
CudaRF: A CUDA-based Implementation of
Random Forests

Håkan Grahn, Niklas Lavesson, Mikael Hellborg Lapajne, and Daniel Slat
School of Computing

Blekinge Institute of Technology
SE-371 39 Karlskrona, Sweden

Hakan.Grahn@bth.se, Niklas.Lavesson@bth.se

Abstract—Machine learning algorithms are frequently applied
in data mining applications. Many of the tasks in this domain
concern high-dimensional data. Consequently, these tasks are of-
ten complex and computationally expensive. This paper presents
a GPU-based parallel implementation of the Random Forests
algorithm. In contrast to previous work, the proposed algorithm
is based on the compute unified device architecture (CUDA). An
experimental comparison between the CUDA-based algorithm
(CudaRF), and state-of-the-art Random Forests algorithms (Fas-
tRF and LibRF) shows that CudaRF outperforms both FastRF
and LibRF for the studied classification task.

Index Terms—Random forests, Machine learning, Parallel
computing, Graphics processing units, GPGPU

I. INTRODUCTION

Machine learning (ML) algorithms are frequently applied in
data mining and knowledge discovery. The process of identi-
fying patterns in high-dimensional data is often complex and
computationally expensive, which result in a demand for high
performance computing platforms. Random Forests (RF) [1]
has been proven to be a competitive algorithm regarding both
computation time and classification performance. Further, the
RF algorithm is a suitable candidate for parallelization.

Graphics processors (GPUs) are today extensively employed
for non-graphics applications, and the area is often referred to
as General-purpose computing on graphics processing units,
GPGPU [2], [3]. Initially, GPGPU programming was carried
out using shader languages such as HLSL, GLSL, or Cg.
However, there was no easy way to get closer control over the
program execution on the GPU. The compute unified device
architecture (CUDA) is an application programming interface
(API) extension to the C programming language, and contains
a specific instruction set architecture for access to the parallel
compute engine in the GPU. Using CUDA, it is possible to
write (C-like) code for the GPU, where selected segments of
a program are executed on the GPU while other segments are
executed on the CPU.

Several machine learning algorithms have been successfully
implemented on GPUs, e.g., neural networks [4], support
vector machines [5], and the Spectral clustering algorithm [6].
However, it has also been noted on multiple occasions that
decision tree-based algorithms may be difficult to optimize for
GPU-based execution. To our knowledge, GPU-based Random
Forests have only been investigated in one previous study [7],

where the RF implementation was done using Direct3D and
the high level shader language (HLSL).

In this paper, we present a parallel CUDA-based imple-
mentation of the Random Forests algorithm. The algorithm
is experimentally evaluated on a NVIDIA GT220 graphics
card with 48 CUDA cores and 1 GB of memory. The perfor-
mance is compared with two state-of-the-art implementations
of Random Forests: LibRF [8] and FastRF in Weka [9]. Our
results show that the CUDA implementation is approximately
30 times faster than FastRF and 50 times faster than LibRF
for 128 trees and above.

The rest of the paper is organized as follows. Section II
presents the random forests algorithm, and Section III presents
CUDA and the GPU architecture. Our CUDA implementation
of Random Forests is presented in Section IV. The experimen-
tal methology is described in Section V, while the results are
presented in Section VI. Finally, we conclude our findings in
Section VII.

II. RANDOM FORESTS

The concept of Random Forests (RF) was first introduced
by Leo Breiman [1]. It is an ensemble classifier consisting
of decision trees. The idea behind Random Forests is to build
many decision trees from the same data set using bootstrapping
and randomly sampled variables to create trees with variation.
The bootstrapping generates new data sets for each tree by
sampling examples from the training data uniformly and with
replacement. These bootstraps are then used for constructing
the trees which are then combined in to a forest. This has
proven to be effective for large data sets with missing attributes
values [1].

