A CUDA Implementation of Random Forests - Early Results

Hakan Grahn, Niklas Lavesson, Mikael Hellborg Lapajne, and Daniel Slat
School of Computing, Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden
Hakan.Grahn@bth.se, Niklas.Lavesson@bth.se

ABSTRACT

Machine learning algorithms are frequently applied in data
mining applications. Many of the tasks in this domain con-
cern high-dimensional data. Consequently, these tasks are
often complex and computationally expensive. This paper
presents a GPU-based parallel implementation of the Ran-
dom Forests algorithm. In contrast to previous work, the
proposed algorithm is based on the compute unified device
architecture (CUDA). An experimental comparison between
the CUDA-based algorithm (CudaRF), and state-of-the-art
parallel (FastRF) and sequential (LibRF) Random forests
algorithms shows that CudaRF outperforms both FastRF
and LibRF for the studied classification task.

1. INTRODUCTION

Machine learning (ML) algorithms are frequently applied
in data mining and knowledge discovery. The process of
identifying patterns in high-dimensional data is often com-
plex and computationally expensive, which result in a de-
mand for high performance computing platforms. Random
Forests (RF) [1] has been proven to be a competitive al-
gorithm regarding both computation time and classification
performance. Further, the RF algorithm is a suitable can-
didate for parallelization. This has already been exploited,
e.g., the Fast Random Forests (FastRF) algorithm in the
Weka machine learning workbench [13].

Graphics processors (GPUs) are today extensively employed
for non-graphics applications, and the area is often referred

to as General-purpose computing on graphics processing units,

GPGPU [3, 4]. Initially, GPGPU programming was carried
out using shader languages such as HLSL, GLSL, or Cg.
However, there was no easy way to get closer control over
the program execution on the GPU. The compute unified
device architecture (CUDA) is an application programming
interface (API) extension to the C programming language,
and contains a specific instruction set architecture for access
to the parallel compute engine in the GPU. Using CUDA, it
is possible to write (C-like) code for the GPU, where selected

segments of a program are executed on the GPU while other
segments are executed on the CPU.

Several machine learning algorithms have been successfully
implemented on GPUs, e.g., neural networks [10], support
vector machines [2], and the Spectral clustering algorithm [11].
However, it has also been noted on multiple occasions that
decision tree-based algorithms may be difficult to optimize
for GPU-based execution. To our knowledge, GPU-based
Random Forests have only been investigated in one previ-
ous study [9], where the RF implementation was done using
Direct3D and the high level shader language (HLSL).

In this paper, we present a highly parallel CUDA-based im-
plementation of the Random Forests algorithm. The al-
gorithm is experimentally evaluated on a NVIDIA GT220
graphics card with 48 CUDA cores and 1 GB of memory.
The performance is compared with two state-of-the-art im-
plementations of Random Forests; one sequential, i.e., Li-
bRF [6], and one parallel, i.e., FastRF in Weka [13]. Our
results show that the CUDA implementation is 2.9 — 4.2
times faster than FastRF and 7.7 — 9.2 times faster than
LibRF for 128 trees and k-values between 6 and 16.

The rest of the paper is organized as follows. Section 2
presents the random forests algorithm, and Section 3 presents
CUDA and the GPU architecture. Our CUDA implementa-
tion of Random Forests is described in Section 4. The exper-
imental methology and the results are presented in Section 5
and Section 6, respectively. Finally, we discuss and conclude
our findings in Section 7.

2. RANDOM FORESTS

The concept of Random Forests (RF) was first introduced
by Leo Breiman [1]. It is an ensemble classifier consisting of
decision trees. The idea behind Random Forests is to build
many decision trees from the same data set using bootstrap-
ping and randomly sampled variables to create trees with
variation. The bootstrapping generates new data sets for
each tree by sampling examples from the training data uni-
formly and with replacement. These bootstraps are then
used for constructing the trees which are then combined in
to a forest. This has proven to be effective for large data
sets with missing attributes values [1].

Each tree is constructed by the principle of divide-and-conquer.
Starting at the root node the problem is recursively broken
down into sub-problems. The training instances are thus

divided into subsets based on their attribute values. To de-
cide which attribute is the best to split upon in a node,
k attributes are sampled randomly for investigation. The
attribute that is considered as the best among these candi-
dates is chosen as split attribute. The benefit of splitting on
a certain attribute is decided by the information gain, which
represents how good an attribute can separate the training
instances according to their target attribute. As long as
splitting gives a positive information gain, the process is re-
peated. If a node is not split it becomes a leaf node, and is
given the class attribute that is the most common occurring
among the instances that fall under this node. Each tree is
grown to the largest extent possible, and there is no pruning.

