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Abstract 

 
Many software systems are developed in a number 

of consecutive releases. Each new release does not 
only add new code but also modifies already existing 
one. In this study we have shown that the modified 
code can be an important source of faults. The faults 
are widely recognized as one of the major cost drivers 
in software projects. Therefore we look for methods of 
improving fault detection in the modified code. We 
suggest and evaluate a number of prediction models 
for increasing the efficiency of fault detection. We 
evaluate them against the theoretical best model, a 
simple model based on size, as well as against 
analyzing the code in a random order (not using any 
model). We find that using our models provides a 
significant improvement both over not using any model 
at all and using the simple model based on the class 
size. The gain offered by the models corresponds to 
30% to 60% of the theoretical maximum. 
 
1. Introduction 
 

Development of software for telecommunications 
requires meeting many contradicting goals. There are 
high expectations concerning both system functionality 
and quality. On the other hand, the competitiveness of 
the telecom market puts a large pressure on decreasing 
the development cost. One element that contributes 
significantly to the cost of software development are 
faults. Finding and fixing them is a very expensive 
activity [26]. In telecommunications fault removal 
activities can account for a significant part of the 
project budget, e.g., in [3] 45% of the project resources 
were devoted to testing and simulation.  

Typically telecommunication systems have a 
number of releases. At first the basic system is 
developed. Later perfective maintenance activities lead 
to newer versions of the system. Since a new release 
usually introduces a significant amount of new 

functionality it often results in major changes 
introduced to the current system. Such code 
modifications are an important source of faults [22].  

A well known fact concerning faults is that a 
majority of faults can be found in a minority of code 
(e.g., 60% of faults can be found in 20% of the 
modules [7, 20]). A prediction model that identifies the 
most fault-prone code can bring significant savings on 
project cost. It makes it possible to focus fault 
detection activities on the code that is most fault-prone, 
thus decreasing the cost of finding faults by increasing 
the fault detection efficiency (i.e., the number of faults 
found/amount of code analyzed). Such fault prediction 
models are usually based on different characteristics of 
the software, e.g., design or code metrics (e.g., [6, 29]) 
or historical information about the code (e.g., [22, 23]). 

This paper presents our experiences from building a 
fault prediction model based on data from one release 
of a large telecommunication system developed by 
Ericsson. The system comprised about 600 classes 
(250 KLOC). About 40% of the code was new 
compared to previous release. 65% of the new code 
was introduced as modification to existing classes and 
35% as new classes. The faults found in the modified 
code accounted for 86% of the total number of faults 
found in the new and the modified classes.  

Our goal was to build a prediction model for 
modified classes, as faults in those classes contribute 
most to the total number of faults in the system. The 
model is based on metrics collected after the system 
was developed. The goal for building the model is to 
increase the efficiency of fault detection. In the study 
we have made the assumption  that the cost of finding 
faults in the class is directly proportional to the size of 
the class (the same assumption as in [1, 2]). Therefore 
the model should be able to predict classes with high 
fault density, since looking for faults in classes with 
high fault density is the most cost-efficient.  

One possible application of the model is when there 
are limited resources to perform in-depth code 



analysis. Given the percentage of code that we are able 
to analyze (which is limited by given resources) the 
model should pin-point classes (that account for given 
percentage of the code), analyzing which would result 
in detecting the largest number of faults.  

The rest of the paper is structured as follows: in 
Section 2 we present the work that has been done by 
the others in the area of fault prediction, Section 3 
describes methods we have used for model building 
and evaluation. Section 4 presents the results we have 
obtained. In Section 5 we discuss our findings. In the 
last section (Section 6) we present the most important 
conclusions from our study. 
 
2. Related work 
 

The fault prediction models that can be found in the 
literature usually aim at predicting [17]: 
- Number of faults – these models predict the number 

of faults in the code unit. Examples of such models 
can be found in [3, 4, 19, 24, 29]. 