Each tree is constructed by the principle of divide-and-
conquer. Starting at the root node the problem is recursively
broken down into sub-problems. The training instances are
thus divided into subsets based on their attribute values. To
decide which attribute is the best to split upon in a node, k
attributes are sampled randomly for investigation. The attribute
that is considered as the best among these candidates is chosen
as split attribute. The benefit of splitting on a certain attribute is
decided by the information gain, which represents how good
an attribute can separate the training instances according to
their target attribute. As long as splitting gives a positive
information gain, the process is repeated. If a node is not

split it becomes a leaf node, and is given the class attribute
that is the most common occurring among the instances that
fall under this node. Each tree is grown to the largest extent
possible, and there is no pruning.

When performing classifications, the input query instances
traverse each tree which then casts its vote for a class and the
RF considers the class with the most votes as the answer to a
classification query.

There are two main parameters that can be adjusted when
training the RF algorithm. First, the number of trees can be set
by the user, and second, there is the k value, i.e., the number
of attributes to consider in each split. These parameters can be
tuned to optimize classification performance for the problem at
hand. The random forest error rate depends on two things [1]:

• The correlation between any two trees in the forest.
Increasing the correlation increases the forest error rate.

• The strength of each individual tree in the forest. A tree
with a low error rate is a strong classifier. Increasing the
strength of the individual trees decreases the forest error
rate.

Reducing k reduces both the correlation and the strength.
Increasing it increases both. Somewhere in between is an
optimal range of k. By watching the classification accuracy
for different settings a good value of k can be found.

Creating a large number of decision trees sequentially is
ineffective when they are built independently of each other.
This is also true for the classification (voting) part where
each tree votes sequentially. Since the trees in the forest are
independently built both the training and the voting part of the
RF algorithm can be implemented for parallel execution. An
RF implementation working in this way would have potential
for great performance gains when the number of trees in the
forest is large. Of course the same goes the other way; if the
number of trees in the forest is small it may be an ineffective
approach.

III. CUDA AND GPU ARCHITECTURE

The general architecture for the NVIDIA GPUs that sup-
ports CUDA is shown at the top of Fig. 1. The GPU has a num-
ber of CUDA cores, a.k.a. shader processors (SP). Each SP has
a large number of registers and a private local memory (LM).
Eight SPs together form a streaming multiprocessor (SM).
Each SM also contains a specific memory region that is shared
among the SPs within the same SM. Thread synchronization
through the shared memory is only supported between threads
running on the same SM. The GPU is then built by combining
a number of SMs. The graphics card also contains a number of
additional memories that are accessible from all SPs, i.e., the
global (often refer to as the graphics memory), the texture, and
constant memories. The GPU used for algorithm development
and experimental evaluation in the presented study is the
Nvidia GT220. The relevant characteristics of this particular
GPU is described at the bottom of Fig. 1. In order to utilize
the GPU for computation, all data must be transferred from
the host memory to the GPU memory, thus the bus bandwidth

S h a r e d m e m o r y

S P

L M

S P

L M

S P

L M

M u l t i p r o c e s s o r N

S h a r e d m e m o r y

S P

L M

S P

L M

S P

L M

M u l t i p r o c e s s o r 2

S h a r e d m e m o r y

S P

L M

S P

L M

S P

L M

M u l t i p r o c e s s o r 1

G l o b a l M e m o r y

Property Value
CUDA cores 48
Compute capability 1.2
Graphics/Processor clock 625 MHz/1.36 GHz
Total amount of memory 1 GB
Memory interface 128-bit DDR3, 25.3 GB/s

Fig. 1. The GPU architecture assumed by CUDA (upper), and the main
characteristics for the NVIDIA GeForce GT220 graphics card (lower).

and latency between the CPU and the GPU may become a
bottleneck.

A CUDA program consists of two types of code: sequential
code executed on the host CPU and CUDA functions, or
’Kernels’, launched from the host and executed in parallel on
the GPU. Before a kernel is launched, the required data (e.g.,
arrays) must have been transferred from the host memory to
the device memory, which can be a bottleneck [10]. When
data is placed in the GPU, the CUDA kernel is launched in a
similar way as calling a regular C function.

