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Abstract 

Fault prediction models still seem to be more 
popular in academia than in industry. In industry 
expert estimations of fault proneness are the most 
popular methods of deciding where to focus the fault 
detection efforts. In this paper we present a study in 
which we empirically evaluate the accuracy of fault 
prediction offered by statistical models as compared to 
expert estimations. The study is industry based. It 
involves a large telecommunication system and experts 
that were involved in the development of this system. 
Expert estimations are compared to simple prediction 
models built on another large system, also from the 
telecommunication domain. We show that the 
statistical methods clearly outperform the expert 
estimations. As the main reason for the superiority of 
the statistical models we see their ability to cope with 
large datasets, which results in their ability to perform 
reliable predictions for larger number of components 
in the system, as well as the ability to perform 
prediction at a more fine-grain level, e.g., at the class 
instead of at the  component level.   
 
1. Introduction 

Large cost of finding and fixing faults in software 
has recently attracted a lot of attention. In literature we 
can find many case studies, according to which the 
activities connected with fault detection and removal 
account for a significant part of the project budget, e.g., 
in [6] 45% of the project resources were devoted to 
testing and simulation. Therefore, a lot of effort has 
been put into finding methods that attempt to increase 
the efficiency of fault detection. 

One common approach is to build fault prediction 
models. The prediction models are particularly useful 
because of the Pareto principle [11]. It is a commonly 
know that in software systems faults are seldom 
distributed evenly. Usually small portions of code tend 
to contain a majority of faults, i.e., the Pareto principle 
(for a brief overview of research concerning the Pareto 

principle see [11]). By identifying the most fault prone 
modules prediction models make it possible to focus 
fault detection efforts (e.g., inspections) on the code 
that is most likely to contain faults, thus making fault 
detection more efficient. The fault prediction models 
usually aim at predicting either the number of faults [6, 
7, 22, 29, 32] or the  probability that the code unit 
contains faults [3, 4, 9, 13, 19]. 

Our experience shows that fault prediction models 
are much more popular in academia than in industry. 
Whether presented with the graphs describing the 
accuracy of fault prediction, statistical measures of 
model goodness, or percentages of correctly classified 
classes, the practitioners usually find it difficult to 
assess the practical value and accuracy of the model. 
The usual question is: “Are your prediction models 
better than our guess?”. We find it difficult to give a 
good answer to that question. Neither our experience, 
nor the literature give us any indication what the truth 
might be. Therefore, we decided to set up a study 
comparing the accuracy of the fault prediction made by 
a fault prediction model vs. expert predictions.  

In this paper we present the results obtained in this 
study. The study is industry based. We selected two 
large software projects done at Ericsson. One of them 
(System B) is used to build prediction models; the 
other one (System A) is used to evaluate them. To 
perform the expert estimation we invited six persons 
involved in the development of the System A. These 
were experienced designers and developers, who 
worked with the examined system for several years. 

In this study we build prediction models for 
modified code. The reason is that when analyzing the 
code, we found that the most fault-prone code is the 
code introduced as modification to existing classes (for 
details see Section 3).    

We assume that the cost of finding all faults in the 
class is proportional to the size of the class that 
contains these faults. Therefore, as the most efficient, 
we consider analyzing code units (e.g., classes, 
components) in descending fault density order.  
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The reminder of this paper is structured as follows: 
in Section 2 we present the work done by others in the 
area of expert estimations and fault prediction. In 
Section 3 we describe experts and systems from our 
study. Section 4 contains the description of methods 
we have used. In Section 5 we present the results. In 
Section 6 we discuss our findings. Section 7 contains 
the most important conclusions from this study. 

 
2. Related Work 

A lot of the research reports have been published in 
the area of improvement of fault detection. Mostly this 
research focuses on building fault prediction models. 
Depending on the output (the dependant variable), 
these fault prediction models belong to one of the 
following groups [20]: Quality prediction models 
quantify the quality, e.g. by predicting the number of 
faults in the code unit. Examples of such models can be 
found in [6, 7, 22, 29, 32]. Classification models 
classify code units as fault-prone or not. Examples of 
such models can be found in [4, 9, 13, 19]. 

