
FEATURE-PRESERVING MESH SIMPLIFICATION: A 

VERTEX COVER APPROACH 

Sajid Hussain, Hakan Grahn and Jan Persson 
Department of Systems and Software Engineering 

Blekinge Institute of Technology, Sweden 

{sajid.hussain, hakan.grahn,jan.persson}@bth.se 

ABSTRACT 

In computer graphics image synthesis algorithms like ray tracing, the mesh complexity decreases the performance of 

these algorithms. Therefore, the need arises to reduce the complexity of these meshes and at the same time preserving the 
salient features of the shape. Initial selection of vertices for mesh simplification heavily relates with the quality of the 

simplified meshes.  In this paper, we present a greedy approach to select initial vertex contraction pairs to preserve salient 

features in the simplified meshes. The greedy algorithm exploits the property of meshes where vertices forming small 

features contain less number of edges. The technique selects vertices connected with large number of edges and makes 

them potential candidates for contraction according to a given cost function. The purpose is to first simplify those regions 

which are enriched with number of triangles and preserve small details of the shape constructed with small number of 
triangles. Our technique preserves very small details in the shape even after considerable simplification as compared to 

other existing techniques. Initial experiments show promising results with preserved salient features. 

KEYWORDS 

Mesh simplification, Feature-preserving, Pair contraction, Level of details, Multiresolution modeling. 

1. INTRODUCTION 

Complex and detailed meshes are directly related to the quality and realism of synthesized images in 

computer graphics [1]. However, the complexity of meshes requires substantial storage and also reduces the 

performance of rendering algorithms like ray tracing. Although, 3D data acquisition scanners can easily 

generate millions of polygons for simple objects, it is always required to have simple version of these 

complex meshes generated automatically and at the same time preserving salient features. The most common 

use of the mesh simplification algorithms is in representing distant objects in a scene with low level of detail 

(LOD) and near objects with higher LOD. Since, the performance of the mesh simplification algorithms is 

greatly affected by the vertices selected for contraction or decimation [1], extra care should be taken while 

performing this operation. It is not always feasible to select vertices with the least contraction or decimation 

cost first, if we need to preserve small features in the shape. We have developed a mesh simplification 

algorithm which uses a vertex contraction method combined with a vertex selection method as an initial start. 

The vertex selection method incorporates in itself a greedy algorithm for the selection of vertices. We stop 

our greedy algorithm after we have found vertices equal to or greater than some threshold. The algorithm 

focuses on selection of vertices with maximum number of edges and determines the contraction pair which 

minimizes a cost function. Our algorithm first identifies a set of vertices with connected edges equal to or 

greater than some threshold value. It then finds a minimum cost contraction pair for each vertex in the main 

set (we use the heuristic that vertices do not move far from their original positions after contraction. This also 

serves the purpose of selecting those vertices first which are connected with triangles with small areas). 

Vertices in the main set are then sorted according to their contraction cost with minimum contraction cost 

first and iteratively removed and contracted into new vertices with new positions to simplify the mesh. The 

new positions are determined with the one dimensional search algorithm described in [15]. The algorithm 

makes use of a golden section search technique combined with parabolic interpolation to find the minimum 

of the contraction cost function along the edge joining the contraction vertices pair. The primary advantage of 

our algorithm is the quality of the produced mesh both geometrically and visually. The preservation of the 



salient features of the model even after considerable simplification is another property of our technique. The 

algorithm preserves very small details in the shapes even after 50-55% complexity reduction as compared to 

the other two algorithms discussed in this paper. Hence, a suitable choice for meshes with small level of 

details (LODs). The remainder of this paper is organized as follows. Section 2 reviews related work in this 

particular area and discusses some mesh simplification techniques. In section 3, we introduce the theory 

behind our algorithm. Section 4, gives some implementation details of our algorithm with some comparison 

results. We conclude the paper in section 5 with future work.   

2. PREVIOUS WORK 

We focus here on triangulated meshes due to their generality and common use. There exist different 

techniques to simplify triangulated meshes. Some common techniques are Edge Collapse (Vertex 

Contraction), Vertex Decimation, Vertex Clustering and Face Constriction Process. In Edge Collapse 

Process, an edge is identified and collapsed to form a new vertex. The optimal placement of the new formed 

vertex combined with the edge selection determines the quality of the process. Many researchers [1] [2] [3] 

[4] have used the technique in their research work. Figure 1(a) presents the idea visually. In Vertex 

Decimation Process, a vertex is deleted along with its connecting edges and the resulting hole is re-

triangulated. The algorithm is described in [5], where the method iteratively selects the vertices and performs 

decimation process. The technique is also used in [6]. Figure 1(b) presents the idea visually. In Vertex 

Clustering Process described by [7], a bounding box is placed around the model and divided into an equally 

spaced grid. The vertices present in each cell are contracted together and the corresponding faces are updated 

accordingly. The process is quite fast and the quality of the output mesh depends on the size of the grid. 