- Fault-proneness – these models predict if the code 
unit (e.g. a class) has faults. Examples of such 
models can be found in [1, 6, 10, 16]. 
The models that have number of faults as dependant 

variable (variable that we predict) are often referred as 
quality prediction models, while those that predict 
fault-proneness are called classification models [17]. 
Our model is clearly a quality prediction model since 
classifying classes as fault-prone and not fault-prone 
would not let us estimate their fault-density.  

Usually the prediction model construction starts 
with selecting independent variables (variables that are 
used to predict dependant variable). The most common 
candidates are different code metrics (e.g., [14, 23, 29]) 
or variations of C&K [5] object oriented metrics (e.g., 
[1, 6, 29]). There are also studies that take historical 
information about code fault-proneness into account 
(e.g., [22, 23]). The initial set of independent variables 
is often large. A common assumption is that models 
based on a large number of variables are less robust 
and have lower practical value (more metrics have to 
be collected) [3, 8]. Therefore the first step often 
involves reduction of the number of metrics. A 
commonly used method in dataset reduction is 
correlation analysis ([3, 6, 29]). It is usually used for 
two purposes. One is to detect highly correlated 
metrics. Such metrics, to a large extent, can measure 
the same thing (e.g., number of code lines and number 
of statements are usually highly correlated because 
both measure size). Introducing them into the model 
causes a risk for multicolinearity [3]. Multicolinearity 
is especially risky when regression models are built. It 
leads to “unstable coefficients, misleading statistical 

tests, and unexpected coefficient signs”[8]. Other usage 
of correlation coefficients includes selection of 
independent variables to predict faults (e.g., [20, 29]). 
Only the metrics that are correlated with faults are 
good fault predicators. 

The methods for building models range from uni- 
and multivariate linear regression (e.g., [3, 4, 19, 21, 
24, 29]) and logistic regression (e.g., [1, 6, 10, 16]) 
through regression trees (e.g., [14, 15]) to neural 
networks (e.g., [17, 27]).  

In [29] Zhao et al. compare the applicability of 
design and code metrics to predict the number of 
faults. They conclude that both types of metrics are 
applicable and give good results. However, the best 
result was obtained when both types of metrics were 
included in the same model. The number of variables 
in the code and the number of internal signals in the 
module were identified as the most promising fault 
predicators. El Emam et al. [6]  observed the impact of 
inheritance and coupling on the fault-proneness of the 
class. The relation between inheritance, coupling, and 
probability of finding fault in the class was also 
identified by Briand et al. [1]. Cartwright and 
Shepperd also observed [3] higher fault-densities in 
classes with high inheritance. They observed that the 
number of events per class works well as a single 
predicator variable. They also noticed that the number 
of events is highly correlated with LOC size measure.  

When it comes to evaluation, most classification 
models are evaluated against the percentage of 
correctly classified classes. Briand et al. [1] noticed 
that such an evaluation may have low practical value. 
Even though the model points to a minority of classes, 
these classes can potentially account for a majority of 
the code. The prediction models used for estimating 
number of faults are usually evaluated against their 
“goodness of fit”, e.g., using R2 statistic. Therefore, as 
we see it, there is a lack of studies evaluating 
prediction models from the perspective of gain, in 
terms of cost reduction, that can be expected from 
applying the fault prediction model. 
 
3. Methods 
 
3.1 Metrics suite 
 

All metrics that were collected are summarized in 
Table 1. Based on the experiences described in [29] we 
decided to base our prediction model on both code and 
design metrics. All measurements were done at the 
class level. The design metrics are mostly metrics that 
belong to the classic set of object oriented metrics 
suggested by Chidamber and Kemerer (C&K metrics) 
[5]. The code metrics are different size metrics (e.g., 



Table 1. Metrics collected in the study 
Name Variable Description 

Independent metrics 
Coup Coupling Number of classes the class is coupled to [5, 9] 
NoC Number of Children Number of immediate subclasses [5] 
Base Number of Base Classes Number of immediate base classes [5] 
WMC Weighted Methods per Class Number of methods defined locally in the class [5] 
RFC Response for Class Number of methods in the class including inherited ones[5] 
DIT Depth of Inheritance Tree Maximal depth of the class in the inheritance tree [5, 7] 
LCOM Lack of Cohesion “how closely the local methods are related to the local 

instance variables in the class” [9]. In the study LCOM was 
calculated as suggested by Graham [11, 12] 