Not only the models predict different things but 
very often they operate at different levels of the logical 
structure of the code. There are models that predict 
fault-proneness of classes [1, 5, 6, 9, 21, 32], modules 
[11, 18, 19, 25], components [23], or files [26].  

The prediction is usually based on different 
characteristics of the examined code units. The most 
common candidates are different code metrics (e.g., 
[17, 28, 32]) or, for classes,  variations of C&K [8] 
object oriented metrics (e.g., [4, 9, 32]). There are also 
studies that take historical information about code 
fault-proneness into account (e.g., [27, 28]). 

Usually the prediction model construction starts 
with selecting independent variables (variables that are 
used to predict dependant variable). The initial set of 
independent variables is often large. A common 
assumption is that models based on a large number of 
variables are less robust and have lower practical value 
(more metrics have to be collected) [6, 10]. Therefore, 
some authors (e.g., [6]) build only simple models, i.e. 
containing one or at most two predicators.  

Different methods are used in building prediction 
models. A commonly used method to select the best 
fault predicators is correlation analysis ([6, 9, 32]). The 
methods for building prediction models range from 
uni- and multivariate linear regression (e.g., [6, 7, 22, 
25, 29, 32]) and logistic regression (e.g., [4, 9, 13, 19]) 
through regression trees (e.g., [17, 18]) to neural 
networks (e.g., [20, 31]).  

Despite the fact that expert judgement is an 
accepted and practiced way of performing estimations 
[2, 16, 30] in many software related areas, we failed to 
find a lot of research that connects expert estimations 

with prediction of the fault-proneness of the individual 
code units. One example, was very interesting research 
[33, 34] in which expert estimations were used with 
statistical analysis as complementary methods. 
However, we failed to find any report presenting a 
comparative evaluation of expert judgments and 
statistical fault prediction models.  
 
3. Study Subjects 

In this study we use two software systems (System 
A, and System B) developed by Ericsson. Both 
systems are working within the service layer of mobile 
phone network. We use System B to build prediction 
models that are later evaluated by applying them to 
System A. Because System A is used for evaluating, all 
experts invited to participate in this study are involved 
in the development of System A. 

 
3.1 Systems Under Study 

We use the most current releases of System A and 
System B. These are large telecommunication systems. 
Their sizes are about 800 classes (500 KLOC), and 
1000 classes (600 KLOC) for System A and System B, 
respectively. Both systems are mature and have been 
on the market for over 6 years. Both systems are 
implemented using C++. One of the projects has been 
developed in Sweden. The other one has mostly been 
developed in China.  

When analyzing the code we found that the most 
fault-prone code is the code introduced as modification 
to existing classes. In System A the modification of 
classes from the previous release accounted for 37% of 
the code written in the current release (63% of the new 
code was introduced as new classes). These 37% of the 
code contained 62% of the faults found in the project 
release we examine in this study. A similar trend has 
also been observed in System B - 44% of the code was 
introduced as modification to classes from the previous 
release. These 44% of the code contained 78% of all 
faults. Therefore, in our study we decided to focus 
specifically on the modified code.  

Both systems are divided into components, which 
contain classes. The number of components modified 
in the examined releases of the products was 35 in 
System A, and 41 in System B. That corresponds to 
249 modified classes in System A and 319 modified 
classes in System B. The information about faults was 
available both at the class and component level. 

 
3.2 Participating Experts 

We invited six experts to participate in the study. 
All of them are directly involved in the development of 
System A. All of them have several years of working 



Table 1. Metrics collected at the class level.
Name Variable Description 

Independent metrics 
Coup Coupling Number of classes the class is coupled to [8, 12] 
NoC Number of Children Number of immediate subclasses [8] 
WMC Weighted Methods per Class Number of methods defined locally in the class [8] 
RFC Response for Class Number of methods in the class including inherited ones[8] 
DIT Depth of Inheritance Tree Maximal depth of the class in the inheritance tree[8, 11] 
LCOM Lack of Cohesion “how closely the local methods are related to the local instance 

variables in the class” [12]. In the study LCOM was calculated as 
suggested by Graham [14, 15] 

Stmt Number of statements Number of statements in the code 
MaxCyc Maximum cyclomatic complexity The highest McCabe complexity of a function within the class 
ChgSize Change Size Number of new and modified LOC (from previous release) 

Dependent variables 
Faults Number of faults Number of faults found in the class 
FaultDensity Fault density Fault density of the class 

 

experience with System A. Their major tasks within 
System A are design and implementation.  