When performing classifications, the input query instances
traverse each tree which then casts its vote for a class and
the RF considers the class with the most votes as the answer
to a classification query.

There are two main parameters that can be adjusted when
training the RF algorithm. First, the number of trees can
be set by the user, and second, there is the k value, i.e., the
number of attributes to consider in each split. These param-
eters can be tuned to optimize classification performance for
the problem at hand. The random forest error rate depends
on two things [1]:

e The correlation between any two trees in the forest. In-
creasing the correlation increases the forest error rate.

e The strength of each individual tree in the forest. A
tree with a low error rate is a strong classifier. Increas-
ing the strength of the individual trees decreases the
forest error rate.

Reducing k reduces both the correlation and the strength.
Increasing it increases both. Somewhere in between is an
optimal range of k. By watching the classification accuracy
for different settings a good value of k can be found.

Creating a large number of decision trees sequentially is in-
effective when they are built independently of each other.
This is also true for the classification (voting) part where
each tree votes sequentially. Since the trees in the forest are
independently built both the training and the voting part
of the RF algorithm can be implemented for parallel exe-
cution. An RF implementation working in this way would
have potential for great performance gains when the number
of trees in the forest is large. Of course the same goes the
other way; if the number of trees in the forest is small it may
be an ineffective approach. This will become clearer when
looking at our architecture and implementation in Section 4
of the document.

3. CUDA AND GPU ARCHITECTURE

The general architecture for the NVIDIA GPUs that sup-
ports CUDA is shown at the top of Fig. 1. The GPU has
a number of CUDA cores, a.k.a. shader processors (SP).
Each SP has a large number of registers and a private local
memory (LM). Eight SPs together form a streaming multi-
processor (SM). Each SM also contains a specific memory
region that is shared among the SPs within the same SM.

Thread synchronization through the shared memory is only
supported between threads running on the same SM. The
GPU is then built by combining a number of SMs. The
graphics card also contains a number of additional memo-
ries that are accessible from all SPs, i.e., the global (often
refer to as the graphics memory), the texture, and constant
memories.

[Multiprocessor N

ared memory

G

| Shared memory | t

E ot 3 e[][T T
SP SP |eee | SP [R i A LM Iﬂl
I tn iu M

LM |LM| LM

Multiprocessor 2 |

Multiprocessor 1

SP | o0

v v vV Vvy Vl \ A\
| Global Memory |

Property Value
CUDA cores 48
Compute capability 1.2
Graphics/Processor clock 625 MHz/1.36 GHz

Total amount of memory 1 GB
Memory interface 128-bit DDR3, 25.3 GB/s

Figure 1: The GPU architecture assumed by
CUDA (upper), and the main characteristics for the
NVIDIA GeForce GT220 graphics card (lower).

The GPU used for algorithm development and experimental
evaluation in the presented study is the Nvidia GT220. The
relevant characteristics of this particular GPU is described
at the bottom of Fig. 1. In order to utilize the GPU for com-
putation, we must transfer all data from the host memory
to the GPU memory, thus the bus bandwidth and latency
between the CPU and the GPU may become a bottleneck.

A CUDA program consists of two types of code: sequential
code executed on the host CPU and CUDA functions, or
’Kernels’, launched from the host and executed in parallel on
the GPU. Before a kernel is launched, the required data (e.g.,
arrays) must have been transferred from the host memory
to the device memory, which can be a bottleneck [8]. When
data is placed in the GPU, the CUDA kernel is launched in
a similar way as calling a regular C function.

When executing a kernel, a number of CUDA threads are
created and each thread executes an instance of that kernel.
Threads are organized into blocks with up to three dimen-
sions, and then, blocks are organized into grids, also with
up to three dimensions. The maximum number of threads
per block and number of blocks per grid are hardware de-
pendent. In the CUDA programming model, each thread
is assigned a local memory that is only accessible by the
thread. Each block is assigned a shared memory for com-

munication between threads in that block, while the global
memory which is accessible by all threads executing the ker-
nel. The CUDA thread hierarchy is directly mapped to the
hardware model of GPUs. A device (GPU) executes ker-
nels (grids) and each SM executes blocks. To utilize the full
potential of a CUDA-enabled NVIDIA GPU, thousands of
threads should be running, which requires a different pro-
gram design than for today’s multi-core CPUs.