Stmt Number of statements Number of statements in the code 
StmtExe Number of executable  statements Number of executable  statements in the code 
StmtDecl Number of declarative  statements Number of declarative  statements in the code 
Comment Number of comments lines  Number of lines containing comments 
MaxCyc Maximum cyclomatic complexity The highest McCabe complexity of a function from the class 
ChgSize Change Size Number of new and modified LOC (from previous release) 
CtC Ratio Comment to Code Ratio of comment lines to code lines 

Dependent variables 
Faults Number of faults Number of faults found in the class 
FaultDensity Fault density Fault density of the class 

 

number of statements), metrics describing McCabe 
cyclomatic complexity (Maximum Cyclomatic 
Complexity) as well as metrics describing the size of 
modification (Change size – number of new and 
modified lines of code in the final system, compared to 
previous release). All measurements mentioned in this 
study can be obtained automatically from the code. For 
each class we have collected information about the 
number of faults that were found in it. 
 
3.2 Model building 

 
The goal of the model is to increase the efficiency 

of fault detection. We assume that the cost of 
performing fault detection is directly proportional to 
the size of the class. Therefore, the prediction model 
should identify the classes with the highest fault 
density. Fault detection in such classes is the most 
efficient because it requires least code to be analysed to 
find a fault. Class analysis according to the model 
means that fault detection activities are performed on 
classes in the order of their fault density predicted by 
the model. As we see it, the fault density can be 
predicted in two ways: 
- by predicting fault density (Faults/Stmt) – fault 

density is a dependant variable in the model. 
- by predicting the number of faults (Faults) and 

dividing the predicted number of faults by real 

class size (Stmt) – Faults are predicted by the 
model, while size (Stmt) is measured. 

In our study we evaluate both approaches. Even 
though they seem to predict the same thing the 
prediction accuracy, given our set of metrics and our 
method of building models (regression), may be 
different for both. Linear regression attempts to predict 
the dependent variable as linear combination of 
independent variables. It may turn out that, e.g., linear 
combination of our metrics predicts fault density much 
more accurately than the number of faults. 

We evaluated six prediction models, three 
predicting the fault-density and three predicting the 
number of faults. The models were built using: 
- single metric – a model based on single best fault 

(fault-density) predicator 
- selected metrics – a model based on a set of the 

best fault (fault-density) predicators 
- all metrics – a model based on all metrics 

collected 
To find the single and the selected metrics we 

performed a correlation analysis. Since it turned out 
that our data were not normally distributed we used 
Spearman correlation co-efficient which is not 
dependent on normality assumption [28]. As selected 
metrics we chose those that were correlated to 
independent metrics, i.e., with correlation coefficient 
values not close to 0. Additionally, the selected 
metrics’ correlations to dependent variables had to be 
significant at 0.05 level (standard significance level 



describing 5% chance of rejecting correct hypothesis). 
In this way we eliminated the metrics that, due to low 
correlation with number of faults and fault-density, can 
not be considered useful for building prediction 
models. 

As we said before, the model based on all metrics 
may be prone to overfitting and instability between 
releases (may be a poor prediction model) because of 
multicolinearities [3, 8]. We, however, decided to 
introduce such models because they should be able to 
fit current data best. Therefore they can be considered 
as some kind of measurement of how good the model 
based on our set of metrics can be. 