At the time of the study, the implementation of the 
examined release of System A was finished. All the 
experts are familiar with the architecture of System A. 
They all know what kind of functionality is 
implemented in each component. They also have 
extensive knowledge and experience in the system 
domain – telecommunications. All the experts know 
the scope of the current release of System A– they 
know what functionality was implemented and where. 

One risk of such a study set-up is that the 
developers may basically know the fault distribution. 
We believe it has not been the case in our study. The 
work in the project is organized according to the 
“component responsibility” idea - each developer is 
fully responsible for one or more components. Because 
of that, in practice, the developers do not have a global 
picture concerning fault distribution – they only 
receive information concerning the faults that were 
found in the components they are responsible for. 
Normally, they are not provided with any global 
statistics concerning faults. Therefore, their prediction 
concerning the faults made in this study is not based on 
any global statistics but on their own “gut-feeling”, 
based on experience and knowledge of the project.  

 
4. Methods 

In this section we present the methods we use in this 
study. Section 4.1 presents methods we used to build 
prediction models. Section 4.2 presents the way we 
collected and used the data gathered from our experts. 
In Section 4.3 we present the way in which we 
evaluated and compared both methods.  
 

4.1 Building Prediction Models 
Our models predict the fault density of individual 

code units. This can be predicted in two ways: 
- by predicting fault density (Faults/Size) – fault 

density is a dependant variable in the model. 
- by predicting the number of faults (Faults) and 

dividing the predicted number of faults by real size 
(Size) of the code unit – Faults are predicted by the 
model, while size (Size) is measured. 
We collected the data for prediction at the class and 

at the component level. The class level metrics are 
summarized in Table 1. These are mostly C&K [8] 
design metrics, and code metrics.  The component 
level metrics are summarized in Table 2. These are 
only code metrics. In the components we performed 
measurements only on classes that were modified.  

Similarly to [6], we build simple prediction models 
based on one predicator only. Such models do not 
suffer from multicolinearity risk [10]. Therefore, 
simple models are more likely to be stable over 
releases. Additionally, such models require less data to 
be collected compared to multivariate models. 
Obviously, by using one metric only, we deliberately 
give up the potential benefit from introducing more 
information, carried by other metrics, into the model. 

To select the best single fault predicators we 
performed a correlation analysis. A correlation analysis 
is commonly used for that purpose by other researchers 
[24, 32]. It quantifies the relation between two metrics 
as a value between -1 and 1. An absolute value close to 
one characterizes good predicator variables. Values 
close to zero indicate very weak linear relationship 
between the variables and thus low applicability of one 
variable to predict the other.  



Table 2. Metrics collected at the component level.
Name Variable Description 

Independent metrics 
CompStmt Number of statements  Number of statements in the component (only statements from 

modified classes in the component were counted) 
CompMeth Number of methods Number of statements in the component (only methods from modified 

classes in the component were counted) 
CompClass Number of modified classes Number of modified classes in the component  
CompChg Change size Number of new and modified LOC (compared to previous release) 

Dependent variables 
CompFaults Number of faults Number of faults found in the component 
CompFaultDensity Fault density Fault density of the component 

To build our prediction models we use the 
univariate linear regression. The univariate linear 
regression estimates value of the dependant variable 
(number of faults or fault-density) as a function of the 
independent variable [24]: 

f(x) = a + bx   (1) 
 

4.2 Expert Estimation 
The expected outcome of the expert estimation was 

a ranking of the code units according to their 
decreasing fault density. In the beginning of the study 
we performed a number of interviews to establish an 
appropriate level to perform the expert predictions. The 
question was if the experts should perform estimations 
at the class or at the component level. It quickly turned 
out that the class level presents too fine-grained 
information. Even though the experts knew what each 
component did, it was very difficult for them to predict 
the responsibility of particular classes. Additionally, 
the amount of data (249 classes) was considered 
unmanageable. The number of components (35 in 
System A) was much smaller. Therefore, the expert 
estimation was performed only at the component level.   

