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Abstract—JavaScript has gone from being a mechanism for
providing dynamic web pages to an important component of
many web applications. Currently one of the most popular type
of web applications is so-called social networks, e.g., Facebook,
Twitter, and MySpace. However, the workload and execution
behavior of JavaScript in this context have not been fully explored
or understood.

In this paper we present a methodology for characterizing
the JavaScript execution behavior in interactive web applications
using deterministic execution of use cases. Then, we apply this
methodology to evaluate a set of social network applications
and compare their behavior to a set of established JavaScript
benchmarks. Our results confirm previous studies that the
execution behavior of social networks differ from established
benchmarks. In addition, we identify one novel difference not
published before, i.e., the use of anonymous functions in web
applications.

I. INTRODUCTION

JavaScript was introduced primary as an interpreted proto-
type based scripting language for web pages, which allowed
programmers to add interactivity to web pages [1], [2]. With
JavaScript these web pages where given application like be-
havior. As a result, a number of more or less sophisticated
ports of typical desktop-like applications became accessible
as web pages. One typical example is Google’s mail client
Gmail [3]. These web pages are informally known as web
applications [4].

One important advantage of web applications is the ease of
application distribution. Installing a conventional application
usually requires that you are careful so it gets installed onto
a correct operating system and on a machine with certain
specifications. In contrast, web applications can essentially be
accessed and executed directly from any (reasonably modern)
web browser.

Social networking [5] has become a popular type of web
applications. Facebook seems to be the most popular one
and is number two on the Alexa list of the most popular
web sites [6], [7]. Many of the entries among top 25 web
sites are social networks, e.g., Facebook [8], Twitter [9], and
MySpace [10]. Several studies have confirmed the popularity
of social networking web applications [11], [12], [13].

Due to the popularity and ease of distribution of web appli-
cations, JavaScript has become a very popular programming
language. There have also been several approaches to improve
the performance of the JavaScript interpreter [14], [15], [16].

To measure and evaluate the performance of JavaScript
interpreters (and thereby measuring and quantifying the results
of the interpreter optimization), a set of benchmark suites have
been proposed [17], [18], [19]. Some of the critique [20], [21]
against these suites, is that several of the benchmarks have
been ported from benchmarks in, e.g., operating systems and
numerical computation research. While these might help us to
improve certain aspects of the interpreter, there is a significant
risk that the execution behavior of these benchmarks might
not fully reflect the JavaScript behavior of real-world web
applications, such as social networking web applications.

In this paper, we make three main contributions:

• First, we propose a methodology to measure, character-
ize, and evaluate the JavaScript execution behavior of
interactive social networking web applications such as
Facebook, Twitter, and MySpace. We do this by defining
a set of use cases that represent typical user operations for
the selected web applications. These use cases are then
deterministically executed using a scripted and controlled
environment.

• Second, our measurements confirm the conclusions from
several other studies, e.g., [20], [21], that there are
significant differences in the execution behavior between
real-world web applications and established benchmarks.

• Third, we identify one unpublished significant difference
between web applications and the established bench-
marks, i.e., the use of anonymous functions.

The rest of the paper is organized as follows. Section II
presents some background and previous work, and then Sec-
tion III presents the benchmarks and web applications that
we use. In Section IV, we present our methodology to do
workload characterization of interactive web applications. Sec-
tion V presents our measurement results. Section VI discusses
some directions for future work, and finally, we conclude our
findings in Section VII.

II. BACKGROUND

A. JavaScript and web applications

JavaScript [1], [2] was introduced by Netscape in 1995 as a
way to allow web developers to add dynamic functionality
to web pages that were executed on the client side. The
purposes of the functionality were typically to validate input



forms and other user interface related tasks. JavaScript has
gained momentum over the years, particularly due to its ease
of deployment and the increasing popularity of certain web
applications, e.g., Gmail [22]. We have found that almost all
of the first 100 sites in the Alexa-top sites list [6] include some
JavaScript functionality.

JavaScript is a dynamically typed, object-based script-
ing language with run-time evaluation. The execution of
a JavaScript program is done in a JavaScript engine [23],
[24], [25], i.e., an interpreter/virtual machine that parses and
executes the JavaScript program. Due to the popularity of the
language, there have been multiple approaches to increase the
performance of the JavaScript engines, through well-known
optimization techniques such as just-in-time (JIT) compilation
techniques, fast property access, and efficient garbage collec-
tion [15], [23].