When executing a kernel, a number of CUDA threads are
created and each thread executes an instance of that kernel.
Threads are organized into blocks with up to three dimensions,
and then, blocks are organized into grids, also with up to three
dimensions. The maximum number of threads per block and
number of blocks per grid are hardware dependent. In the
CUDA programming model, each thread is assigned a local
memory that is only accessible by the thread. Each block is
assigned a shared memory for communication between threads
in that block, while the global memory which is accessible by
all threads executing the kernel. The CUDA thread hierarchy
is directly mapped to the hardware model of GPUs. A device
(GPU) executes kernels (grids) and each SM executes blocks.
To utilize the full potential of a CUDA-enabled NVIDIA GPU,
thousands of threads should be running, which requires a
different program design than for today’s multi-core CPUs.

IV. CUDA IMPLEMENTATION OF RANDOM FORESTS

A. Basic Assumptions and Execution Flow

Both the training phase and the classification phase are
parallelized in our CUDA implementation. The approach taken
is similar to the one in the study by Topic et al. [11]. In
our implementation we use one CUDA thread to build one

tree in the forest, since we did not find any straight-forward
approach to build individual trees in parallel. Therefore, our
implementation works best for a large number of trees.

Many decision tree algorithms are based on recursion, e.g.,
both the sequential and parallel Weka algorithms are based
on recursion. However, the use of recursion is not possible
in the CUDA-based RF algorithm since there is no support
for recursion in kernels executed on the graphics device.
Therefore, it was necessary to design an iterative tree generator
algorithm.

The following steps illustrate the main execution steps in
our implementation. Further, Figure 2 shows which parts of
the execution that are done on the host CPU and on the device
GPU, respectively, as well as the data transfers that take place
between the host and the device (GPU). Steps 2-8 are repeated
N times when N -fold cross-validation is done.

1) Training and query data is read from an ARFF data set
file to the host memory.

2) The training data is formatted and missing attribute
values are filled in, and then the data is transferred to
the device memory.

3) a) A CUDA kernel with one thread per tree in the
forest is launched. A parallel kernel for the bagging
process is executed where each tree gets a list of
which instances to use. Instances not used by a tree
are considered as the out of bag (oob) instances for
that tree.

b) The forest is constructed in parallel on the GPU
using as many threads as there shall be trees in the
forest.

c) When the forest is completely built, each tree
performs a classification run on its oob instances.
The results of the oob run are transferred back to
the host for calculation of the oob error rate.

4) The host calculates the oob error rates.
5) The query data is transferred from the host memory to

the device memory.
6) A CUDA kernel for prediction with one thread per tree

in the forest is launched, i.e., we calculate the predictions
for all trees in parallel.

7) The execution returns to the host and the results are
transferred from the device memory to the host memory.

8) The results are presented on the host.
We will now describe in more detail how the trees are
constructed during the training phase, i.e., step 3, and how we
use them for classification, i.e., step 6. Each tree in the forest is
built sequentially using one thread per tree during the training
phase. If N threads are executed, then N trees are built in
parallel. Therefore, our implementation works best for a large
number of trees. At each level in a tree, the best attribute to use
for node splitting is selected based on the maximum entropy,
instead of the gini impurity criterion, among k randomly
selected attributes. When all trees are built, they are left in
the device memory for use during the classification phase.

The classification phase, i.e., step 6, is done fully in parallel
by sending all instances to be classified to all trees at the same

Fig. 2. Execution flow and communication between Host and Device for
CudaRF.

time. One thread is executed for each tree and predicts one
outcome of that decision tree for each query instance. When
all threads have made their decisions, all prediction data is
transferred the host. The host then, sequentially, summarizes
the voting made by the trees in the forest for one query
instance at the time.

B. Implementation of support functions

1) Random Number Generation: The Random Forests al-
gorithm requires the capability to generate random or pseudo-
random numbers for data subset generation and attribute sam-
pling. We based our random generator design on the Mersenne
Twister [12] implementation included in the CUDA SDK. The
algorithm is based on a matrix linear recurrence over a finite
binary field F2 and supports the generation of high-quality
pseudo-random numbers. The implementation has the ability
to generate up 4, 096 streams of pseudo-random numbers in
parallel.