4. A CUDA IMPLEMENTATION OF RF

4.1 Basic assumptions and execution flow

Both the training phase and the classification phase are par-
allelized in our CUDA implementation. The approach taken
is similar to the one in the study by Topic et al. [12]. In our
implementation we use one CUDA thread to build one tree
in the forest, since we did not find any straight-forward ap-
proach to build individual trees in parallel. Therefore, our
implementation works best for a large number of trees.

Many decision tree algorithms are based on recursion, e.g.,
both the sequential and parallel Weka algorithms are based
on recursion. However, the use of recursion is not possible in
the CUDA-based RF algorithm since there is no support for
recursion in kernels executed on the graphics device. There-
fore, it was necessary to design an iterative tree generator
algorithm.

The following steps illustrate the main execution steps in
our implementation. Further, Figure 2 shows which parts
of the execution that are done on the host CPU and on the
device GPU, respectively, as well as the data transfers that
take place between the host and the device (GPU). Steps 2-8
are repeated N times when N-fold cross-validation is done.

1. Training and query data is read from an ARFF data
set file to the host memory.

2. The training data is formatted and missing attribute
values are filled in, and then the data is transferred to
the device memory.

3. (a) A CUDA kernel with one thread per tree in the
forest is launched. A parallel kernel for the bag-
ging process is executed where each tree gets a
list of which instances to use. Instances not used
by a tree are considered as the out of bag (oob)
instances for that tree.

(b) The forest is constructed in parallel on the GPU
using as many threads as there shall be trees in
the forest.

(c) When the forest is completely built, each tree per-
forms a classification run on its oob instances.
The results of the oob run are transferred back
to the host for calculation of the oob error rate.

4. The host calculates the oob error rates.

5. The query data is transferred from the host memory
to the device memory.

6. A CUDA kernel for prediction with one thread per
tree in the forest is launched, i.e., we calculate the
predictions for all trees in parallel.

HOST DEVICE

Data is read from file

Data is formatted

and fills added Data is transferred

to Device >
R
Selects individual
training data for trees
e/

Grows forest

e
)

Qob votes are Predicts oob instances

transferred to Host

\, J

Calculates oob error
rate and presents

information Query data is transferred

to Device
>

Votes are transferred Predlﬂs pamid
instances
to Host

Votes are counted

Results are presented
Results are written to file

Figure 2: Execution flow and communication be-
tween Host and Device for CudaRF.

7. The execution returns to the host and the results are
transferred from the device memory to the host mem-
ory.

8. The results are presented on the host.

We will now describe in more detail how the trees are con-
structed during the training phase, i.e., step 3, and how we
use them for classification, i.e., step 6. Each tree in the
forest is built sequentially using one thread per tree during
the training phase. If N threads are executed, then N trees
are built in parallel. Therefore, our implementation works
best for a large number of trees. At each level in a tree, the
best attribute to use for node splitting is selected based on
the maximum entropy, instead of the gini impurity criterion,
among k randomly selected attributes. When all trees are
built, they are left in the device memory for use during the
classification phase.

The classification phase, i.e., step 6, is done fully in parallel
by sending all instances to be classified to all trees at the
same time. One thread is executed for each tree and predicts
one outcome of that decision tree for each query instance.
When all threads have made their decisions, all prediction
data is transferred the host. The host then, sequentially,
summarizes the voting made by the trees in the forest for
one query instance at the time.

4.1.1 Random number generation

The Random Forests algorithm requires the capability to
generate random or pseudo-random numbers for data sub-
set generation and attribute sampling. Currently, there is no

random number generator included in the CUDA math li-
brary. Thus, we had to implement a random number genera-
tor. We based our random generator design on the Mersenne
Twister [7] implementation included in the CUDA SDK. The
algorithm is based on a matrix linear recurrence over a finite
binary field F> and supports the generation of high-quality
pseudo-random numbers. The implementation has the abil-
ity to generate up 4,096 streams of pseudo-random numbers
in parallel.

4.1.2 ARFF Reader

Training and test data is read from ARFF files [13] and a
custom ARFF file reader has been implemented. This is
advantageous since we then have the ability to read and use
commonly available data sets. Thus, we are able to compare
our results with other RF implementations supporting the
ARFF format.

