An Argument for Thread-Level Speculation and
Just-in-Time Compilation in the Google’s V8 JavaScript
Engine

Jan Kasper Martinsen and Hakan Grahn
Blekinge Institute of Technology

Karlskrona,Sweden
{ijkm,hgr}@bth.se

ABSTRACT

Thread-Level Speculation can be used to take advantage
of multicore architectures for web applications. We have
implemented Thread-Level Speculation in the state-of-the-
art JavaScript engine V8 instead of using an interpreted
JavaScript engine. We evaluate the implementation with
the Chromium web browser on 15 popular web applications
for 2, 4, and 8 cores. The results show that it is beneficial to
combine Thread-Level Speculation and Just-in-time compi-
lation and that it is possible to take advantage of multicore
architectures while hiding the details of parallel program-
ming from the programmer of web applications.

1. IMPLEMENTATION OF THREAD-LEVEL

SPECULATION IN GOOGLE’S V8
JAVASCRIPT ENGINE

The main idea of Thread-Level Speculation (TLS) in
JavaScript for web applications is to try to execute JavaScript
function calls as threads. Like the implementation in [1] we
support nested speculation. V8 employs Just-in time com-
pilation (JIT) but global variables are not compiled into the
code that are to be executed. Instead these variables are
accessed from function calls in the compiled code, such as
StorelC_Initialize and LoadIC_Initialize. This means that
the global JavaScript stack and the native stack are accessed
separately. We save the JavaScript stack right before we
speculate, in case of a rollback. On a rollback the function is
already ready for reexecution since a function get compiled,
it is placed in a cache. However, rollbacks are relatively rare,
as we see in [1]. When the function return, we commit the
values back to its parent.

Since we do not add features to the native code, and since
all JavaScript global variables are accessed through exter-
nal functions, we do not need to reinterpret the code upon
rollbacks, instead we simply execute the compiled function.
The result is that the execution time for rollbacks decreases
with V8.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CF’14, May 20-22 2014, Cagliari, Italy

Copyright 2014 ACM 978-1-4503-2870-8/14/05
http://dx.doi.org/10.1145/2597917.2597950 ...$15.00.

Anders Isberg
Sony Mobile
Lund, Sweden
Anders.Isberg@sonymobile.com

2. RESULTS

There are a large number of JavaScript function calls in
web applications, and each function call is small in terms of
the number of instructions executed. It does not improve
the execution time that they are executed as native code
instead of being interpreted, since the number of JavaScript
lines is often very small, reuse of compiled code are rare and
improved execution time does not outweigh the compilation
time. This is not an argument against JIT, but it is an
argument against the benchmarks, which suggested that JIT
compilation for JavaScript should be designed in this way.

The average speedups for 2, 4 and 8 cores are 1.2, 2.9 and
4.7 respectively and the maximum and minimum speedup
times, are 2.0 and 0.02 for 2 cores, 4.3 and 1.0 for 4 cores
and 6.5 and 2.9 for 8 cores.(In Figure 1). Therefore we need
more than 2 cores to take advantage of TLS in combination
with JIT in web applications.

amazon (2) is twice as fast on 2 cores since this use case
executes the largest maximum number of threads and has
the largest average number of threads for this web applica-
tion. When we log into Amazon, there is a personalization
in terms of client side functionality which increases the use
of JavaScript. This gives us the possibility to find many
events / functions to speculate on, and we know from pre-
vious results that there will be little dependencies between
such functions. We also see that this is the result of the sum
of previous uses of Amazon, which makes Amazon to use
JavaScript according to the previous uses.