The models were built using stepwise multivariate 
linear regression. Linear regression estimates value of 
dependant variable (number of faults or fault-density) 
using linear combination of independent variables 
(code and design metrics) [25]: 

f(x) = a + b1x1+b2x2+b3x3+…..+bkxk (1) 
Stepwise regression is one of the methods that 

attempt to build a model on minimal set of variables 
that explain the variance of the dependant variable. 
Other methods of that kind are forward (backward) 
regression. In these methods variables are added 
(removed) to the model until adding (removing) the 
next one does not give any benefit (does change 
models ability to predict a dependant variable) [18]. 
We selected stepwise regression because, compared to 
forward regression, it additionally excludes variables 
that do not contribute to the model anymore [18]. By 
using stepwise regression we hoped to get models 
based on minimal sets of variables. The stepwise 
regression was used on the previously defined sets of 
metrics (All, Selected) so final models were build on 
subsets of the previously defined sets of metrics, i.e., 
building model on all metrics did not mean that all 
metrics were used in the model but that all metrics 
were used as an input to stepwise regression.  

 
3.3 Model evaluation 
 

Since the goal of the model was to increase the 
efficiency of fault detection we evaluated our candidate 
models from that perspective. The goodness of the 
model is measured by the amount of code necessary to 
analyze in order to detect a certain number of faults, 
i.e., a model is better if by following it we are able to 
detect more faults by analyzing the same amount of 
code compared to another model. Therefore, for each 
model, we plot a diagram describing the percentage of 

faults detected against the percentage of code that had 
to be analyzed to detect them. 

We introduce three models against which we 
benchmark our models: 
- Random model – the model describing completely 

random search for faults 
- Best model – the theoretical model that makes only 

the right choices about which class to analyze 
- Size model – a common (mis)conception [8] is 

bigger classes tend to have more faults and higher 
fault densities. Therefore we introduce a model in 
which the classes were analyzed based on their 
size (bigger classes are analyzed first) 

A comparison with the Random model gives us an 
indication to what extent following our model is better 
than not following any model at all. The Best model 
gives us an indication of how good the model can be at 
all, and how far we are from being perfect. The Size 
model might be often encountered in real life situations 
because of its simplicity as well as because many 
models suggested in literature actually tend to correlate 
with size [8]. By including this model we can evaluate 
it against our criteria of efficiency improvement as 
well as compare our models with it. 
 
4. Results 
 
4.1 Model building 
 

As described in Section 3.2 we began the model 
building with a correlation analysis. The results of the 
correlation analysis are presented in Table 2. The main 
purpose of the correlation analysis was to identify 
metrics that are the best single predicators of the 
number of faults and the fault-density (we looked for 
single metrics with the highest correlation to the 
number of faults and the fault density). From Table 2 it 
can be noticed that ChgSize is the best predicator for 
both values (correlation values in bold in Table 2). 
Therefore it was selected to build the prediction 
models for the number of faults and the fault-density 
based on one metric. 

The second reason for performing correlation 
analysis was to eliminate the metrics that can not be 
considered useful for building prediction models (see 
Section 3.2 for details). Remaining metrics were used 
to build the model based on “selected metrics”. It 
turned out that we removed the same metrics for the 
model that predicts the number of faults and the model 
that predicts fault-density. We have decided not to use 
the following metrics in “selected metrics” models: 



Table 3. Models summary.  Single metric: ChgSize. 
Selected metrics: Coup, WMC, RFC, Stmt, 

StmtDecl, StmtExe, MaxCyc, ChgSize 
Name Based on Predicts 
AllNumber All metrics Number of faults 
SelNumber Selected metrics Number of faults 
SingleNumber Single metric Number of faults 
AllDensity All metrics Fault density 
SelDensity Selected metrics Fault density 
SingleDensity Single metric Fault density 

- Base, NOC, CtC, DIT – due to their low 
correlation with faults and fault density and low 
significance of the correlation 

- LCOM – due to low correlation with faults and 
fault-density 

- Comment – due to unsure meaning of this metric 
and its correlation to size 

We were quite surprised with the high positive 
correlation between Comment and Faults. There are 
some possible explanations of that phenomenon, like 
considering the number of comments as a measure of 
human perceived complexity. We excluded this metric, 
because it is difficult to assure that “commenting style” 
is maintained between the projects (no explicit 
guidelines concerning it in the analyzed project). 
Therefore it is difficult to say if prediction model based 
on Comments would be stable across releases.  