  The expert estimation was done individually by 
each of our experts. Later the individual rankings were 
used as an input to a consensus meeting. The goal of 
the meeting was a joint ranking of the components.  

During the individual rankings the experts were 
provided with a list of modified components. 
Additionally, for each component, we enclosed 
information concerning the subsystem the component 
belonged to, as well as the accumulated size of 
modified classes within the component, which is 
considered the cost of analyzing the component in our 
study. The experts were asked to indicate in which 
order they would analyze the components, so that they 
analyze the components with the highest fault densities 
first. Each expert was given an explanation concerning 
our study in order to assure the full understanding of 
the task they were asked to perform. 

The experts were allowed not to rank all the 
components. In fact, it turned out that no one ranked 

more than eight components. The experts said that they 
are able to identify a couple of the most fault prone 
components, but after a certain point they would put 
the components in random order.  
 
4.3 Prediction Evaluation 

We evaluate the statistical prediction models and 
the expert predictions from the perspective of the 
increase of the efficiency of fault detection they 
provide. Their goodness is measured by the amount of 
code necessary to analyze to detect a certain number of 
faults, i.e., one prediction is better if we are able to 
detect more faults by analyzing the same amount of 
code compared to another prediction. Therefore, we 
perform the evaluation by plotting the percentage of 
faults that would be detected if analyzing System A 
according to either the experts’ suggestions or the 
prediction model against the accumulated percentage 
of code that would have to be analyzed.  

In order to obtain a point of reference for our 
evaluations, we introduce two reference models: 
- Random model – the model describing completely 

random search for faults 
- Best model – the theoretical model in which code 

units are ordered by their actual fault density 
The Random model provides a baseline for our 

models as it describes what results, on average, we 
could expect if we analyzed the code not following any 
model. We believe that we should evaluate the 
predictions against the Random model because only in 
this way we are able to assess their practical value. 

The Best model provides a boundary of how good 
the prediction can be. Obviously, the Best model 
would be different for predictions at the class and at 
the component level. The class level prediction has 
finer granularity and therefore, at least theoretically, is 
able to provide more precise results. By comparing the 
Best model made for components and for classes we 
can assess the practical value of having finer 
granularity prediction.  

The evaluation of model predictions vs. expert 
estimations is performed by checking how each 



particular solution performs compared to the Best 
model, the Random model, and to each other. The 
closer the prediction is to the Best model the better it 
is. If the prediction is better than the Random model 
then we can say that using it presents an improvement 
over not using any method at all. 

 
5. Results 
5.1 Building Prediction Model  

As described in Section 4.1, the building of 
prediction models begins with a correlation analysis. 
The goal of the correlation analysis is to select the best 
individual fault predicator. The correlation analysis 
was performed for both class and component level 
metrics. The results of correlation analysis are 
presented in Table 3.  

As it can be noticed in Table 3, the most promising 
fault predicator for both classes and components is the 
size of the modification (ChgSize metric at class level, 
and CompChg metric at the component level). The 
highest correlations are marked in bold in Table 3. In 
both cases the correlation coefficients are the highest 
when predicting the number of faults. Therefore, we 
build models that predict the number of faults and we 
divide their output by the size of the respective code 
unit, i.e., class or component. 

The models based on ChgSize and CompChg are 
built using linear regression. The results are presented 
in Table 4. As both models are based on the 
information concerning the size of the modification, 
not surprisingly the models are quite similar.  

 
5.2 Expert Estimation 

The distribution of “votes” of experts, the group 
consensus, and the actual ranks of the components are 
presented in Table 5. Only the components that were 
selected by at least one expert are presented.  

 In the individual rankings neither of our experts 
ranked all 35 components. Each expert ranked between 
5 and 8 components. Altogether experts pointed out 15 
different components, i.e., neither had any opinion 
about the fault-proneness of the remaining 20 
components. These 15 ranked components account for 
about 60% of the code.  

The “group consensus” was apparently more 
difficult to reach than individual rankings because the 
experts ranked only 4 components i.e., less than in any 
individual ranking. These four components accounted 
for about 30% of the code.  