B. Previous work

With the increasing popularity of web applications, it has
been suggested that the web browser could serve as a general
platform for applications in the future. This would imply that
JavaScript needs increased performance. Further, it also mean
that one would need to look deeper into the workload of
actual web applications. This process is in its early phases,
but there are several examples of interesting work [8], [26].
Two concurrent studies [20], [21] explicitly compare the
JavaScript execution behavior of web applications as compared
to existing JavaScript benchmark suites.

The study by Ratanaworabhan et al. [20] is one of the first
studies that compares JavaScript benchmarks with real-world
web applications. They instrumented the Internet Explorer 8
JavaScript runtime in order to get their measurements. Their
measurements were focused on two areas of the JavaScript
execution behavior, i.e., (i) functions and code, and (ii) events
and handlers. Based on the results, they conclude that existing
JavaScript benchmarks are not representative of many real-
world web applications and that conclusions from benchmark
measurements can be misleading. Examples of important
differences include different code sizes, web applications are
often event-driven, no clear hotspot function in the web
applications, and that many functions are short-lived in web
applications. They also studied memory allocation and object
lifetimes in their study.

The study by Richards et al. [21] also compares the execu-
tion behavior of JavaScript benchmarks with real-world web
applications. In their study, they focus on the dynamic behavior
and how different dynamic features are used. Examples of
dynamic features evaluated are prototype hierarchy, program
size, object properties, and hot loops (hotspots). They conclude
that the behavior of existing JavaScript benchmarks differ
on several of these issues from the behavior of real web
applications.

III. BENCHMARKS AND WEB APPLICATIONS

A. JavaScript benchmarks

There exist three established JavaScript benchmark suites:
V8 [17], Dromaeo [18], and Sunspider [19]. The applications
in these benchmark suites generally fall into two different
categories: (i) testing of a specific functionality, e.g., string ma-
nipulation or bit operations, and (ii) ports of already existing
benchmarks that are used extensively for other programming
environments [27]. The different applications found in the
three benchmark suites are listed in Table I.

TABLE I
A SUMMARY OF THE BENCHMARK SUITES USED IN THIS PAPER.

Benchmark
suite

Applications

Dromaeo 3d-cube, core-eval, object-array, object-regexp,
object-string, string-base64

V8 crypto, deltablue, earley-boyer, raytrace, richards
SunSpider 3d-morph, 3d-raytrace

access-binary-trees, access-fannkuch, access-nbody, access-
nsieve
bitops-3bit-bits-in-byte, bitops-bits-in-byte, bitops-bitwise-
and, bitops-nsieve-bits
controlflow-recursive crypto-aes, crypto-md5, crypto-sha1
date-format-tofte, date-format-xparb
math-cordic, math-partial-sums, math-spectral-norm
regexp-dna
string-fasta, string-tagcloud, string-unpack-code, string-
validate-input

For example, the benchmarks Raytrace, Richards, Deltablue,
and Earley-Boyer are included in the V8 benchmark suite.
Raytrace is a well-known computational intensive graphical
algorithm for rendering scenes [28]. Richards simulates an
operating system task dispatcher, Deltablue is a constraint
solver, and Earley-Boyer is a type theorem prover benchmark.
In contrast, the Dromaeo benchmarks test specific JavaScript
language features.

Typical for the established benchmarks is that they often are
problem oriented, meaning that the purpose of the benchmark
is to accept a problem input, solve this certain problem, and
then end the computation. This eases measurements, gives the
developer full control over the benchmarks, and increases the
reproducibility.

B. Social networking web applications

There exists many so-called social networking web appli-
cations [29], where Facebook [8] is the most popular one [6],
[12]. There are even examples of countries where half of the
population use Facebook to some extent during the week [11].
The purpose and usage of social web applications might have
many facets. However, the key element for a social networking
application to be successful is to have a certain critical mass
of users.

The users of a social networking web application can locate
and keep track of friends or people that share the same
interests. This set of friends represents each user’s private



network, and to maintain and expand a user’s network, a set
of functionalities is defined. For example, users can create
petitions to vote for a certain cause, while other users can
play video games where the final ’score’ is compared with
other friends in their own networks.

In this paper we study the social networking web applica-
tions Facebook, Twitter [9], and MySpace [10]. In a sense,
Facebook seems to be a general purpose social networking
web application, with a wide range of different functionality.
Further, Facebook also has the largest number of users.