2) ARFF Reader: Training and test data is read from ARFF
files [9] and a custom ARFF file reader has been implemented.
This is advantageous since we then have the ability to read
and use commonly available data sets. Thus, we are able to
compare our results with other RF implementations supporting
the ARFF format.

C. GPU and CUDA Specific Optimizations

1) Mathematical Optimizations: To increase performance,
we make use of the fast math library available in CUDA
when possible. For example, we use the faster but less precise

__logf() instead of the regular log function, logf(). We
expect that the loss in precision is not significant for our
classification precision and instead focus on achieving a higher
performance in terms of speed. The motivation is that RF
is based on sampled variables, so a less precise sampling
is assumed not to significantly impact the outcome of the
classifier.

Throughput of single-precision floating-point division is
0.88 operations per clock cycle, but __fdividef(x,y)
provides a faster version with a throughput of 1.6 operations
per clock cycle. In our implementation ln(2) is commonly
used, and to increase performance we have statically defined
the value so it does not have to be computed repeatedly.

2) Memory Management Optimizations: Several optimiza-
tions have been done to improve host-device memory transfers,
and also to minimize the use of the rather slow global
device memory. The test data are copied to the device as a
one-dimensional texture array to the texture memory. These
texture arrays are read only, but since they are cached (which
the global memory is not) this improves the performance
of reading memory data. A possible way to increase the
performance further might be to use a two-dimensional texture
array instead, since CUDA is optimized for a 2D array and
the size limit will increase substantially. We use page-locked
memory on the host where it is possible. For example, the
cudaHostAlloc() is used instead of a regular malloc when
reading the indata. As a result, the memory is allocated as
page-locked which means that the operating system cannot
page out the memory. When page-locked memory is used a
higher PCI-E bandwidth is achieved than if the memory is not
page locked [10].

Global & constant variables are optimized by using the
constant memory on the device as much as possible. This is
primarily to reserve registers, but since the constant memory
is cached it is also faster than the global memory [10]. The
size of the constant memory is limited though and everything
we would like to have in it does not fit. To further preserve
registers and constant memory, the number of attributes passed
to each method/kernel are kept to a minimum since these
variables are stored in the constant memory.

3) Entropy Reduction: In our implementation, we have de-
cided not to use Gini importance calculation for node splitting.
Instead, we use entropy calculations to find the best split. This
has the advantage of moving execution time from training to
classification. In addition, since we have a large amount of
computation power to make use of, the extra computation
needed for entropy calculations does not significantly affect
performance. Hypothetically, the entropy calculation can be
further optimized by parallelization, but this is left to future
work.

V. EXPERIMENTAL METHODOLOGY

The aim of the experiment is to compare the computation
time of the proposed CUDA-based RF with its state-of-the-
art sequential and parallel CPU counterparts. The software
platform used consists of Microsoft Windows 7 together with

Cuda version 2.3. The hardware platform consists of an Intel
Core i7 CPU and 6 GB of DDR3 RAM. The GPU used is an
NVIDIA GT220 with 1 GB graphics memory. Thus, we can
note that we use a high-end CPU, while a low-end GPU is
used.

A. Algorithm Selection

Three RF algorithms are compared in the experiment: an
optimized CPU-based Weka version (FastRF), the sequential
C++ RF library version (LibRF), and the proposed CUDA-
based version (CudaRF). All included algorithms are default
configured with a few exceptions. In the experiment, we
vary two configuration parameters (independent variables) to
establish their effect on computation time (the dependent
variable).

The first parameter is the number of attributes to sample
at each split (k) and the second parameter is the number
of trees to generate (trees, t). The justification of these
choices of independent variables is that they represent typical
algorithm parameters that are changed (tuned) to increase
classification performance for the problem at hand. In fact,
in many experimental studies, classification performance is
selected as the dependent variable. In the presented study, we
regard classification performance as a secondary dependent
variable. We are not primarily interested in establishing which
parameter configuration has the most impact on classification
performance. Rather, it is of interest to verify that CudaRF
performs comparably to the other algorithms in terms of
classification performance.

