical best
model for predicting faults at the class level, and the

theoretical best model for predicting faults at the
component level.

We found that both expert estimations and statistical
models actually provide an improvement over the
random search for faults. When it comes to comparing
both methods we found that statistical models
outperform expert estimations. For the percentage of
code covered by the expert estimations the best
statistical fault prediction model offered three times as
big improvement over the random search for faults as
compared to the best of expert estimations. Moreover,
it continued to provide an improvement even after the
point where the experts gave up.

We identified two reasons for statistical models
being better. Statistical models are not affected by the
size of dataset, while human ability to grasp and assess
the complexity of large systems is seriously limited.
The ability to deal with large datasets gives the
statistical models an ability to perform more fine-
grained estimations, i.e., estimations at lower level.

In this study we showed that the more fine-grained
prediction (e.g., prediction at the class instead of at the
component level) is not only better from theoretical but
also from practical perspective. Our class level
prediction model was more accurate compared to the
component level prediction model. In fact, it was very
close to the theoretical maximum the component level
prediction can provide.

In the study we also discussed other advantages and
disadvantages of statistical prediction models and
expert estimations. Apart from what we have
mentioned before, the statistical methods have also two
other important advantages – there are reasonably
cheap to build and apply, as well as they can be used in
the absence of experts (e.g., when project is transferred
to another development organization). On the other
hand expert estimations can take into account issues
not present in the statistical model, e.g., severity of the
faults, testability of the components, or basically
factors other than those that are taken into account in
the prediction model.

Acknowledgments

The authors would like to thank Ericsson for
providing us with the data for the study and The
Collaborative Software Development Laboratory,
University of Hawaii, USA (http://csdl.ics.hawaii.edu/)
for LOCC application.

This work was partly funded by The Knowledge
Foundation in Sweden under a research grant for the
project "Blekinge - Engineering Software Qualities
(BESQ)" (http://www.bth.se/besq).

References

[1] V. R. Basili and L. C. Briand, "A validation of object-

oriented design metrics as quality indicators." IEEE
Transactions on Software Engineering, vol. 22, 1996,
pp. 751-762.

[2] B. W. Boehm, Software engineering economics.
Englewood Cliffs, N.J.: Prentice-Hall, 1981.

[3] L. C. Briand, W. L. Melo, and J. Wust, "Assessing the
applicability of fault-proneness models across object-
oriented software projects", IEEE Transactions on
Software Engineering, vol. 28, 2002, pp. 706-720.

[4] L. C. Briand, J. Wust, J. W. Daly, and D. V. Porter,
"Exploring the relationship between design measures
and software quality in object-oriented systems", The
Journal of Systems and Software, vol. 51, 2000, pp.
245-273.

[5] L. C. Briand, J. Wust, S. V. Ikonomovski, and L. H.,
"Investigating quality factors in object-oriented designs:
an industrial case study", Proc. of the 1999 Int'l Conf.
on Software Eng., 1999, pp. 345-354.

[6] M. Cartwright and M. Shepperd, "An empirical
investigation of an object-oriented software system",
IEEE Transactions on Software Engineering, vol. 26,
2000, pp. 786-796.

[7] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer,
"Managerial use of metrics for object-oriented software:
an exploratory analysis", IEEE Transactions on
Software Engineering, vol. 24, 1998, pp. 629-639.

[8] S. R. Chidamber and C. F. Kemerer, "A metrics suite
for object oriented design", IEEE Transactions on
Software Engineering, vol. 20, 1994, pp. 476-494.

[9] K. El Emam, W. L. Melo, and J. C. Machado, "The
prediction of faulty classes using object-oriented design
metrics", The Journal of Systems and Software, vol. 56,
2001, pp. 63-75.

[10] N. Fenton and M. Neil, "A critique of software defect
prediction models", IEEE Transactions on Software
Engineering, vol. 25, 1999, pp. 675-689.

[11] N. Fenton and N. Ohlsson, "Quantitative analysis of
faults and failures in a complex software system", IEEE
Transactions on Software Engineering, vol. 26, 2000,
pp. 797-814.

[12] N. Fenton and S. L. Pfleeger, Software metrics: a
rigorous and practical approach, 2. ed. London;
Boston: PWS, 1997.

[13] F. Fioravanti and P. Nesi, "A study on fault-proneness
detection of object-oriented systems", Fifth European
Conference on Software Maintenance and
Reengineering, 2001, pp. 121-130.