Twitter is for writing small messages, so called ”tweets”,
which are restricted to 160 characters (giving a clear associ-
ation to SMS). The users of Twitter are able to follow other
people’s tweets, and for instance add comments in form of
tweets to their posts.

MySpace seems to be especially coined at musicians, that
wish to share or obtain music. Through MySpace the users can
upload music, which they in turn distribute to other MySpace
users. Users are also able to write comments and search for
other users with similar music taste.

IV. A METHODOLOGY FOR EVALUATING JAVASCRIPT

EXECUTION BEHAVIOR

While the benchmarks have a clear purpose, with a clearly
defined start and end state, interactive social networking web
applications behave more like operating system applications,
where the user can perform a selected number of tasks. As
long as the web application is viewed by the user, it remains
active and performs a set of underlying tasks.

When measuring and evaluating application or system be-
havior, as well as when defining benchmarks, two of the most
important things are: (i) the application/benchmark should be
representative and (ii) the measurements should be repro-
ducible. How representative existing JavaScripts benchmark
suites are for real-world web applications have been addressed
in, e.g., [20], [21], and in this paper we identify some addi-
tional differences. However, the issue of reproducibility of web
application behavior measurements have not been addressed in
previous studies.

A. Representative behavior

In order to mimic a representative use and behavior of
social network web applications, we have defined a set of use
cases. Each use case has a clear start and end state. These
use cases are intended to give a realistic idea of the actual
workload in web applications and also provide repeatability
of the measurements. The use cases that we have designed
represent common user behavior in Facebook, Twitter, and
Myspace, rather than exhausting JavaScript execution.

Figure 1 shows the different use cases that we have defined
for Facebook, Twitter, and MySpace, respectively. All use
cases start with the user login. Then, the user has multiple
options.

For Facebook, the users login to the system, then the user
searches for an old friend, which the user in turn finds.
When the user finds this old friend, the user marks him as

a ”friend”, an operation where the user needs to ask for
confirmation from the friend to make sure that he actually
is the same person. This operation is a typical example
of an use case, which in turn is composed of several sub
use cases: 0 -login/home, 0.3 -find friend, 0.3.1
-add friend, and 0.3.1.0 -send request, as shown in
Figure 1a.

All use cases start with the login case, and we recognize an
individual operation, such as 0.3.1 -add friend as a sub
use case, though it must complete previous use cases. Further,
we do allow use cases that goes back and forth between
use cases. For example in Figure 1b, if we want to both
choose the option 0.1.0 -follow and 0.1.1 -mention,
then we would need to visit the following sub use cases:
0 -login/home, 0.1 -find person, 0.1.0 -follow,
0.1 -find person, and 0.1.1 -mention.

B. Reproducible behavior

To enhance reproducibility, we use the AutoIt scripting
environment [30] to automatically execute the various use
cases in a controlled fashion. As a result, we can make sure
that we spend the same amount of time on the same or similar
operations, such as to type in a password or click on certain
buttons. This is suitable for the selected use cases. However
for certain operations, several social networks employ various
web crawling countermeasures, e.g., through CAPTCHA [31]
or restricts the number of login attempts.

We discovered by successively executing the same use
case (the 0 -login/home Facebook use case) 10 times,
that there is no guarantee that the executed JavaScript code
would be identical in all the cases, even though the usage
would be identical. Since JavaScript has a function such as
eval, we can easily create script that dynamically generates
JavaScript code. We have found that a certain fraction of the
function names is unique for repetitions of identical cases,
which suggests that changes occur between reloads or as a
result of session specific code through AJAX calls [32]. We
also found that the number of function calls, and the number
of functions that are called vary for identical cases as shown
in Figure 2.

A large fraction of these function calls is anonymous
function calls (we will come back this issue in Section V-B).
Thus, we could argue that many of them were dependent
on the input data, which could potentially change through
AJAX calls [32]. However, at the same time, not all of them
are anonymous calls for all of the 10 successive calls with
functions that had unique function names.