Figure 1(c) presents the idea visually. In Face Constriction Process, a triangular face is constricted and its 

adjacent faces become degenerated and therefore deleted. The technique is adopted by [8] and [9]. Figure 

1(d) presents the idea visually. A more general survey on mesh simplification algorithms can be found in 

[10]. Recent works in mesh simplification and implementation can be found in [12], [13] and [14]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Mesh Simplification Methods (a) Edge Collapse (b) Vertex Decimation (c) Vertex Clustering and 

(d) Face Constriction 

3. VERTEX COVER PAIR CONTRACTION 

In our algorithm, we use the iterative pair contraction which is used in many simplification algorithms. First, 

we select the initial vertex set and we start with a greedy algorithm for minimum vertex cover selection 

problem. Although, we do not aim to approximate the optimal solution in minimum vertex cover problem, 

the idea is to select the vertices with a large number of edges. This step is important in preserving small 

features in the shape as the performance of the algorithm depends on the initial pair selection criteria. 

(a) (b) 

(c) (d) 

Vertex Decimation  

Vertex Clustering 
Face Constriction 

3v  

4v  

1v

 

v

tv

 

sv

 

1v  

2v  3v  

4v  

tv  
Edge Collapse 



Second, we find valid contraction pairs for each vertex in the main set according to some cost function (Valid 

contraction pairs are selected based on the assumption that points do not move far from their original 

locations in a good approximation [1]) and sort the main set vertices with respect to their contraction cost 

values. We then choose a sub-set of the vertices from the main set depending on the number of polygons to 

reduce. We then perform the contraction operation and update our mesh. The greedy algorithm for minimum 

vertex cover problem works as follows. The algorithm takes initial mesh ( )0 ,M G V E= and returns a set of 

vertex cover 'V . 

function 
'V = MinVertexCover ( 0M ) 

' '
;V E E←∅ ←  

while 
'E ≠∅  do 

select an arbitrary edge uv in 'E    

add u  and v  to 
'V  

remove edges incident to u  or v  from 'E  

endwhile 

return 
'V  

end function 

 

We have used position and curvature uncertainty functions along with quadric error metrics to select edges 

for contraction. These functions are described in detail in [11] and [1]. The position uncertainty function is 

defined as 

( )
{ }( , ) max ,pos s st tj j

sj V
µ = − − −

∈
v v v v v v

v v
                               (1) 

and the curvature uncertainty function is defined as follows.  

                     
( ) ( )

( )
( )min . min .

, ,
( , ) .f f f fcur s t i j i jf f T f f Tsi j ti j

µ −⊥ ⊥ ⊥ ⊥∈ ∈
=

v v
v v                        (2) 

Where sv and tv are the two vertices to be analyzed for collapse operation. The set ( )sV v contains vertices 

adjacent to sv before contraction. For example in Figure 1(a) 

                              ( ) 1 2 3 4, , , ,s tV =v v v v v v .                                (3) 

The set ( )sT v is the set of triangles adjacent to sv before contraction and f⊥ is the normal to triangular face. 

From Figure 1(a), 

           ( ) 1 2 2 3 3 4 4 1, , , ,s s s s s st tT = ∆ ∆ ∆ ∆ ∆v v v v v v v v v v v v v v v v .                   (4) 

( )tT v contains the set of all triangles after contraction and from Figure 1(a), 

                             ( ) 1 2 2 3 3 4, ,t t t tT = ∆ ∆ ∆v v v v v v v v v v .                   (5) 

In quadric error metrics approach, each vertex is associated with a symmetric 4x4 matrix Q  and the errors at 

vertices sv and tv are defined as T
s s sv Q v and T

t t tv Q v respectively. The cost for contracting s t→v v becomes 

T
st tv Q v and contracting st →v v becomes T

s stv Q v . So, the total cost function for contracting a vertex pair 

s tv v becomes 

                         ( ) ( ) ,( , ) , , T
s pos s cur s st t t t tCost µ µ= + +v v v v v v v Q v                             (6) 

or 

                                                  ( ) ( ) ,( , ) , , T
s pos s cur s s st t t tCost µ µ= + +v v v v v v v Q v               (7) 

or 

  ( ) ( )
______

.( , ) , , ( )
T

s pos s cur s st t t tCost µ µ
− −

= + + +v v v v v v v Q Q v               (8) 



Equations 6, 7 and 8 correspond to the contraction costs for s t→v v , st →v v and ,s t

−
→v v v  respectively. 