In the study we have built six different prediction 
models. They are summarized in Table 3. The models 
were built using stepwise regression. The significance 
of each model’s coefficient was checked using t-test. 
The hypothesis tested was that the coefficient could 
have value 0, which would imply a lack of relationship 
between the independent and the dependant variable 
(and therefore would make the model the best, but not 
meaningful, mathematical relation between both 
variables) [25]. It turned out that all coefficients were 
significant at 0.05 level. The significance of the entire 
models was tested using F-test. Goodness-of-fit of each 
model was assessed using R2 statistic (correlation 

between the actual values and the predicted values, 
values between 0 and 1, where 1 is perfect fit – the best 
prediction). The models are presented in Table 4. 

 
4.2 Model evaluation 
 

As it can be noticed in Table 4 all models are 
significant according to the F-test. The goodness-of-fit 
values (R2) are better for the models predicting the 
number of faults compared to those predicting the 
fault-densities. Apparently, given our set of metrics, 
the number of faults is easier to predict than the fault-
density. As we predicted in advance (see Section 3.2) 
the models based on all metrics (AllNumber and 
AllDensity) have a better fit compared to their 
counterparts based on a limited number of metrics (see 
R2 values in Table 4).  They may, however, suffer from 
multicolinearity problem – e.g., according to 

Table 2. Correlation analysis (Spearman correlation co-efficient).  Correlations with grey background are 
NOT significant at 0.05 significance level. Correlation of the best individual predicator of fault number and 

fault density in bold. 
 Base Coup NOC WMC RFC Com

ment Stmt Stmt 
Decl 

Stmt 
Exe 

Max 
Cyc DIT LC

OM CtC Chg 
Size 

Base 1              

Coup 0.35 1             

NOC -0.13 0.06 1            

WMC 0.23 0.76 0.18 1           

RFC 0.63 0.68 0.07 0.82 1          

Comment 0.21 0.73 0.05 0.80 0.68 1         

Stmt 0.15 0.67 0.09 0.74 0.62 0.84 1        

StmtDecl 0.01 0.57 0.08 0.61 0.44 0.73 0.86 1       

StmtExe 0.25 0.72 0.10 0.79 0.70 0.83 0.92 0.64 1      

MaxCyc 0.21 0.65 0.09 0.65 0.56 0.73 0.83 0.51 0.93 1     

DIT 0.97 0.35 -0.13 0.22 0.61 0.20 0.11 -0.01 0.22 0.12 1    

LCOM -0.08 0.3 0.18 0.37 0.15 0.32 0.20 0.38 0.11 0.07 -0.08 1   

CtC 0.18 -0.01 -0.06 -0.02 0.07 0.12 -0.36 -0.34 -0.24 -0.26 0.21 0.06 1  

ChgSize 0.07 0.48 0.02 0.47 0.40 0.59 0.68 0.7 0.50 0.42 0.04 0.28 -0.25 1 

Faults 0.00 0.43 0.02 0.47 0.41 0.54 0.52 0.48 0.48 0.38 -0.01 0.15 -0.1 0.6 
Fault 

Density -0.03 0.35 0.01 0.39 0.32 0.46 0.42 0.4 0.36 0.29 -0.04 0.15 -0.05 0.53 
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Figure 1. Reference models - evaluation 
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Figure 2. Fault prediction models - evaluation 

AllNumber model the number of faults increases with 
Comments and decreases with StmtExe which is 
difficult to explain since both StmtExe and Comments 
are positively correlated with the number of faults.   

All models were evaluated from the perspective of 
fault detection efficiency. We used the model as an 
indicator of the order in which classes should be 
analyzed. For the models that predict the fault-density 
(AllDensity, SelDensity, SingleDensity) we ordered 
classes according to the output of the model, so that we 
analyze classes with highest predicted fault-density 
first. In the models that predict the number of faults 
(AllNumber, SelNumber, SingleDensity) the predicted 
number of faults was divided by class size (Stmt). This 
partially predicted density measure was used to select 
classes for analysis.  