B. Evaluation

In our experimental evaluation we have studied two different
aspects:

1) The classification performance, i.e., the accuracy, of Cu-
daRF as compared to a state-of-the-art implementation
of Random Forests, i.e., the Weka implementation.

2) The execution time of CudaRF, regarding both train-
ing and classification, as compared to both sequential
and parallel state-of-the-art implementations of Random
Forests, i.e., LibRF and FastRF, respectively.

We collect measurements across k = 1, . . . , 21 with step size 5
and trees= 1, . . . , 256 with an exponential step size for all in-
cluded algorithms, in terms of computation time with regard to
total time, training time, and classification time, respectively.
For the purpose of the presented study, we have selected one
particular high-dimensional data set; the publicly available end
user license agreement (EULA) collection [13]. This data set
consists of 996 instances defined by 1, 265 numeric attributes
and a nominal target attribute. The k parameter range has been
selected on the basis of the recommended Weka setting, that
is, k = log2 a+ 1, where a denotes the number of attributes.
For the EULA data set, this amounts to log2 1265 + 1 ≈ 11.
The aim of this particular classification problem is to learn
to distinguish between spyware and legitimate software by
identifying patterns in the associated EULAs.

In order to measure the classification accuracy of CudaRF,
we used 10-fold cross validation which has been proven useful
(and adequate) for estimating classification performance [14].
Identical tests were also run in Weka and each test was run
for ten iterations for every parameter configuration. LibRF is a
standalone software package, which lacks inherent support for
performing 10-fold cross validation, and thus was only used
during comparison of the execution time.

We argue that the number of instances and dimensionality of
the EULA data set are sufficient for the purpose of comparing
the computation time of the included RF algorithms. In
addition, we collect classification performance measurements
in terms of accuracy for the aforementioned RF configurations.
The choice of accuracy, or rather the exclusion of other
classification performance metrics, is motivated by the earlier
mentioned fact that this study is focused on time optimization.
It is assumed that, if the RF algorithms perform comparably
in terms of accuracy, they will indeed perform comparably
in terms of other classification performance metrics as well.
This assumption can, of course, not be made when comparing
algorithms with different inductive bias.

VI. EXPERIMENTAL RESULTS

A. Classification Accuracy Results

We employed stratified 10-fold cross-validation tests to
evaluate the classification performance of the CudaRF imple-
mentation and to compare the performance to that of the Weka
Random Forests implementation. Classification performance
can be measured using a number of evaluation metrics out of
which classification accuracy is still one of the most common
metrics. Accuracy is simply a measure of the number of
correctly classified data instances divided by the total number
of classified data instances. Several issues have been raised
against the use of accuracy as an estimator of classifier
performance [15]. For example, accuracy assumes an equal
class distribution and equal misclassification cost. These as-
sumptions are rarely met in practical applications. However,
our primary purpose is to determine whether the classification
performance of CudaRF differs from that of the Weka RF
implementation. For this purpose, we determine accuracy to
be a sufficient evaluation metric.

Table I presents the mean accuracy and standard deviation of
CudaRF and Weka for k = 1, . . . , 21 and trees = 1, . . . , 256.
With respect to classification performance, the average differ-
ence between CudaRF and Weka RF across the 45 configura-
tions is 0.935 − 0.923 = 0.012, which by no means can be
regarded as significant. We assume that the existing difference
can be attributed in part to the different attribute split measures
and the difference in cross-validation stratification procedures.
From the results in Table I we can conclude that CudaRF has
comparable, and in most cases even higher, accuracy scores
than Weka. This is an important result, in order to confidently
assume that the CudaRF implementation generates at least
as accurate classifications as a state-of-the-art implementation
does.

TABLE I
CLASSIFICATION ACCURACY FOR CUDARF AND WEKA FOR THE EULA

DATA SET.