 In Table 5 it can be noticed that in the individual 
rankings the components can be divided into two 
subgroups. One subgroup contains components that 
were selected by a majority of the experts, i.e., four 
and more experts pin-pointed them. These are 
components with numbers: 1, 3, 4, 5, 9, 10. To the 
other group belong the components selected only by 
one or two interviewees, i.e., components with 
numbers: 2, 6, 7, 8, 11-15. It is quite clear that apart 
from two exceptions (Component 1, and Component 
10) there is a rather large discrepancy between the 
ranks assigned by experts to the components. This 
means that, despite the fact that most experts 
considered a certain component fault-prone, their 
estimation of its fault-density was different. 

All components ranked in the “group consensus” 
ranking are the components that were selected by the 
majority of experts in the individual rankings. 
Component 1 and Component 10 were ranked 
according to the trend from the individual rankings, 
which is not surprising - the experts were consistent in 
ranking them as the first and the third in their 
individual rankings. Ranking Component 9 and 
Component 4 as the second and the fourth respectively 
must have been an outcome of the group discussion, 

Table 3.  Correlation analysis results at the class and the component level. The highest correlations for 
respective levels (class, component) are marked in bold.  

Class level metrics Component level metrics 
 

Coup NOC WMC RFC Stmt MaxCyc DIT LCOM ChgSize Comp 
Chg 

Comp 
Stmt 

Comp 
Meth 

Comp 
Class 

Faults 0.25 -0.01 0.14 0.04 0.26 0.31 -0.07 0.13 0.60 0.79 0.63 0.35 0.55 
Fault 

Density 0.06 -0.01 -0.01 -0.03 -0.02 0.01 -0.01 0.05 0.20 0.21 0.07 0.01 0.09 

Table 4.  Prediction models build in the study. “Prediction level” indicates if the models works at class or at 
component level. “Model calculated” is the model obtained by linear regression. “Model applied” is the 

transformation of the “Model calculated” so that it predicts fault density instead of the number of faults. 

Model name Prediction 
level Model calculated Model applied 

ComponentPred Component Faults = 0.002*ComChg+0.209 FaultDensity = (0.002*ComChg+0.209) / CompStmt 
ClassPred Class Faults = 0.002*ChgSize+0.018 FaultDensity = (0.002*ChgSize+0.018) / Stmt 
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Figure 1. Reference models - evaluation 

because such ranking was not suggested by any 
individual expert.  

At this point we can also perform some partial 
assessment of expert prediction accuracy. By 
comparing the results of individual experts with the 
actual ranking of components (the last row in the table) 
we can see that out of the 15 components they pointed 
to, only 8 belong to the actual 15 components with the 
highest fault densities. By comparing the “consensus 
group” ranking with the actual ranking of components 
we can see that neither of the components pin-pointed 
by the experts belongs to the top 4 components with 
highest fault-density.  

 
5.3 Prediction evaluation 

Our prediction starts with reference models 
building. We build three reference models, one 
describing an average result of random picking of code 

units for analysis (Random model), and two models 
describing the theoretical best result that can be 
obtained. One of them describes the maximum that can 
be obtained when predicting faults at the class level 
(Best model class), the other when predicting at the 
component level (Best model component). These 
models are presented in Figure 1.  

As it can be noticed in Figure 1 the Random model 
is quite far from the best possible model. For example, 
by analyzing 20% of the code randomly we can find 
20% of faults. By analyzing appropriate 20% of code 
we should find up to 70% of the faults in case of class 
level prediction and up tp 50% of faults if the 
prediction was made at the component level. This also 
indicates that, at least theoretically, the class level 
prediction should give better results, because the class 
level prediction is more fine-grained and therefore 
more precise. From Figure 1 we see that theoretically 

Table 5. The rankings of individual experts and the joint ranking of all experts. Only 15 components out of 
35 were selected, and only those components are presented in the table below. Lower rank value indicates 

higher fault-density in the component predicted by expert. “Correct ranking” is the actual rank of the 
component when all 35 components are ranked. 