To benchmark our models we have included three 
reference models in the evaluation. The Random model 
corresponds to analysis in which classes are picked 
randomly, the Best model describes a perfect model 
that makes only the right choices. The Size model is a 
model in which the biggest classes are analyzed first 
(see Section 3.3 for details concerning reference 
models). The evaluation of the reference models is 
presented in Figure 1. The reference models are present 
in all our future diagrams (always dashed lines).  

Two conclusions can be drawn from the evaluation 
of the reference models presented in Figure 1. The first 

one is that by comparing the Best and the Random 
model we can see that there is a large room for 
improvement that can be filled using a fault prediction 
model. The second conclusion is that the Size model 
does not fill that room very well. It is slightly better 
than the Random model for first 30% of code. Later it 
becomes worse than random selection of classes.  

Another finding is that our dataset seems to support 
the 60/20 rule [7, 20] stating that 60% of the faults can 
be found in 20% of the code. 

The evaluation of fault detection efficiency 
improvement gained by using the models that predict 
the number of faults (AllNumber, SelNumber, 
SingleNumber) is presented in Figure 2. As it can be 
noticed all three models present an improvement over 
both the Random model as well as the simple Size 
model. As we have predicted the model based on all 
variables (AllNumber) is the best. However, the other 
two models (SingleNumber, SelNumber) are not doing 
significantly worse. Given our previous concerns 
regarding stability of the models based on all variables 
(see Section 3.2 for details) we can safely say that, if 
the models based on limited number of variables prove 
to be more stable over releases, then using them also 
improves the fault detection efficiency. The gains from 
using each of the models are presented in Figure 3. 

As can be noticed in Figure 3 the difference in the 
efficiency between SingleNumber and SelNumber is 

Table 4. Prediction models obtained using stepwise regression. R2 describes goodness-of-fit (values closer to 1 
indicate better fit), Sig. is significance level of F-test 

Model Equation R2 F Sig. 
AllNumber Faults = 0.004*Comment + 0.003*ChgSize - 0.677*Base+ 0.276*Ctc - 

0.003*StmtDecl  -0.005*LCOM  +  0.010*RFC  -  0.001*StmtExe  +  0.089 0.752 75.944 0.0 

SelNumber Faults = 0.004*ChgSize   +   0.001*StmtExe  - 0.002*StmtDecl  +  0.008 0.585 96.412 0.0 
SingleNumber Faults = 0.005*ChgSize 0.550 252.84 0.0 

AllDensity FaultDensity = 54.040*CtC  +  0.115*ChgSize  -  42.431*DIT  -  0.096*Stmt  
+  3.036*Coup  +  0.670*RFC  -  19.685 0.479 30.997 0.0 

SelDensity FaultDensity=0.184*ChgSize-0.138*Stmt+2.429*Coup+1.057*WMC+2.748 0.280 19.815 0.0 
SingleDensity FaultDensity=0.081*ChgSize   +   12.739 0.058 12.742 0.0 
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Figure 3. Fault prediction models – gain over the 

random model 
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Figure 4. Fault-density prediction models - 

evaluation 
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Figure 5. Fault-density prediction models – gain over 
the random model 

minimal. Both models offer about 40%-50% of the 
improvement of the Best model (in Figure 3 the 
SingleNumber and SelNumber lines lie usually about 
half-way between the Best model line and the “% of 
code to analyze” axis). The model based on all 
variables (AllNumber) seems to constantly offer about 
50%-60% of the improvement that could be expected 
from the perfect model. All models represent 
significant improvement over the Random model. 

The same evaluation was performed for the models 
that predict fault-density (AllDensity, SelDensity, 
SingleDensity), The results of that evaluation are 
presented in Figure 4.  