CudaRF, EULA Weka, EULA
Trees K Average Standard Average Standard

accuracy (%) deviation accuracy (%) deviation
1 1 88.74 2.79 88.40 0.54
2 1 91.78 1.82 85.56 0.68
4 1 92.65 1.51 91.44 0.60
8 1 93.24 1.54 92.06 0.37

16 1 93.32 1.79 91.65 0.31
32 1 93.45 1.68 91.29 0.28
64 1 93.48 1.74 91.13 0.23

128 1 93.40 1.63 90.94 0.21
256 1 93.39 1.70 90.73 0.10

1 6 90.25 2.49 89.71 1.14
2 6 92.43 1.83 87.67 1.20
4 6 93.17 1.94 91.70 0.62
8 6 93.88 2.00 93.45 0.57

16 6 94.03 1.83 93.41 0.34
32 6 94.21 1.93 93.62 0.37
64 6 94.34 1.75 93.71 0.19

128 6 94.45 1.78 93.69 0.14
256 6 94.47 1.68 93.64 0.14

1 11 90.09 2.62 89.95 0.95
2 11 92.49 1.93 87.86 0.98
4 11 93.16 1.77 92.51 0.55
8 11 93.79 1.85 93.42 0.42

16 11 94.24 1.74 93.82 0.37
32 11 94.46 1.81 93.96 0.22
64 11 94.59 1.71 94.07 0.21

128 11 94.76 1.68 93.87 0.20
256 11 94.63 1.70 93.95 0.12

1 16 90.43 2.59 90.02 0.79
2 16 92.32 1.91 88.05 0.83
4 16 93.36 1.95 92.14 0.64
8 16 93.93 1.85 93.38 0.38

16 16 94.40 1.78 93.70 0.49
32 16 94.76 1.79 93.89 0.22
64 16 94.75 1.71 94.05 0.20

128 16 94.75 1.76 94.11 0.24
256 16 94.89 1.79 94.21 0.14

1 21 90.26 2.66 90.33 0.89
2 21 92.73 1.92 88.58 0.57
4 21 93.67 1.80 92.13 0.49
8 21 94.23 1.91 93.77 0.35

16 21 94.54 1.94 94.12 0.35
32 21 94.85 1.84 93.99 0.30
64 21 94.88 1.74 94.27 0.26

128 21 94.94 1.68 94.33 0.14
256 21 95.00 1.63 94.32 0.18

B. Execution Time Results

With regard to computation time, the experimental results
clearly show that, for the studied classification task, CudaRF
outperforms FastRF and LibRF. This is true in general, when
the average result is calculated for each algorithm, but also for
each specific configuration when the number of trees, k ≥ 10.
The complete set of computation time results are presented in
Table II. Local minima for LibRF and CudaRF can be found at
k = 11 and k = 6, respectively, while the best k for FastRF
is the lowest (1). We observe that when k is low and the
number of trees is low, CudaRF has longer execution times
than FastRF. This is mainly due to the fact the CudaRF has
a higher initial overhead, for example, data transfer between
the host and the device. However, as k is increased to levels