Component 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Expert1 ranking 2  4 1     5  3     
Expert2 ranking 1    2   4  3   5   
Expert3 ranking 1 5 7 6 4    2 3      
Expert4 ranking 1  3 6 7  5  4 2      
Expert5 ranking 2  1  7     3 6 5 8  4 
Expert6 ranking   2 1 8 7  6 5 4    3  

Group consensus ranking 1   4     2 3      
Correct ranking  10 5 9 8 22 18 12 25 17 6 16 7 26 24 13 



the component level prediction can provide about one-
third of the improvement over the random model 
offered by the class level prediction (in Figure 1 the 
distance between Best model component and Best 
model class is more or less equal to 1/3 of the distance 
between the Best model class and Random model).  

The evaluation of prediction models and expert 
estimations is presented in Figure 2. We present all the 
individual expert estimations, “group consensus”, both 
statistical prediction models (ClassPred, 
ComponentPred) and all the reference models.  

From Figure 2 we can conclude that both statistical 
prediction models clearly outperform expert 
estimations. They not only offer higher accuracy in the 
range of code covered by expert estimations 
(approximately up to 50% of code) but also provide 
prediction, which is better compared to the Random 
model for the rest of the code. By comparing ClassPred 
with the best of expert estimations for the percentage 
of code covered by expert estimations we can see that 
ClassPred offers about three times as big improvement 
over the Random model as the best of expert 
estimations.  

Other findings from Figure 2 concern the gain from 
using more fine grained information and predicting at 
the class level. As we can see, there is a clear practical 
gain connected with predicting at the class level. For 
example, for the range of code covered by expert 
estimations the gain from using ClassPred is almost 

equal to the maximum possible gain from using any 
component level prediction model, i.e., the Best model 
component. Our component level prediction model 
ComponentPred is not even close to that. 

Surprisingly for us, the “Group consensus” 
estimation turned out to be one of the worst estimations 
made by the experts. Some of individual estimations 
were actually not only more correct but they also 
accounted for more code.   

 
6.  Discussion 
6.1 Findings 
 

The results obtained in our study seem to support 
the idea of building fault prediction models. By 
comparing the accuracy of fault prediction, and the 
increase of fault detection efficiency connected with it, 
we showed that statistical models have two major 
advantages over human estimation.  

The first advantage is that they are not affected by 
the size of dataset and therefore they are able to rank 
the entire project. The experts that we were invited to 
participate in this study were able to rank 5 to 8 out of 
35 components. The second advantage of prediction 
models is that they can easily operate on fine-grained 
data. In our case, while the class level prediction was 
not feasible for our experts to perform, the statistical 
prediction model accomplished this task with very 
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Figure 2. Prediction model vs. expert estimation – evaluation.  



good results. This advantage is partially caused by the 
statistical model’s ability of coping with large datasets, 
but also by human inability to grasp and understand 
large system structures (e.g., 250 classes in our case).  

There is also one more advantage of predication 
models, not evaluated in this study. It is their cost. 
They are reasonably cheap to build and even cheaper to 
apply – normally they can be implemented in the form 
of e.g., script that collects and processes all the 
information automatically. Expert estimation is more 
expensive, since for each project it must be set up and 
performed independently. Obviously to perform expert 
estimation we need experts – sometimes, in relatively 
new projects, or when projects are overtaken by other 
team, the experts might simply not be available. 

On the other hand an expert estimation has other 
advantages. A statistical prediction model predicts 
faults, but it does not classify them in any way. 
Naturally, not all faults are the same – some of them 
might be more difficult to find than the others, because 
they may be related to the complexity of the 
functionality that the code implements. Some faults 
may be more severe than the others. It is possible that 
the experts tend to pin-point more correctly the 
components that are more likely to contain this kind of 
faults.  Due to the lack of appropriate data concerning 
fault severity we could not verify this hypothesis in our 
study. Also the experts take into account information 
that is not present in the statistical model – e.g., in our 
case the size of the change is considered to be the best 
fault predicator. However, in the project, it might 
happen so, that even though the change in the 
component is relatively small, there was a number of 
people involved in introducing it, which may make it 
more prone to faults compared to the change 
introduced by a single designer. 