4.2 GPU and CUDA specific optimizations

4.2.1 Mathematical optimizations

To increase performance, we make use of the fast math li-
brary available in CUDA when possible. For example, we
use the faster but less precise __logf () instead of the regu-
lar log function, logf (). We expect that the loss in precision
is not significant for our classification precision and instead
focus on achieving a higher performance in terms of speed.
The motivation is that RF is based on sampled variables, so
a less precise sampling is assumed not to significantly impact
the outcome of the classifier.

Throughput of single-precision floating-point division is 0.88
operations per clock cycle, but __fdividef (x,y) provides a
faster version with a throughput of 1.6 operations per clock
cycle. In our implementation log, is commonly used, and to
increase performance we have statically defined the value so
it does not have to be computed repeatedly.

4.2.2 Memory management optimizations

Several optimizations have been done to improve host-device
memory transfers, and also to minimize the use of the rather
slow global device memory.

The test data are copied to the device as a one-dimensional
texture array to the texture memory. These texture arrays
are read only, but since they are cached (which the global
memory is not) this improves the performance of reading
memory data. A possible way to increase the performance
further might be to use a two-dimensional texture array in-
stead, since CUDA is optimized for a 2D array and the size
limit will increase substantially.

We use page-locked memory on the host where it is pos-
sible. For example, the cudaHostAlloc() is used instead
of a regular malloc when reading the indata. As a result,
the memory is allocated as page-locked which means that
the operating system cannot page out the memory. When
page-locked memory is used a higher PCI-E bandwidth is
achieved than if the memory is not page locked [8].

Global € constant variables are optimized by using the con-
stant memory on the device as much as possible. This is pri-
marily to reserve registers, but since the constant memory is

cached it is also faster than the global memory [8]. The size
of the constant memory is limited though and everything we
would like to have in it does not fit. To further preserve reg-
isters and constant memory, the number of attributes passed
to each method/kernel are kept to a minimum since these
variables are stored in the constant memory.

4.2.3 Entropy Reduction

In our implementation, we have decided not to use Gini im-
portance calculation for node splitting. Instead, we use en-
tropy calculations to find the best split. This has the advan-
tage of moving execution time from training to classification.
In addition, since we have a large amount of computation
power to make use of, the extra computation needed for en-
tropy calculations does not significantly affect performance.
Hypothetically, the entropy calculation can be further opti-
mized by parallelization, but this is left to future work.

5. EXPERIMENTAL PROCEDURE

The aim of the experiment is to compare the computation
time of the proposed CUDA-based RF with its state-of-the-
art sequential and parallel CPU counterparts. The software
platform used consists of Microsoft Windows 7 together with
Cuda version 2.3. The hardware platform consists of an Intel
Core i7 CPU and 6 GB of DDR3 RAM. The GPU used is
an NVIDIA GT220 card with 1 GB.

5.1 Algorithm selection

Three RF algorithms are compared in the experiment: the
parallel CPU-based Weka version (FastRF), the sequential
C++ RF library version (LibRF), and the proposed CUDA-
based version (CudaRF). All included algorithms are default
configured with a few exceptions. In the experiment, we
vary two configuration parameters (independent variables)
to establish their effect on computation time (the dependent
variable). The first parameter is the number of attributes
to sample at each split (k) and the second parameter is the
number of trees to generate (trees, t). These variables repre-
sent typical algorithm parameters that are changed (tuned)
to increase classification performance. We are not primarily
interested in establishing which parameter configuration has
the most impact on classification performance. Rather, it is
of interest to verify that CudaRF performs comparably to
the other algorithms in terms of classification performance.