Here 
−
v is an optimal vertex position along the segment s t−v v where the contraction cost is minimum. 

Hence, the final cost of contracting a vertex pair ,s tv v  becomes 

( ) ( ) ( )
______* ______

.( , ) min , , , , ,s s s st t t tCost Cost Cost Cost
 =  
 

v v v v v v v v                 (9) 

All the cost function values are normalized between [0 1] in the real implementation. The optimal contraction 

vertex position 
−
v search along the segment s t−v v is done with a one dimensional optimization technique, 

i.e., a golden section search combined with parabolic interpolation to speed up the convergence rate [15]. The 

technique takes advantage of the fact that a second order polynomial usually provides a good approximation 

to the shape of a parabolic function. As the cost function we are dealing with is parabolic in nature, parabolic 

interpolation can provide a good approximation of the cost function minima and hence the optimum vertex 

position along the contraction segment. Figure 2 shows the idea visually, where the contraction cost functions 

for s t→v v  and st →v v are plotted along with their summation and 
−
v  is the optimum contraction position 

along the segment s t−v v .      

 

 

 

 

 

 

 
 

Figure 2. The Optimum Vertex Contraction Position 

 

Our technique uses the greedy algorithm for vertex cover problem for finding suitable vertex contraction 

pairs. The main purpose is to preserve the salient features in the shapes, both geometrically and visually. The 

main steps involved in our algorithm can be summarized as follows: 

(a) Start with the greedy algorithm for vertex cover 'V of the input mesh 0M . 

(b) Generate the initial set P and include vertices with number of edges equal to or greater 

than some threshold t . 
(c) For each vertex in P identify its contraction pair with minimum contraction cost according 

to the cost functions in Equations 6 and 7. 

(d) Sort the vertices in P (ascending order) with respect to their contraction costs. 

(e) Pick up the sub-set p from P  according to the number of polygons to be reduced from the 

mesh (as P is sorted in the above step, we will always pick the vertices with small contraction cost). 

(f) Update the mesh by contracting each vertex in pwith its counter part and return the 

simplified mesh 1M . 

4. EXPERIMENTAL RESULTS 

We have implemented our algorithm in MATLAB® and chosen some meshes with small features, especially 

to test our algorithm. We have also compared the quality of our algorithm with some existing mesh 

simplification techniques. Figure 3 shows the results and compares them with other two algorithms, Quadric 

Error Metrics [1] and its flavour called Quadric Weighted by Triangle Area. Notice the small level of details 

in Helicopter (missile fins) and Ship (Antennas and Parabolic dish) meshes (red dotted circles). After about 



50% reduction, our algorithm still preserves them as compared to the other two algorithms. Table1 shows the 

running time of our algorithm in MATLAB® along with percentage reduction in scene complexity. Timings 

for Bunny scenes with variable complexities are also shown in Table1. For the evaluation purpose of our 

algorithm, we have used attribute deviation metric (ADM) [16]. The ADM is guided by geometrical 

correspondence between two meshes. It uses the difference assessment between the mesh attributes and is 

calculated by defining a set of points on the mesh surfaces. Figure 3 shows the results and in case of 

Helicopter and Military Ship, our algorithm exhibits less mean geometric deviation as compared to the two 

other algorithms because of small features preservation. This is not the case with the Bunny and the mean 

geometric deviation for our algorithm is almost the same as compared to the two other algorithms. The 

reason behind is that the Bunny does not contain very small features as compared to the other two meshes. 