To remedy this problem and simplify later analysis, we
have done the following. For example, the two cases in
Figure 1c (0 -login/home, 0.1 -find person, 0.1.1
-message) and (0 -login/home, 0.1 -find person,
0.1.1 -add) both share the same actions (0 -login/home,
0.1 -find person), which we from now on denote as a
sub case. However, as we saw above, the JavaScript execution
for this sub use case might be radically different for the
two cases. To simplify later analysis we have created two



0.1 -create event 0.2 -add entry 0.3 -find friend 0.4 -chat 0.5 -photos0.0 -messages 0.6 -logout

0 -login/home

0.3.0 -choose friend 0.3.1 -add friend

0.3.1.0 -send request0.3.0.0 -show friends 0.3.0.1 -show others

0.3.0.0.0 -browse friends

0.3.0.0.0.0 -choose last entry

0.3.0.0.0.0.0 -click on share 0.3.0.0.0.0.1 -click on wall

0.0.0 -Click on first message in list

a) Facebook

0.0 -twitt 0.1 -find person 0.2 -invite

0 -login/home

0.0.0 -delete 0.0.1 -favorite 0.1.0 -follow 0.1.1 -mention 0.1.2 -manage

0.0 -add stream 0.1 -find person 0.2 -read email

0 -login/home

0.3 -profile

0.1.0 -select person 0.1.1 -message 0.1.2 -add 0.2.0 -write 0.3.0 -blog

0.3.0.0 -write

b) Twitter c) MySpace

Fig. 1. Use cases to characterize the JavaScript workload of a) Facebook, b) Twitter, and c) MySpace.
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countermeasures, to make sure that the executed JavaScript
code will be less different between the two cases.

By using the WebKit [33] environment, we have extracted
and created a local copy of certain sub use cases. In more
detail, when these parts are extracted, we first login to, e.g.,
Facebook, where there seems to be some so-called session

variables that needs to be set. Then we open up the local
copy, and profile this until we reach the point where we
can select two different paths (e.g., 0.1.0 -add or 0.1.1
-message). We have found that this approach works well for
some of the cases, but not for all of them. If this first approach
does not work, we have used the following mechanism.
We have instrumented and repeatedly executed the common
use cases 10 times (e.g., 0 -login/home, 0.1 -find
person) and then used the average of the common JavaScript
execution profile for the measurements.

C. Experimental environment

To do the actual profiling we have used the Firebug v1.5.4
profiling tool [34] running on a freshly installed Windows
XP. Firebug runs on a custom compiled version of Firefox
v3.6, which is able to automatically record executed JavaScript
code as well as some simple instrumentation. Firebug reports
a number of issues, and for JavaScript code it reports, e.g., the
name of the JavaScript functions called, the amount of time
each function is executed, the percentage of the total execution
time the function uses, and the amount of time the function
uses for execution. To extract use cases we have used a custom
Ubuntu installation with WebKit [25].



V. MEASUREMENT RESULTS

A. Distribution of function calls and execution time

In order to understand the relative impact on the execution
time of each function call, we have collected execution statis-
tics of how many times each function is called and how much
it contributes to the total execution time.

We have normalized the execution time for all the function
call entries. To understand how these relates to functions
that accounts for most of the applications execution time,
we created a histogram for the execution time for both the
benchmarks and the first 100 sites on the Alexa top sites list
(Figure 3 and Figure 4). This histogram is divided into 10
categories, where each category accounts for the number of
function calls that contributes to either 0 − 9%, 10 − 19%,
20−29%, 30−39%, 40−49%, 50−59%, 60−69%, 70−79%,
80 − 89%, or 90 − 99% of the execution time.
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We see in Figure 3 and Figure 4 that both the benchmarks
and the Web Applications have a large number of functions
in the 0 − 9% category, which indicate that there is a very
large number of small functions executed. In Figure 3 we
see that for the benchmarks, the workload is divided into
most of the columns in the histogram. Especially, we find
that there are a number of functions that account for more
than 80% of the execution time, i.e., a clear hot spot function
exists. In contrast, we see in Figure 4 that the execution time
of the Web Applications only uses the first four categories.
This means that no function dominates the execution time
in the web applications, i.e., no hot spot exists in the code.
In web applications, the workload seems to be more evenly
distributed, and no JavaScript function contributes to more
than at most 39% of the total execution time.

In order to analyze the relative execution time for social
network web applications, we show the relative fraction of
execution time per function and the relative number of function
calls per function for Facebook, Twitter, and MySpace in
Figure 5, Figure 6, and Figure 7, respectively.
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time spent in each function for the Facebook use cases.