5.2 Evaluation

We collect measurements across k = 1,...,21 with step size
5 and trees= 1,...,256 with an exponential step size for
all included algorithms, in terms of computation time with
regard to total time, training time, and classification time,
respectively. For the purpose of the presented study, we
have selected one particular high-dimensional data set; the
publicly available end user license agreement (EULA) col-
lection [5]. This data set consists of 996 instances defined
by 1,265 numeric attributes and a nominal target attribute.
The k parameter range has been selected on the basis of the
recommended Weka setting, that is, k = log, a + 1, where
a denotes the number of attributes. For the EULA data
set, this amounts to log, 1265 4+ 1 ~ 11. The aim of this
particular classification problem is to learn to distinguish
between spyware and legitimate software by identifying pat-
terns in the associated EULAs. We argue that the number of

Table 1: Experimental measurements of time consumption (ms) for £k =1,...,21 and trees, t =1,...,256
LibRF FastRF CudaRF
k 1 6 11 16 21 1 6 11 16 21 1 6 11 16 21
t Training time
T 368 446 449 442 443 86 126 195 265 321 | 1274 919 1309 1478 1371
2 748 969 856 844 850 155 245 367 514 588 2788 1851 1992 2520 2535
4 1481 1738 1748 1730 1708 326 499 729 978 1194 2581 1570 2091 2258 2491
8 3033 3461 3293 3186 3332 622 1000 1424 1925 2389 2786 1716 1973 2297 2660
16 6179 6881 6710 6596 6335 1256 1984 2890 3847 4829 3260 1774 2065 2346 2619
32 12234 13678 13544 13957 12809 2521 3978 5823 7815 9711 4009 1876 2213 2463 2825
64 23236 27561 27291 26225 26107 4971 7961 11729 15518 19282 6113 3488 4040 4564 5191
128 | 50304 51407 52326 56422 52393 9903 16004 23255 30616 38307 9580 5470 6269 7252 8200
256 | 98317 93914 84650 95797 103289 | 19513 32190 46652 61480 76340 | 16995 10469 11933 13717 15682
t Testing time
1 21 18 30 16 21 5 4 4 5 16 86 52 46 42 32
2 33 23 18 16 16 10 6 6 6 16 115 71 57 59 54
4 20 21 20 23 22 16 10 10 10 26 127 58 62 52 43
8 26 29 24 21 20 31 25 19 18 17 131 64 58 51 53
16 31 41 42 36 42 60 38 36 34 33 137 68 59 55 50
32 66 73 67 70 62 120 74 71 66 62 146 72 62 57 55
64 108 130 117 111 111 257 152 141 132 125 147 76 66 59 58
128 193 243 215 208 203 526 320 298 278 270 270 133 117 107 103
256 361 465 420 402 388 1067 654 594 566 555 409 209 178 165 158
t Total time
1 389 463 479 458 464 92 130 199 270 326 1360 971 1354 1520 1403
2 782 992 874 859 866 165 251 373 520 588 2903 1923 2049 2579 2589
4 1501 1759 1768 1753 1730 341 509 739 988 1217 2708 1628 2153 2309 2533
8 3059 3490 3317 3207 3353 653 1025 1443 1943 2407 2917 1780 2031 2349 2713
16 6210 6922 6752 6632 6377 1316 2022 2926 3881 4862 3397 1842 2124 2401 2669
32 | 12299 13751 13611 14027 12871 | 2641 4052 5894 7881 9773 | 4155 1947 2275 2521 2880
64 23344 27690 27408 26336 26217 5227 8113 11870 15651 19407 6260 3565 4106 4623 5249
128 | 50497 51650 52541 56629 52596 | 10430 16326 23553 30893 38577 9850 5602 6386 7359 8303
256 | 98678 94378 85070 96199 103678 | 20580 32843 47246 62046 76895 | 17404 10679 12110 13883 15840
instances and dimensionality of the EULA data set are suffi- !
cient for the purpose of comparing the computation time of 3 K
the included RF algorithms. In addition, we collect classifi- § N B
cation performance measurements in terms of accuracy for /!
. . o 1
the aforementioned RF configurations. g ;
: © '
6. RESULTS E o
With regard to computation time, the experimental results §
clearly show that, for the studied classification task, Cud- o
aRF outperforms FastRF and LibRF. This is true in gen- S |
eral, that is, when the average result is calculated for each &
algorithm, but also for each specific configuration when the
number of trees, k > 10. The complete set of computation © - — —
time results are presented in Table 1.
1 2 5 10 20 50 200
Figure 3 shows the log-scaled computation time, averaged Trees

over all k, for each algorithm. It is evident that the par-
allelization of tree generation greatly reduces the computa-
tion time and that the GPU-based CudaRF is much more
capable than the CPU-based FastRF on this task of paral-
lelization. With respect to classification performance, the
average difference between CudaRF and FastRF across the
45 configurations is 0.935 — 0.923 = 0.012, i.e., 1.2%, which
by no means can be regarded as significant. This difference
can be attributed in part to the different attribute splits and
the difference in cross-validation stratification procedures.