[14] I. Graham, Migrating to object technology.
Wokingham, England; Reading, Mass.: Addison-
Wesley Pub. Co., 1995.

[15] B. Henderson-Sellers, L. L. Constantine, and I. M.
Graham, "Coupling and cohesion (towards a valid
metrics suite for object-oriented analysis and design)",
Object Oriented Systems, vol. 3, 1996, pp. 143-158.

[16] R. T. Hughes, "Expert judgement as an estimating
method", Information and Software Technology, vol.
38, 1996, pp. 67-76.

[17] T. M. Khoshgoftaar, E. B. Allen, and J. Deng,
"Controlling overfitting in software quality models:
experiments with regression trees and classification",
Proc. of The 17th International Software Metrics
Symposium, 2000, pp. 190-198.

[18] T. M. Khoshgoftaar, E. B. Allen, and D. Jianyu, "Using
regression trees to classify fault-prone software
modules", Reliability, IEEE Transactions on, vol. 51,
2002, pp. 455-462.

[19] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P.
Hudepohl, "Accuracy of software quality models over
multiple releases", Annals of Software Engineering, vol.
9, 2000, pp. 103-116.

[20] T. M. Khoshgoftaar and N. Seliya, "Fault Prediction
Modeling for Software Quality Estimation: Comparing
Commonly Used Techniques", Empirical Software
Engineering, vol. 8, 2003, pp. 255-283.

[21] X. Li, Z. Liu, B. Pan, and D. Xing, "A measurement
tool for object oriented software and measurement
experiments with it" presented at 10th International
Workshop New Approaches in Software Measurement,
Berlin, Germany, 2001.

[22] A. P. Nikora and J. C. Munson, "Developing fault
predictors for evolving software systems", Proc. of The
Ninth International Software Metrics Symposium, 2003,
pp. 338-349.

[23] M. C. Ohlsson, A. Andrews Amschler, and C. Wohlin,
"Modelling fault-proneness statistically over a sequence
of releases: a case study", Journal of Software
Maintenance and Evolution: Research and Practice,
vol. 13, 2001, pp. 167-199.

[24] N. Ohlsson, A. C. Eriksson, and M. Helander, "Early
Risk-Management by Identification of Fault-prone
Modules", Empirical Software Engineering, vol. 2,
1997, pp. 166-173.

[25] N. Ohlsson, M. Zhao, and M. Helander, "Application of
multivariate analysis for software fault prediction",
Software Quality Journal, vol. 7, 1998, pp. 51-66.

[26] T. J. Ostrand, E. J. Weyuker, and R. M. Bell,
"Predicting the Location and Number of Faults in Large
Software Systems", IEEE Transactions on Software
Engineering, vol. 31, 2005, pp. 340-355.

[27] M. Pighin and A. Marzona, "An empirical analysis of
fault persistence through software releases",
Proceedings of the International Symposium on
Empirical Software Engineering, 2003, pp. 206-212.

[28] M. Pighin and A. Marzona, "Reducing Corrective
Maintenance Effort Considering Module's History",
Proc. of Ninth European Conference on Software
Maintenance and Reengineering, 2005, pp. 232-235.

[29] Y. Ping, T. Systa, and H. Muller, "Predicting fault-
proneness using OO metrics. An industrial case study",
Proc. of The Sixth European Conference on Software
Maintenance and Reengineering, 2002, pp. 99-107.

[30] M. Shepperd and M. Cartwright, "Predicting with
sparse data", IEEE Transactions on Software
Engineering, vol. 27, 2001, pp. 987-998.

[31] H. SungBack and K. Kapsu, "Identifying fault-prone
function blocks using the neural networks - an empirical
study", IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing,
vol. 2, 1997, pp. 790-793.

[32] M. Zhao, C. Wohlin, N. Ohlsson, and M. Xie, "A
comparison between software design and code metrics
for the prediction of software fault content",
Information and Software Technology, vol. 40, 1998,
pp. 801-809.

[33] S. Zhong, T. M. Khoshgoftaar, and N. Seliya,
"Analyzing software measurement data with clustering
techniques", IEEE Intelligent Systems, vol. 19, 2004,
pp. 20-27.

[34] S. Zhong, T. M. Khoshgoftaar, and N. Seliya,
"Unsupervised learning for expert-based software
quality estimation", Proceedings of the Eighth IEEE
International Symposium on High Assurance Systems
Engineering, 2004, pp. 149-155.