TABLE II
EXPERIMENTAL MEASUREMENTS OF TIME CONSUMPTION (MS) FOR k = 1, . . . , 21 AND TREES, t = 1, . . . , 256

LibRF FastRF CudaRF
k 1 6 11 16 21 1 6 11 16 21 1 6 11 16 21
t Training time
1 368 446 449 442 443 86 126 195 265 321 1021 655 691 812 840
2 748 969 856 844 850 155 245 367 514 588 1651 576 732 721 740
4 1481 1738 1748 1730 1708 326 499 729 978 1194 1598 666 667 933 856
8 3033 3461 3293 3186 3332 622 1000 1424 1925 2389 2023 717 677 861 915
16 6179 6881 6710 6596 6335 1256 1984 2890 3847 4829 1608 693 776 864 1064
32 12234 13678 13544 13957 12809 2521 3978 5823 7815 9711 1865 804 839 941 1003
64 23236 27561 27291 26225 26107 4971 7961 11729 15518 19282 2094 947 863 890 1013
128 50304 51407 52326 56422 52393 9903 16004 23255 30616 38307 2235 887 888 1068 1119
256 98317 93914 84650 95797 103289 19513 32190 46652 61480 76340 3955 1663 1850 1926 2107
t Testing time
1 21 18 30 16 21 5 4 4 5 16 26 14 13 14 12
2 33 23 18 16 16 10 6 6 6 16 24 10 11 12 8
4 20 21 20 23 22 16 10 10 10 26 21 10 14 15 9
8 26 29 24 21 20 31 25 19 18 17 26 12 13 10 12
16 31 41 42 36 42 60 38 36 34 33 27 17 16 11 13
32 66 73 67 70 62 120 74 71 66 62 34 17 16 16 13
64 108 130 117 111 111 257 152 141 132 125 37 21 16 18 15
128 193 243 215 208 203 526 320 298 278 270 46 22 19 20 16
256 361 465 420 402 388 1067 654 594 566 555 78 38 34 31 31
t Total time
1 389 463 479 458 464 92 130 199 270 326 1046 670 704 826 852
2 782 992 874 859 866 165 251 373 520 588 1675 586 743 733 749
4 1501 1759 1768 1753 1730 341 509 739 988 1217 1619 676 681 948 865
8 3059 3490 3317 3207 3353 653 1025 1443 1943 2407 2049 729 689 872 991
16 6210 6922 6752 6632 6377 1316 2022 2926 3881 4862 1636 709 792 875 1077
32 12299 13751 13611 14027 12871 2641 4052 5894 7881 9773 1898 821 855 957 1017
64 23344 27690 27408 26336 26217 5227 8113 11870 15651 19407 2131 968 879 908 1028
128 50497 51650 52541 56629 52596 10430 16326 23553 30893 38577 2281 909 907 1088 1135
256 98678 94378 85070 96199 103678 20580 32843 47246 62046 76895 4033 1702 1884 1958 2138

commonly used in applied domains (for example, k = 11
would be recommended by Weka for the EULA data set),
CudaRF starts to outperform FastRF as the number of trees
increases. For a low number of trees, the performance of
LibRF is almost equivalent to the other algorithms but as the
number of trees increases, the total time of LibRF increases
linearly. In Figure 3, we present the speedup of CudaRF as
compared to LibRF and FastRF, respectively, for the training
phase, the testing phase, and totally. The results for the training
phase show that the number of trees needs to be at least 8 (16)
in order for CudaRF to be faster than LibRF (FastRF). Further,
we note that the number of trees needs to be at least 32 in
order for CudaRF to be faster than LibRF and FastRF in the
testing phase. This is probably due to the fact that the test data
contains relatively few instances. In practice, the number of
instances in the test data set is usually much larger.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a new parallel version of the Random
Forests machine learning algorithm, CudaRF, implemented
using the compute unified device architecture. Our experi-
mental comparison of CudaRF with state-of-the-art Random
forests algorithms (LibRF and FastRF) shows that CudaRF
outperforms both FastRF and LibRF in terms of computational
time for the studied classification task (a data set featuring
996 instances defined by 1265 numeric inputs and a nominal
target).

Unlike FastRF and LibRF, the proposed CudaRF algorithm
executes on the graphics processing unit (GPU). In a regular
consumer computer, the GPU offers a substantially higher

number of cores (processing units) than the CPU does. Since
the difference in classification performance, i.e., accuracy,
between the different Random Forests algorithms is negligible,
it is evident that CudaRF is more efficient than FastRF and
LibRF, especially when the number of attributes to sample
at each split and the number of trees to generate grow. Our
results show that CudaRF is approximately 30 times faster
than FastRF and 50 times faster than LibRF for configurations
where the number of trees is 128 and higher.

For future work, we intend to refine the CudaRF algorithm.
In particular, we are going to add more features to make
CudaRF even more relevant for use in real-world applications.
For example, the current version of CudaRF can only process
numeric input attributes and a nominal target attribute. More-
over, it does not handle missing values.

REFERENCES

[1] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32,
2001.