Figure 4 contains 3D plots of the total consumed time for the
included algorithms (the computation time for both training
and testing). The scale of the z-axis (time) has intention-
ally been chosen to correspond to the worst result of each
algorithm to allow for a more detailed cause-effect analy-
sis. Local minima for LibRF and CudaRF can be found at
k = 11 and k = 6, respectively, while the best k for Fas-

Figure 3: The average consumed time (ms) dur-
ing tree generation for CudaRF (solid line), FastRF
(thick dashed line), and LibRF (dashed line).

tRF is the lowest (1). Insofar that k is kept very low, the
performances of FastRF and CudaRF are practically iden-
tical irrespective of the number of trees. However, as k is
increased to levels commonly used in applied domains (for
example, k = 11 would be recommended by Weka for the
EULA data set), CudaRF quickly starts to outperform Fas-
tRF as the number of trees is increased. Similarly, for a low
number of trees, the performance of LibRF is almost equiv-
alent to the other algorithms but as the number of trees is
increased, the consumed time of LibRF increases linearly.

Figure 4: The consumed time (ms) during train-
ing and testing for CudaRF (top), FastRF (mid-
dle), and LibRF (bottom) for £k = 1,...,21 and
trees=1,...,256.

7. CONCLUDING REMARKS

We have presented a new parallel Random Forests algo-
rithm, CudaRF, implemented using the compute unified de-
vice architecture (CUDA). Our experimental comparison of
CudaRF with the state-of-the-art parallel (FastRF) and se-
quential (LibRF) Random forests algorithms shows that Cu-
daRF outperforms both FastRF and LibRF in terms of com-
putational time, at least for the studied classification task (a
data set featuring 996 numeric inputs and a nominal target).
Unlike FastRF (which is also based on parallelized tree gen-
eration), the proposed CudaRF algorithm executes on the
graphics processing unit (GPU). Since the difference in clas-
sification performance between the algorithms is negligible,
it is evident that CudaRF is more efficient than FastRF and
LibRF, especially when the number of attributes to sample
at each split and the number of trees to generate grow.

8. REFERENCES

[1] L. Breiman. Random forests. Machine Learning,
45:5-32, 2001.

[2] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast
support vector machine training and classification on
graphics processors. In Proc. of the 25th Int’l Conf. on
Machine Learning, pages 104-111, 2008.

[3] D. Geer. Taking the graphics processor beyond
graphics. IEEE Computer, 38(9):14-16, Sep. 2005.

[4] GPGPU: General-Purpose computation on Graphics
Processing Units. http://www.gpgpu.org.

[5] N. Lavesson, M. Boldt, P. Davidsson, and
A. Jacobsson. Learning to detect spyware using end
user license agreements. Knowledge and Information
Systems, 2010. In press.

[6] B. Lee. LibRF: A library for random forests, 2007.
http://mtv.ece.ucsb.edu/benlee/librf . .html.

[7] M. Matsumoto and T. Nishimura. Mersenne Twister:
A 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Transactions
on Modeling and Computer Simulation, 8:3-30, 1998.
NVIDIA Corporation. NVIDIA CUDA C
programming best practices guide, version 2.3.
http://developer.download.nvidia.com/compute/
cuda/2_3/toolkit/docs/NVIDIA_CUDA_
BestPracticesGuide_2.3.pdf.

T. Sharp. Implementing decision trees and forests on a

gpu. In Proc. of the 10th European Conf. on Computer

Vision, pages 595-608, 2008.

[10] D. Steinkraus, I. Buck, and P. Y. Simard. Using GPUs
for machine learning algorithms. In Proc. of the 8th
Int’l Conf. on Document Analysis and Recognition,
pages 1115-1120, 2005.

[11] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: Using
data parallelism to program GPUs for general purpose
uses. In ASPLOS-XII: Proc of the 12th Int’l Conf. on
Architectural Support for Programming Languages and
Operating Systems, pages 325-335, Oct. 2006.

[12] G. Topic, T. Smuc, Z. Sojat, and K. Skala.
Reimplementation of the random forest algorithm. In
Proc. of the Int’l Workshop on Parallel Numerics,
pages 119-125, 2005.

[13] I. H. Witten and E. Frank. Weka: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann
Publishers, 2005.

8

[9