Our results show a high variance between the number of
times a function is called and its contribution to the execution
time for Facebook, Twitter, and MySpace. This indicates that
there is a high variance in the execution times of individual
functions. For example, we found that for the Facebook
use case, only 14 out of 75 function calls have the same
relative number of function calls as the relative fraction of
the execution time.

B. Anonymous function behavior

A previous study of Facebook reveals that a large number of
anonymous function calls are made [35]. However, the same
study reveals that these functions do not account for a large
fraction of the total execution time. In Figure 8, Figure 9, and
Figure 10, respectively, we have measured (i) the number of
unique anonymous functions relative to the total number of
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unique functions, (ii) the total number of anonymous function
calls relative to the total number of function calls, and (iii) the
total execution time spent in anonymous functions relative to
the total execution time for the use cases defined in Figure 1.

We see in Figure 8 that the number of unique anonymous
function calls as well as the number of calls increase slightly
as we complete the use case (25% and 31%). However, the
execution time increases with a factor 5 between the login sub
use case and the final use case. At the final sub use case, the
anonymous function workload accounts for over half of the
total workload.

However, from Figure 9 and Figure 10 we see that both
Twitter and MySpace use fewer anonymous function calls than
Facebook does. They have only a small number of unique
anonymous functions, a small number of anonymous function
calls and those functions that are called do only account for a
minor part of the execution time.

In comparison, our results show that anonymous functions
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are used to a very little degree in the benchmarks. For instance,
both the V8 benchmarks Raytracer and Earley-Boyer had both
over 40000 function calls, but only 3 of them were anonymous
functions. In comparison, in Figure 8, for the use case where
we search for friends, over 40% of the function calls were
anonymous.

VI. DISCUSSION AND FUTURE WORK

As pointed out in [20], [21] one could argue that the
workload of JavaScript in a web application setting is not well
represented by the established benchmarks. These studies and
our own results suggest that the behavior of web applications
is significantly different than for traditional programs, e.g., by
being more event-driven and by utilizing dynamic updates of
code at runtime. The lack of iterative constructs also could
suggest that traditional JIT like optimization could be less
effective for web applications than for the established bench-
marks. The results in [36] show that just-in-time compilation
often increases the execution time for many common web
applications.
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However, we still need to be careful with our conclusions,
and we will outline a couple of reasons why such a care is
needed. Web applications is a fairly new concept that came
together with the popularization of a set techniques known
as Web2.0 and the possibility for dynamic updates. Our tests
reveal the importance of such technologies in, e.g., Facebook.
However, at the same time, there is a trend where richer
multimedia possibilities are starting to be offered to the web
through technologies such as for instance WebGL. For some
of the workloads found in multimedia applications using 3D
graphics, some of the current benchmarks would be more
relevant.

Our study as well as other similar studies [20] are based
on web applications. However, JavaScript has turned out to be
a popular embedded language for multiple applications, e.g.,
an embedded language in the FireFox web browser, so its
usage is in no way restricted to only web applications. Further,
some of the workloads in web applications are spawned from
functionalities that are not strictly a part of the JavaScript
specification, but rather a part of the functionalities of the
web browser.

Either way, JavaScript has some rather unique programming
constructs, and as our test shows, a functionality such as
anonymous functions are used extensively. These kind of
functions are spawned from a different field, and are usually
not available in other programming languages. That does,
however, not mean that they are not powerful. The established
benchmarks address this issue only to a minor extent, and
future benchmarks ought to take the usage of anonymous
functions into account. We also suggest that there should be
put some effort into resembling event-driven programs.

VII. CONCLUDING REMARKS

In this paper, we have described a methodology to charac-
terize the workload behavior of interactive web applications
that are written in JavaScript. As part of the methodology, we
have defined a number of use cases for three popular social

networking applications, i.e., Facebook, Twitter, and MySpace.
Further, we use an automatic scripting environment in order
to enhance the repeatability of the measurements.

Our characterization of the workload behavior of social
networking web applications shows some interesting differ-
ences as compared to the workload behavior of established
JavaScript benchmarks. First, we have found that the corre-
lation between the relative number of function calls and the
relative amount of execution time spent in each function is sig-
nificantly lower for web applications than for the benchmarks.
Second, the studied web applications have a significantly larger
amount of anonymous functions and function calls than the
established benchmarks. Finally, the established benchmarks
often contain loop constructs that account for a significant
portion of the total execution time, while such hot spots have
not been observed in the web applications. In contrast, web
applications seem to be based on event-driven programming
techniques.
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