The results obtained in our study quite clearly show 
that prediction models outperformed expert estimation 
in almost every aspect. They were reasonably accurate 
and consistent in providing improvement over the 
Random model for any percentage of the code. Also, 
when analysing expert estimations, we can find a 
number of worrying factors. The experts did not agree 
with each other, they either selected different 
components, or, if they selected the same components, 
they estimated their fault density differently. From 
Table 3 we can see that even though most of the 
experts agreed on high fault densities in some of the 
components, in fact the components they selected are 
actually not the most fault-prone in the entire system. 
Neither of the experts mentioned any of the actual four 
most fault-prone components in the system.  
 

6.2 Validity 
The reader must bear in mind that this paper has 

been meant more as an experience report than a formal 
experiment. Our selection of projects, and selection of 
experts are convenience-based – we selected projects 
and experts that were available to us. Probably 
selecting different experts could have given different 
results. Also the entire exercise was not performed as a 
controlled experiment and we can not assure that e.g., 
the experts did not have some partial knowledge about 
the actual fault-proneness of the components. The 
number of the experts was also small and therefore it is 
difficult to generalize their performance to the 
performance of experts at all. 

However, we still believe that some general lessons 
can be learned from our study.  It seems quite probable 
that most experts would face the problems our experts 
faced, e.g., problems with coping with large amounts 
of fine-grained data. It is also sure that prediction on a 
low level, like e.g., the class level, would give better 
results compared to prediction on a higher level, e.g., 
the component level. We are almost sure that for most 
medium-to-large system the class level prediction is 
not feasible to be performed by people. 

We also believe that the statistical prediction 
models obtained in our study are general. When 
building them we followed a good academic practise of 
building models on other system than the system used 
to evaluate the models.  

Most issues concerning expert estimation validity, 
like the experts’ possible knowledge about actual fault 
distribution, should result in better than average 
performance of experts. This might be considered an 
argument supporting our conclusions, because, even 
with this “handicap”, the expert estimations where 
outperformed by the statistical prediction models.  

  
7. Conclusions 

The goal of this study was to compare the accuracy 
of fault prediction made by a statistical fault prediction 
model and by human experts. To perform the 
comparison we built two simple statistical fault 
prediction models and we asked a number of experts to 
perform the individual as well as group estimations of 
fault-proneness of components from a large 
telecommunication system.  

The evaluation was performed from the perspective 
of fault detection efficiency increase that could be 
obtained if analyzing the code according to suggestions 
made by experts or made by the statistical models. 
Additionally, the models were evaluated against three 
reference models: model based on a random selection 
of the code units for analysis, the theoretical best 
model for predicting faults at the class level, and the 



theoretical best model for predicting faults at the 
component level. 

We found that both expert estimations and statistical 
models actually provide an improvement over the 
random search for faults. When it comes to comparing 
both methods we found that statistical models 
outperform expert estimations. For the percentage of 
code covered by the expert estimations the best 
statistical fault prediction model offered three times as 
big improvement over the random search for faults as 
compared to the best of expert estimations. Moreover, 
it continued to provide an improvement even after the 
point where the experts gave up.  

We identified two reasons for statistical models 
being better. Statistical models are not affected by the 
size of dataset, while human ability to grasp and assess 
the complexity of large systems is seriously limited. 
The ability to deal with large datasets gives the 
statistical models an ability to perform more fine-
grained estimations, i.e., estimations at lower level.  

In this study we showed that the more fine-grained 
prediction (e.g., prediction at the class instead of at the 
component level) is not only better from theoretical but 
also from practical perspective. Our class level 
prediction model was more accurate compared to the 
component level prediction model. In fact, it was very 
close to the theoretical maximum the component level 
prediction can provide. 

In the study we also discussed other advantages and 
disadvantages of statistical prediction models and 
expert estimations. Apart from what we have 
mentioned before, the statistical methods have also two 
other important advantages – there are reasonably 
cheap to build and apply, as well as they can be used in 
the absence of experts (e.g., when project is transferred 
to another development organization). On the other 
hand expert estimations can take into account issues 
not present in the statistical model, e.g., severity of the 
faults, testability of the components, or basically 
factors other than those that are taken into account in 
the prediction model. 
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