Table 1. Running time and percentage reduction: our algorithm 

Scene Primitives Reduced 

To 

% 

age 

Time 

Helicopter 6448 3534 55% 25 sec 

Mil. Ship 10781 6128 56% 57 sec 

Bunny 3851 2018 52% 11 sec 

Bunny 9580 5148 53% 48 sec 

Bunny 16301 8788 54% 2 min 

Bunny 69451 39918 57% 15 min 

5. CONCLUSION AND FUTURE WORK 

In this paper, we have introduced a feature preserving mesh simplification algorithm. We have used the 

vertex cover problem for initially selecting vertex pairs for contraction. Results show that our algorithm 

successfully preserves small details in the meshes as the initial selection of vertices is very important in 

preserving small features in the shapes. We do use the strategy to contract minimum cost vertices first, as 

used by other mesh simplification techniques, but the difference is that we choose the minimum cost 

contraction pairs from vertices with maximum edges first. We implemented the algorithm in MATLAB® and 

showed the timing details for scenes with different complexities. As MATLAB® is quite slow executing “for 

loops” as compared to C++, the algorithm performs quite slowly. Towards implementation side, the future 

work is to implement the algorithm in C++ and reduce the execution time. 

REFERENCES 

[1].M. Garland., P. Heckbert.: Surface Simplification Using Quadric Error Metrics. Computer Graphics 

(SIGGRAPH’97 Proceedings), 209–216, (1997) 

[2].H. Hoppe.: Progressive Meshes. Computer Graphics (SIGGRAPH’96 Proceedings), 99–108, (1996) 

[3].H. Hoppe., T Duchamp.: Mesh Optimization. Computer Graphics (SIGGRAPH’93), 19–26, (1993) 

[4].P. Lindstrom., G. Turk.: Fast and Memory Efficient Polygonal Simplification. Proceedings of IEEE 

Visualization’98, 279–286, (1998) 

[5].W. J. Schroeder., J. A. Zarge., W. E. Lorensen.: Decimation of Triangle Meshes. Computer Graphics 

(SIGGRAPH’92 Proceedings), 65–70, (1992) 

[6].J. Cohen., A. Varshney., D. Manocha.: Simplification Envelopes. Computer Graphics (SIGGRAPH’96 

Proceedings), 119–128, (1996) 

[7].J. Rossignac., P. Borrel.: Multi-resolution 3D Approximation for Rendering Complex Scenes. Modeling 

in Computer Graphics: Methods and Applications, 279–286, (1993) 

[8].T. S. Gieng., B. Hamann., K. I. Joy.: Smooth Hierarchical Surface Triangulation. Proceedings of IEEE 

Visualization’97, 379-386, (1997) 

[9].B. Hamann.: A Data Reduction Scheme for Triangulated Surfaces. Computer Aided Geometric Design, 

197-214, (1994) 



[10].D. P. Luebke.: A Developer’s Survey of Polygonal Simplification Algorithms. IEEE Computer Graphics 

and Applications’01, 24-35, (2001) 

[11].C. Chang., S. K, Yang., D. Z. Duan., M. F. Lin.: A Fuzzy Based Approach to Mesh Simplification. 

Journal of Information Science and Engineering 18, 459-466, (2002) 

[12].Y. Wu, Y. He, H. Cai.: QEM-based Mesh Simplification with Global Geometry Features Preserved. 

Computer Graphics (SIGGRAPH’04 Proceedings), 50–57, (2004) 

[13].S. Mata, L. Pastor, A. Rodriguez.: Attention Based Mesh Simplification using Distance Transforms. 

Lecture Notes in Computer Science (LNCS’06), Vol (4245), 83-294, (2006) 

[14].C. DeCoro, N. Tatarchuk.: Real-time Mesh Simplification using GPU. Computer Graphics 

(SIGGRAPH’07 Proceedings), 161–166, (2007) 

[15]. S. Hussain and H. Grahn.: Fast kd-tree construction for 3d-rendering algorithms like ray tracing. In 

Proc. Third International Symposium on Advances in Visual Computing, Lecture Notes in Computer 

Science (LNCS’07) (2007), vol. 4842, pp. 681–690. 

[16]. Roy, M., Foufou S. and Truchetet F.: Mesh comparison using attribute deviation metric. International 

Journal of Image and Graphics 4, 1 (2004), 1–14. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3. Examples of Geometric Deviation and Mesh Optimization 

Military Ship 

Helicopter 

Stanford Bunny 

(Our Approach) 

Original (10.7 K) Simplified – Our Approach (6.1 K) Simplified – Quadric Approaches (6.1 K) 

Simplified – Quadric 

 Approaches 

 (3.5 K) 

Simplified 

Our Approach 

 (3.5 K) 

Original 

 (6.4 K) 

69 K 40 K 9 K 5 K 2 K 