[2] D. Geer, “Taking the graphics processor beyond graphics,” IEEE Com-
puter, vol. 38, no. 9, pp. 14–16, Sep. 2005.

[3] “GPGPU: General-Purpose computation on Graphics Processing Units,”
http://www.gpgpu.org.

[4] D. Steinkraus, I. Buck, and P. Y. Simard, “Using GPUs for machine
learning algorithms,” in Proc. of the 8th Int’l Conf. on Document
Analysis and Recognition, 2005, pp. 1115–1120.

[5] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support vector
machine training and classification on graphics processors,” in Proc.
of the 25th Int’l Conf. on Machine Learning, 2008, pp. 104–111.

[6] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: Using data parallelism
to program GPUs for general purpose uses,” in ASPLOS-XII: Proc of the
12th Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems, Oct. 2006, pp. 325–335.

[7] T. Sharp, “Implementing decision trees and forests on a gpu,” in Proc.
of the 10th European Conf. on Computer Vision, 2008, pp. 595–608.

0	

10	

20	

30	

40	

50	

60	

70	

1	 2	 4	 8	 16	 32	 64	 128	 256	

CudaRF	 vs.	 LibRF	 (training	 3me)	

k=1	 k=6	 k=11	 k=16	 k=21	

0	

2	

4	

6	

8	

10	

12	

14	

1	 2	 4	 8	 16	 32	 64	 128	 256	

CudaRF	 vs.	 LibRF	 (tes1ng	 1me)	

k=1	 k=6	 k=11	 k=16	 k=21	

0	

10	

20	

30	

40	

50	

60	

70	

1	 2	 4	 8	 16	 32	 64	 128	 256	

CudaRF	 vs.	 LibRF	 (total	 2me)	

k=1	 k=6	 k=11	 k=16	 k=21	

0	

5	

10	

15	

20	

25	

30	

35	

40	

1	 2	 4	 8	 16	 32	 64	 128	 256	

CudaRF	 vs.	 FastRF	 (training	 1me)	

k=1	 k=6	 k=11	 k=16	 k=21	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

1	 2	 4	 8	 16	 32	 64	 128	 256	

CudaRF	 vs.	 FastRF	 (tes.ng	 .me)	

k=1	 k=6	 k=11	 k=16	 k=21	

0	

5	

10	

15	

20	

25	

30	

35	

40	

1	 2	 4	 8	 16	 32	 64	 128	 256	

CudaRF	 vs.	 FastRF	 (total	 /me)	

k=1	 k=6	 k=11	 k=16	 k=21	

Fig. 3. The speedup of CudaRF as compared to LibRF and FastRF, respectively, for the training phase, testing phase, and totally.

[8] B. Lee, “LibRF: A library for random forests,” 2007, http://mtv.ece.ucsb.
edu/benlee/librf.html.

[9] I. H. Witten and E. Frank, Weka: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann Publishers, 2005.

[10] NVIDIA Corporation, “NVIDIA CUDA C programming best prac-
tices guide, version 2.3,” http://developer.download.nvidia.com/compute/
cuda/2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.3.pdf.

[11] G. Topic, T. Smuc, Z. Sojat, and K. Skala, “Reimplementation of the
random forest algorithm,” in Proc. of the Int’l Workshop on Parallel
Numerics, 2005, pp. 119–125.

[12] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Transactions on Modeling and Computer Simulation, vol. 8,
pp. 3–30, 1998.

[13] N. Lavesson, M. Boldt, P. Davidsson, and A. Jacobsson, “Learning
to detect spyware using end user license agreements,” Knowledge and
Information Systems, vol. 26, no. 2, pp. 285–307, 2011.

[14] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in Proc. of the 14th Int’l Joint Conf.
on Artificial Intelligence, vol. 2. Morgan Kaufmann, USA, 1995, pp.
1137–1143.

[15] F. Provost, T. Fawcett, and R. Kohavi, “The case against accuracy
estimation for comparing induction algorithms,” in In Proceedings of
the Fifteenth International Conference on Machine Learning. Morgan
Kaufmann, 1997, pp. 445–453.