Wikipedia has the slowest execution time with TLS+JIT.
The JavaScript that is executed in this use case is limited
in terms of number of lines of JavaScript code. However, we
do not know this when we enter the web application, so we
still try to speculate aggressively. This means that we set up
the entire TLS, with thread-pool etc, for a use case where
it turns out that there are few JavaScript function calls to
speculate on, which means that the costs of setting up the
system to use TLS will outweigh the gain in execution time
by speculating on function

For 4 cores the performance is doubled for 43 out of 45 use
cases. The two use cases where it is less than twice as fast,
are bing (1) and wikipedia (1). Both of these are the front
page of the web application with a small number of executing
threads. There is little interaction in these use cases and
there is a need for some interaction to take advantage of
JavaScript with TLS, as interaction allows us to execute
more event generated JavaScript functions. For half of the
use cases, the speedup is three folded with 4 cores. If we look

2 cores I

Speedup

S = N W R O N ®

===+

'1

4 cores I

8 cores I

Iq

M

o

.
eL
Ll

uiq
Buiq

00(08}
i

1OM

=
@

)
gpuu
qpuul

sqé)o
1odsbo
10dsBo

L
0qeo
dplio
dgjom
ssald

c
(3

|
L
¢
(s

f

O
10

p.
eipadiyjim
Ip di)l'

eipo

yoogaoe}
eipo

A

I

L

4

€
5581

<
€

S

Z)ssal
€

I

e
€

L

di

Yl
usw

A

A

w

usw =l
uswi
ge
BQa
BQa
u

gﬂe
A
A

oqq
oqq
oqq
o
dsAw

Boob
anedsAw

L

c
e
uozewe
uozewe
uozewe
a|boob
|
a|6oob
uipsxul|

I

c
I
e
g

9
uipaMul]

uipa
#
agninoA
agnino
agnino

L
c

L

|

|

I

c

€
L)aoe

L

c

€

Z)eoe

Figure 1: The speedup for 2, 4 and 8 cores on 45 use cases in 15 web applications.

at the use cases, this applies in general to certain JavaScript
intensive web applications (such as Amazon, BBC, MSN,
Imdb, Facebook). It also, in general applies to use cases 2
and 3, where there is more interaction than for use case 1 (for
instance in use case 3 we search for one of the author of this
paper).For the bbc (3) use case the execution time is four
times the execution time on 4 cores, this seems to be the
"news” page that is rapidly updated thanks to JavaScript
with "news tickers”. These are quite independent of one
another which make speculation successful.

For 8 cores, we are able to at most six double the execution
speed for the use cases Facebook, Imdb, msn and Youtube.
This improvement is found in both use case 2 or 3 (except
for Facebook and Youtube).

Increased interactivity in the web application increases
the speedup with TLS, as this will increase the number
of events, which in turn increases the number of executed
JavaScript function calls. We also see that the speedup and
number of cores ratio is the highest with four cores, this
can be understood by that there is a limit to the number of
events/function calls in each event, however the amount of
interaction increases as the use cases become more advanced.

The average maximum number, the average number of
threads and the distance between them is: 204, 123 and 81
(Figure 2). There is an average difference of 40% between
the maximum number of threads and the average number
of threads, which shows that the functions are short lived.
Deviations are blogspot(3), wikipedia(1) and msn(2) where
the number of speculations are 5 and 17.

For msn(2), the number of speculations are relatively close
to the average number of speculations for the other use cases,
but several of the functions are very large in terms of in-
structions to be executed. This makes the average number
of functions executing low compared to the maximum num-
ber of functions executing. The functions in msn have a
low number of writes, which in turn makes them easy to
speculate on. This could be caused by the msn use case
since it has several "tickers” and the functionality in terms
of JavaScript is events which are repeatedly called. As we

see in Figure 1 this creates one of the largest speedups which
are over 6 times faster than the sequential execution time of
V8 with 8 cores.

350

max.

avg.

300

250

200

Threads

150

100

50

piom

piom

o.d
2.d
Ipo

2)sss

Figure 2: The maximum and the average number of
threads during execution.

3. CONCLUSION

The programming model in web applications makes TLS
appropriate for taking advantage of hardware with more
than 2 cores and certain features in V8 are very useful for
TLS.

We present the first implementation of TLS+JIT, and
shown that this yields significant speedups without any changes
to the JavaScript code. We strongly believe that combining
TLS+JIT is a very promising approach to enhance the per-
formance of JavaScript in web applications.

4. REFERENCES

[1] J. K. Martinsen, H. Grahn, and A. Isberg. Using
speculation to enhance javascript performance in web
applications. IEEE Internet Computing, 17(2):10-19,
2013.