As before, the model based on all variables seems to 
be the best, at least when we analyze up to 60% of the 
code. However, one interesting finding is that the 
model based on a single variable (SingleDensity), on 
average, performs not much worse than the model 
based on all variables and outperforms the model based 
on selected variables (SelDensity). The analysis of 
gains from using each of the fault-density prediction 
models are presented in Figure 5. Between 25% and 
70% of the code the SingleDensity model provides 
about 30% of improvement of the Best model. 
SelDensity model is fairly stable in providing about 
20% of the Best model’s improvement over random 
model. The model based on all variables (AllDensity) 
provides between 40% and 50% of the efficiency 
improvement offered by the Best model. 
 
5.  Discussion 
5.1 Findings 
 

The results obtained in our study are promising. All 
our models (AllNumber, SelNumber, SingleNumber, 
AllDensity, SelDensity, SingleDensity) represent an 
improvement compared to the Random model. It 
means that, when focusing fault detection efforts on the 
part of the code only, more faults would be detected 

when using the model compared to analysing the 
classes in random order. The gain from following the 
model corresponds to 30% to 60% of the theoretical 
maximum improvement possible. The exact value of 
the gain depends on the selected model and percentage 
of code analysed. The best results were obtained when 
using models based on all variables. Unfortunately, 
such models most often suffer from multicolinearity, 
which makes them poor prediction models [3, 8]. 
However, our models that contain a limited number of 
variables still provide an improvement over both 
Random and Size models. The capabilities of the 
models based on all variables can be considered an 
upper limitation of building models using our set of 
metrics and linear regression. As we can see, on 
average, we can be only half as good as the perfect 
model. Therefore there is still some room for 
improvement, e.g., by introducing new metrics, 
deriving new variables from our metrics and using 
prediction methods other than linear regression. 

The comparison of goodness-of-fit (R2 values) of 
models predicting number of faults and predicting 
fault-density indicates that, given our set of metrics, 
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Figure 6. Prediction models based on single 

variable - comparison 

the prediction of number of faults is much more 
accurate. The R2 values of number of faults prediction 
models   (0.752, 0.585, 0.550 - see Table 4 for details) 
are typical R2 values for prediction models that can be 
found in literature. For example, [19, 29] report 
following R2 values:  0.558, 0.611, 0.63, 0.68. The R2 
values for density prediction models are much lower 
(0.479, 0.280, 0.058 – see Table 4 for details), which 
practically disqualifies them as prediction models. 
However, when comparing the performance of fault 
and fault-density prediction models when it comes to 
fault detection efficiency, the difference between both 
types of models was not so huge. One explanation 
could be that, even though the density prediction 
models predict inaccurate values, they maintain order, 
i.e., they predict higher values for classes with higher 
fault densities. Since it is the order that counts in our 
case, the result turns out to be rather good. It is, 
however, very difficult to say if this characteristic will 
be stable over system releases.      

An interesting and promising finding is that models 
based on a single variable (SingleNumber, 
SingleDensity) perform at least as good as the models 
based on selected variables (SelNumber, SelDensity). 
Such models based on low number of variables are 
preferable  because they are usually more stable over 
releases [3, 8]. The comparison of the performance of 
SingleNumber and SingleDensity is presented in 
Figure 6.  Because of better overall performance (see 
Figure 6) as well as better goodness of fit (see Table 4) 
we can say that from models based on single variable 
the SingleNumber is the preferable one. The 
SingleNumber model is based on ChgSize variable and 
predicts the number of faults (see Table 4).  When 
applying it, we divide the predicted number of faults 
by class size to obtain a density metric. Therefore we 
can say that change density turned out to be the most 
promising single fault predicator for modified code. 

Apart from the findings concerning our models we 
have also made some more general observations that 
can contribute to the body of knowledge in metrics 
research. One of them is yet another empirical 
evidence for 60/20 rule [7, 20], stating that 60% of 
faults can be found in 20% of modules. Our results 
show that it is also truth for the code, 20% of code 
contains 60% of faults. Another finding is that the size 
of the class is a poor predicator of fault-density in 
modified classes (see Section 4.2 for details). 
However, we have also found that the size of the 
change is a good predictor for fault-density and 
number of faults.  

A surprising finding was high positive correlation 
between number of comments and faults. As we said, 
one way of interpreting it is to consider comments a 
measure of human perceived complexity, which could 

explain the positive correlation. It might be interesting 
to see if such a correlation is a characteristic of our 
dataset only or if it is present in other datasets as well. 
In the future studies we plan to investigate this issue. 

It can be noticed that all our models use code 
metrics extensively. These metrics are available after 
the system was developed. It might be interesting to 
investigate what we can expect from models based on 
design metrics only. Such metrics are available before 
the system is developed, which gives an opportunity of 
taking some preventive measures on especially fault 
prone classes (e.g., more careful development, 
increased number of code reviews, assignment of such 
classes to more experience developers). 
 
5.2 Validity 
 

As suggested in [28] we distinguish between four 
types of validity: internal, external, construct and 
conclusion validity. 

The internal validity “concerns the causal effect, if 
the measured effect is due to changes caused by the 
researcher or due to some other unknown cause” [13]. 
Since our study is mostly based on correlations, by 
definition we can not claim the causal relationship 
between our dependant and independent variables. 
However, it is also not our ambition to claim that. 
There can be (and probably is) an underlying third 
factor that demonstrates itself in both dependent and 
independent variables and therefore it is possible to 
predict one of them using another. Because of that, by 
finding correlations we are able to build a useful 
prediction model.  

The external validity concerns the possibility of 
generalising the findings. The study was performed on 
a system, which is representative for systems of its 
class (i.e., telecommunication systems). The system is 
rather large (250 KLOC, 40% of the code was new in 
the system release we have studied). One big threat to 



validity of our study is that we have built and evaluated 
the model using the same data. Therefore we have not 
tested the most important feature of the prediction 
models – how well they predict faults when they are 
applied to other project/release. Unfortunately, when 
performing the study, we had no access to similar data 
from other project or other release of the project. 
Therefore, our study can be considered to be a 
feasibility study. 

The construct validity ”reflects our ability to 
measure what we are interested in measuring” [13]. 
One thing that may be worth discussing is the 
assumption that an effort connected with the fault 
detection activities is proportional to the size of the 
class. Many other studies consider the cost of detecting 
faults in the class to be a fixed value and therefore 
evaluate models only by how well they detect faults. 
We believe that size of the class is a better cost 
indicator. At first we also considered a size of the 
change as possible effort estimation metric. It is, 
however, not enough to analyse only the modified 
code, since the modification can violate some more 
general class assumption and result in fault in a part of 
the class that was not modified. Therefore we selected 
size of the class for estimating analysis effort. 

The conclusion validity concerns the correctness of 
conclusions we have made. When discussing 
conclusion validity we want to assess to what extent 
the conclusions we have made are believable. The 
conclusion validity is mostly interested in checking if 
there is a correct relationship (i.e., statistically 
significant) between the variables. Therefore, where 
possible, we have presented the statistical significance 
of our findings.  

 
6. Conclusions 
 

The goal of the study was to build prediction 
models that would increase the efficiency of fault 
detection in the modified code. We have built a 
number of models based on the data collected from a 
large telecommunication application. The models were 
later evaluated against three reference models: the 
model based on random selection of the classes for 
analysis, the theoretical best model, and a simple 
model based on the size of the class.  

We have found that all our models provide an 
improvement compared to both random and size-based 
models. They are able to provide about 30% to 60% of 
the maximal theoretical improvement in fault detection 
efficiency.  

We have found the models predicting the number of 
faults as most promising. They have proven to be more 

accurate and better compared to the fault-density 
prediction models. 

A single metric that seems to have a large 
importance when it comes to fault prediction in 
modified code is the size of the modification (change 
size). This metric was included in all our models as 
well as selected the best single predicator for both the 
number of faults and the fault density.  

In this study we have also managed to find 
empirical evidence for a number of popular hypothesis 
concerning faults. These findings concern the 60/20 
rule (60% of the faults can be found in 20% of the 
code) as well as the fact that class size is a poor 
predicator of class fault-density. 
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